224 research outputs found

    Expressiveness of Generic Process Shape Types

    Full text link
    Shape types are a general concept of process types which work for many process calculi. We extend the previously published Poly* system of shape types to support name restriction. We evaluate the expressiveness of the extended system by showing that shape types are more expressive than an implicitly typed pi-calculus and an explicitly typed Mobile Ambients. We demonstrate that the extended system makes it easier to enjoy advantages of shape types which include polymorphism, principal typings, and a type inference implementation.Comment: Submitted to Trustworthy Global Computing (TGC) 2010

    On the Distributability of Mobile Ambients

    Get PDF
    Modern society is dependent on distributed software systems and to verify them different modelling languages such as mobile ambients were developed. To analyse the quality of mobile ambients as a good foundational model for distributed computation, we analyse the level of synchronisation between distributed components that they can express. Therefore, we rely on earlier established synchronisation patterns. It turns out that mobile ambients are not fully distributed, because they can express enough synchronisation to express a synchronisation pattern called M. However, they can express strictly less synchronisation than the standard pi-calculus. For this reason, we can show that there is no good and distributability-preserving encoding from the standard pi-calculus into mobile ambients and also no such encoding from mobile ambients into the join-calculus, i.e., the expressive power of mobile ambients is in between these languages. Finally, we discuss how these results can be used to obtain a fully distributed variant of mobile ambients.Comment: In Proceedings EXPRESS/SOS 2018, arXiv:1808.08071. Conference version of arXiv:1808.0159

    Separability in the Ambient Logic

    Get PDF
    The \it{Ambient Logic} (AL) has been proposed for expressing properties of process mobility in the calculus of Mobile Ambients (MA), and as a basis for query languages on semistructured data. We study some basic questions concerning the discriminating power of AL, focusing on the equivalence on processes induced by the logic (=L>)(=_L>). As underlying calculi besides MA we consider a subcalculus in which an image-finiteness condition holds and that we prove to be Turing complete. Synchronous variants of these calculi are studied as well. In these calculi, we provide two operational characterisations of =L_=L: a coinductive one (as a form of bisimilarity) and an inductive one (based on structual properties of processes). After showing =L_=L to be stricly finer than barbed congruence, we establish axiomatisations of =L_=L on the subcalculus of MA (both the asynchronous and the synchronous version), enabling us to relate =L_=L to structural congruence. We also present some (un)decidability results that are related to the above separation properties for AL: the undecidability of =L_=L on MA and its decidability on the subcalculus.Comment: logical methods in computer science, 44 page

    A Calculus of Mobile Resources

    No full text
    We introduce a calculus of Mobile Resources (MR) tailored for the design and analysis of systems containing mobile, possibly nested, computing devices that may have resource and access constraints, and which are not copyable nor modifiable per se. We provide a reduction as well as a labelled transition semantics and prove a correspondence be- tween barbed bisimulation congruence and a higher-order bisimulation. We provide examples of the expressiveness of the calculus, and apply the theory to prove one of its characteristic properties

    A Calculus of Mobility and Communication for Ubiquitous Computing

    Full text link
    We propose a Calculus of Mobility and Communication (CMC) for the modelling of mobility, communication and context-awareness in the setting of ubiquitous computing. CMC is an ambient calculus with the in and out capabilities of Cardelli and Gordon's Mobile Ambients. The calculus has a new form of global communication similar to that in Milner's CCS. In CMC an ambient is tagged with a set of ports that agents executing inside the ambient are allowed to communicate on. It also has a new context-awareness feature that allows ambients to query their location. We present reduction semantics and labelled transition system semantics of CMC and prove that the semantics coincide. A new notion of behavioural equivalence is given by defining capability barbed bisimulation and congruence which is proved to coincide with barbed bisimulation congruence. The expressiveness of the calculus is illustrated by two case studies.Comment: In Proceedings WWV 2015, arXiv:1508.0338

    Matching in the Pi-Calculus

    Get PDF
    We study whether, in the pi-calculus, the match prefix-a conditional operator testing two names for (syntactic) equality-is expressible via the other operators. Previously, Carbone and Maffeis proved that matching is not expressible this way under rather strong requirements (preservation and reflection of observables). Later on, Gorla developed a by now widely-tested set of criteria for encodings that allows much more freedom (e.g. instead of direct translations of observables it allows comparison of calculi with respect to reachability of successful states). In this paper, we offer a considerably stronger separation result on the non-expressibility of matching using only Gorla's relaxed requirements.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Expressiveness of Recursion, Replication and Scope Mechanisms in Process Calculi

    Get PDF
    International audienceIn this paper we shall survey and discuss in detail the work on the relative expressiveness of recursion and replication in various process calculi. Namely, CCS, the pi-calculus, the Ambient calculus, Concurrent Constraint Programming and calculi for Cryptographic Protocols. We shall give evidence that the ability of expressing recursive behaviour via replication often depends on the scoping mechanisms of the given calculus which compensate for the restriction of replication

    Recursion vs Replication in Process Calculi: Expressiveness

    Get PDF
    International audienceIn this paper we shall survey and discuss in detail the work on the relative expressiveness of recursion and replication in various process calculi. Namely, CCS, the pi-calculus, and the Ambient calculus. We shall give evidence that the ability of expressing recursive behaviour via replication often depends on the scoping mechanisms of the given calculus which compensate for the restriction of replication
    • …
    corecore