
p ()

URL: http://www.elsevier.nl/locate/entcs/volume66.html 15 pages

On the Expressiveness of Movement
in Pure Mobile Ambients

Nadia Busi and Gianluigi Zavattaro

Dipartimento di Scienze dell'Informazione, Universit�a di Bologna,

Mura Anteo Zamboni 7, I-40127, Bologna, Italy.

E-mail: busi,zavattar@cs.unibo.it

Abstract

Pure Mobile Ambients (i.e., Mobile Ambients without communication) provides

three mobility primitives: in and out for ambient movement, and open to dissolve

ambient boundaries. In this paper we consider the expressiveness of the primitives

in and out for ambient movement; more precisely, we concentrate on the interplay

between ambient movement and the ability to create new names (exploiting the

restriction operator). To this aim, we consider a version of Pure Mobile Ambients

(with explicit recursive de�nitions instead of replication) and we concentrate on

the three fragments of the calculus that can be obtained removing either one or

both between movement and the ability to create new names. The unique mobility

primitive that we retain in all of the considered calculi is open. Te three fragments

are denoted as follows: MA�mv without ambient movement, MA
�� without restric-

tion, and MA�mv
��

without both movement and restriction. We prove that both the

fragments MA�mv and MA
�� are Turing-complete, while this is not the case for

MA�mv
��

. Indeed, we prove that in this latter calculus the existence of an in�nite

computation turns to be a decidable property.

1 Introduction

Mobile Ambients (MA) [5] is a well known formalism for the description of

distributed and mobile systems in terms of ambients. An ambient is a named

collection of active processes and nested sub-ambients. In the pure version of

MA, only three mobility primitives are used to permit ambient and process

interaction: in and out for ambient movement, and open to dissolve an ambient

boundary.

More precisely, a process performs an in m primitives to instruct its sur-

rounding ambient to move inside a sibling ambient namedm, out m to instruct

its surrounding ambient to exit its parent ambient named m, and open m to

dissolve the boundary of an ambient named m located at the same level of the

process.

c2002 Published by Elsevier Science B. V.

22

 Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Since its introduction, a considerable e�ort has been devoted to the analysis

of the expressiveness of MA and its variants. For instance, in the paper

introducing MA [5] it is shown that the calculus is Turing-complete. Many

other papers are devoted to the analysis of fragments and/or variants of MA,

see e.g. [2,15,13,8,6] just to mention some of them. Typically, these papers

pursue two di�erent goals.

On the one hand, the aim is to de�ne signi�cant fragments or variants of

MA which maintain the same expressive power of the full original calculus.

For example, Boxed Ambient [2], a variant of MA without the open primitive

and with a limited form of parent-child communication, is shown to be at least

as exible as Mobile Ambients.

On the other hand, the aim is the identi�cation of fragments or variants

of the calculus in which signi�cant properties become decidable. For example,

in [6] a �nite-control fragment of MA is presented which admits a decidable

algorithm for model checking of the ambient logic [4].

Despite this considerable amount of work, little attention has been payed

to investigate the relevance and expressiveness of the original in and out prim-

itives, which represent the fundamental primitives for ambient movement.

Di�erently from our approach, related work considers variants of the origi-

nal movement primitives as in, e.g., [15] where in and out are investigated in

the setting of Pure Safe Ambients [1], which is a variant of MA in which each

mobility primitive is enriched with a corresponding co-action that must be

performed inside the target ambient in order to permit the execution of any

of the mobility primitives.

The goal of this paper is to initiate an investigation of the relevance and

expressiveness of the original in and out. We consider the communication-free

fragment (thus restricting to the pure version of MA). Moreover, we consider

a more general form of recursion which is more adequate to the aims of this

paper: namely, as already made in other papers such as [6,13], recursion is

obtained by means of explicit recursive de�nitions instead of replication.

As a �rst step in our investigation, we wonder whether or not the ex-

pressiveness of the calculus is a�ected by the elimination of the primitives

in and out. Quite surprisingly, we prove that the fragment MA�mv without

ambient movement is still Turing-complete. The proof is based on a simula-

tion of Random Access Machines [14] (RAMs), a well known register based

Turing-complete formalism. The encoding of RAMs that we present makes

use of the restriction operator in order to dynamically create new ambient

names. It is worth noting that our modeling of RAMs does not exploit the

possibility to introduce inside an ambient an active process; indeed, we use

only empty ambients such as a[]. This allows us to conclude that also the

fragment of MA�mv without nested ambients, more precisely containing only

empty ambients of the form n[0], is Turing-complete.

At this point, we wonder whether the restriction operator is strictly nec-

essary in order to model RAMs in the absence of ambient movement; we

23

prove that this is indeed the case. In fact, the fragment MA
�mv

��
of the cal-

culus without both ambient movement and restriction is not Turing-complete

(more precisely, we prove that the existence of an in�nite computation turns

to be a decidable property in MA
�mv

��
).

Finally, we conclude our investigation wondering whether the re-introduction

of ambient movement permits to to model RAMs also without exploiting the

ability to create new names. We prove that indeed this is the case: more

precisely, we show that the fragment MA
�� without the restriction operator

is Turing complete. This result has been recently and independently proved

by Hirschko�, Lozes, and Sangiorgi [8]. Their proof, however, exploits Tur-

ing Machines which, in our opinion, reveal more complex to be modeled with

respect to RAMs.

The paper is structured as follows: in Section 2 we present the syntax

and semantics of the full calculus. In Section 3 we prove that the fragment

of the calculus without in and out is Turing-complete; in Section 4 we show

that if we remove also the restriction operator the existence of a divergent

computation turns to be a decidable property; in Section 5 we prove that the

calculus without restriction, but with ambient movement, is Turing-complete.

Section 6 reports some conclusive remarks.

2 Pure Mobile Ambients with Explicit Recursion

In this section we recall Pure Mobile Ambients. The unique di�erence with

respect to the original syntax of [5] is that we use, as already done in [6,13],

an explicit recursive de�nition instead of replication. In the following we refer

to this calculus with MA.

Let Name, ranged over by n, m, : : :, be a set of ambient names, and let

V ar, ranged over by X, Y , : : :, be a set of term variables. The terms of MA

are de�ned by the following grammar:

P ::= 0 j M:P j n[P] j P jP j (�n)P j X j recX:P

M ::= in n j out n j open n

where we consider only closed terms, i.e, terms in which each variable X

appears inside a term recX:P . Moreover, as done in [13], in order to avoid

in�nite ambient nesting we assume unboxed recursion, i.e., that the variable

X cannot appear inside any ambient of P .

The term 0 represents the inactive process (and it is usually omitted);M:P

is a process guarded by one of the three mobility primitives (already discussed

in the Introduction): after the �ring of the primitive the process becomes P .

The term n[P] denotes an ambient named n containing process P ; a process,

may be also the parallel composition P jQ of two subprocesses. The restriction

operator (�n)P is used to create a new name n which is bound in P . As usual

(see, e.g.,[9]) the terms X and recX:P are used for the recursive de�nition of

processes.

24

The operational semantics is de�ned in terms of a structural congruence

plus a reduction relation. The structural congruence � is the smallest con-

gruence relation satisfying:

(�n)0 � 0 (�n)(�m)P � (�m)(�n)P

(�n)(P jQ) � P j(�n)Q if n 62 fn(P) (�n)(m[P]) � m[(�n)P]

P j0 � P P jQ � QjP

P j(QjR) � (P jQ)jR recX:P � PfrecX:P=Xg

where fn(P) denotes the free names in P and PfrecX:P=Xg denotes the

term obtained by substituting recX:P for any occurrence of X occurring in

P not inside any subterm recX:Q.

The reduction relation is the smallest relation ! satisfying the following

axioms and rules:

(1) n[in m:P jQ] j m[R] ! m[n[P jQ] j R]

(2) m[n[out m:P j Q] j R] ! n[P j Q] j m[R]

(3) open n:P j n[Q] ! P j Q

(4)
P ! Q

P j R ! Q j R

(5)
P ! Q

n[P] ! n[Q]

(6)
P ! Q

(�n)P ! (�n)Q

(7)
P

0
� P P ! Q Q

0
� Q

P
0
! Q

0

3 MA�mv : the Fragment without Movement

In this section we consider the fragment of MA without the primitives in m

and out m for ambient movement. Quite surprisingly, we prove that this frag-

ment comprising the unique mobility primitive open is expressive enough to

model all recursive functions. More precisely, we how to model in MA�mv

Random Access Machines (RAMs) [14], a well known Turing-complete for-

malism.

A Random Access Machine is composed of a �nite set of registers, that can

hold arbitrary large natural numbers, and by a program, that is a sequence of

simple numbered instructions, like arithmetical operations (on the content of

registers) or conditional jumps.

25

To perform a computation, the inputs are provided in registers r1; : : : ; rm;

if other registers rm+1; : : : ; rl are used in the program, they are supposed to

contain the value 0 at the beginning of the computation. The program is

composed by the sequence of instructions I1 : : : Ik. The execution begins with

the �rst instruction I1 and continues by executing the other instructions in

sequence, unless a jump instruction is encountered. The execution stops when

an instruction number higher than k is reached. If the program terminates,

the result of the computation is the contents of the registers.

In [10] it is shown that the following two instructions are suÆcient to model

every recursive function:

� Succ(rj): adds 1 to the content of register rj;

� DecJump(rj; s): if the content of register rj is not zero, then decreases it

by 1 and go to the next instruction, otherwise jumps to instruction s.

The RAM encoding we present is inspired by the encoding in an asyn-

chronous version of CCS [9] that we proposed in [3].

The translation of the RAMs is based on two di�erent encodings, one for

program instructions, and one for registers. The terms representing instruc-

tions, and those modeling registers, interact via asynchronous communication.

This is achieved exploiting empty ambients which are produced by senders and

opened by receivers. More precisely, if a sender wants to emit a message a,

it simply spawns the ambient a[]; when the receiver wants to receive the mes-

sage, it simply performs an open a primitive which consumes the corresponding

message a[].

Moreover, we want to permit to a receiver to choose among two possible

available messages. More precisely, we want to use an extra-term (open a:P)�

(open b:Q) which has the ability to open either ambient/message a[] or b[], and

then activates the continuation P , in the former case, or Q, in the latter. This

term can be mapped in the original calculus following an approach that has

been already exploited in [11] to encode choice in the asynchronous �{calculus:

(open a:P)� (open b:Q) =

(�ok)(�koa)(�kob) (ok[] j

open a:(open ok:(P j kob[]) j open koa:a[]) j

open b:(open ok:(Q j koa[]) j open kob:b[])

)

It is worth noting that this encoding is not a general encoding for non-

deterministic choice between open operations, but it assumes that the sub-

ambients to be open should be empty; in our case this is ensured by the fact

that we use empty ambients as representation of asynchronously exchanged

messages.

The idea behind the above encoding is to activate concurrently both the

26

two alternative open a and open b primitives. In order to avoid the undesired

activation of both the continuations P and Q, mutual exclusion is achieved by

means of a shared unique ambient ok[] which must be opened before activating

any of the two continuations. The process which succeeds in opening the

ambient ok[], produces another ambient which is used to communicate to the

concurrent branch that it should fail, that is, in the case the concurrent branch

opens the corresponding ambient, then it must reproduce it. Observe that the

auxiliary names ok, koa, and kob are new names in order to avoid undesired

name collisions.

We are now ready to de�ne the encoding of program instructions.

[[i : Succ(rj)]] = recX:open pi:(incj[] j

open ackj:(pi+1[] j X))

[[i : DecJump(rj; s)]] = recX:open pi:(testj[] j

(open zeroj:(ps[] j X)) �

(open decj:(pi+1[] j X)))

The instruction at position i has a corresponding \program counter ambient"

pi[]. Each instruction is modeled by a recursively de�ned process which �rst

consumes its program counter ambient, then modi�es or test the content of

the registers, and �nally produces the program counter ambient for the next

instruction to be executed.

A Succ instruction on register rj produces the ambient incj[], representing

a request for the increment of register rj, and then waits for the acknowledge-

ment (the ambient ackj[]) indicating that the increment has been successfully

executed.

An instruction DecJump(rj; s) produces the ambient testj[], representing

a request for testing register rj and decrementing it if its content is greater

than zero; if the contents of rj is zero, then the ambient zeroj[] is produced,

otherwise the ambient decj[] is spawn. For this reason, the process modeling

the DecJump instruction, must exploit the choice operator described above

in order to be able to react to the two possible alternative results. In the

case the open zeroj primitives succeeds, the program counter ambient ps[] is

produced, otherwise the ambient pi+1[] is spawn.

The modeling of register rj, that initially contains the value 0, is given by

27

the term Zj de�ned as follows:

Zj = recX: (open testj :(zeroj[] j X)) �

(open incj:(ackj[] j (�a)(Oj j open a:X)))

Oj = rec Y: (open testj :(decj[] j a[])) �

(open incj:(ackj[] j (�b)(Ej j open b:Y)))

Ej = rec V: (open testj :(decj[] j b[])) �

(open incj:(ackj[] j (�a)(Y j open a:V)))

If the term Zj receives a testj request, then the ambient zeroj[] is produced

as an answer to communicate that the register is empty. If, on the other

hand, an incj is received, then Zj produces the corresponding ackj[] and it

becomes the term (�a)(Ojjopen a:Zj). The term open a:Zj is blocked by the

primitive open a until the term Oj creates an ambient a[]. Observe that a

is a new name known only to the terms Oj and open a:Zj. After the �rst

increment, the register rj should contain the value 1; then, if a request testj
is produced, then the term Oj should generate the ambient decj[] as answer,

and then activates the term Zj by producing the ambient a[]. Otherwise, if

a request incj is produced, then Oj should produce the corresponding ackj[]

ambient, and becomes (�b)(Ej jopen b:Oj). In this case the term open b:Oj is

guarded by the open b, and it waits to be activated by the term Ej. We have

used a di�erent new name in order to avoid that the term Ej will incorrectly

activate the other term open a:Zj. The term Ej is de�ned in the same way

as Oj, with the unique di�erence that the name b is used instead of a, and

vice versa. The restriction operator (�a) is used to generate a new instance

of name a which does not interfere with the name a used in the term Zj. In

this way, the agent Oj is used to represent the register rj when it contains odd

values, while Ej is used for even values.

Let consider the program I1; : : : ; Ik with inputs n1; : : : ; nm that uses the

registers r1; : : : ; rl. In order to execute it, �rst we have to introduce every

input ni in the corresponding register ri. This is done by the following agent

B that performs the bootstrap of the system by initializing the registers before

emitting the program counter ambient p1[]:

B = inc1[]j : : : jinc1[]
| {z }

n1 times

j : : : j incm[]j : : : jincm[]
| {z }

nm times

j

open ack1: : : : :open ack1
| {z }

n1 times

: : : open ackm: : : : :open ackm
| {z }

nm times

:p1[]

The above program is then modeled by:

Z1j : : : jZljBj[[I1]]j : : : j[[Ik]]

It is worth noting that our modeling of RAMs does not exploit the pos-

sibility to introduce inside an ambient an active process; indeed, we use only

28

empty ambients such as a[]. This allows us to conclude that also the fragment

of MA
�mv

, containing only ambients of the form n[0], is Turing-complete.

4 MA�mv

��
: the Fragment without Movement and Re-

striction

In the RAM encoding provided in the previous section, the contents of regis-

ters is modeled through a sequence of nested restrictions. In this section we

investigate if restriction is really necessary to obtain Turing-completeness in

the movement-free fragment of the calculus.

We show that this is the case by proving the decidability of the existence

of a diverging computation for the fragment of MA without movement and

restriction. The decidability result is based on the theory of well-structured

transition systems [7]: given a process in MA
�mv

�� , we de�ne a corresponding

transition system, with the same behaviour w.r.t. divergence, as an interme-

diate model; then, by exploiting the theory developed in [7], we show that

divergence is decidable for the class of transition systems corresponding to

MA
�mv

�� processes.

We start recalling some basic de�nitions and results of [7], concerning well-

structured transition systems, that will be used in the following.

4.1 Well-Structured Transition System

A quasi-ordering is a reexive and transitive relation.

De�nition 4.1 A well-quasi-ordering is a quasi-ordering � over a set X such

that, for any in�nite sequence x0; x1; x2; : : : in X, there exist indexes i < j

such that xi � xj.

De�nition 4.2 A transition system is a structure TS = (S;!), where S is a

set of states and !� S � S is a set of transitions.

We write Succ(s) to denote the set fs0 2 S j s ! s
0g of immediate

successors of S.

We write !+
(resp, !�

) for the transitive (resp. the reexive and transi-

tive) closure of !.

TS is �nitely branching if all Succ(s) are �nite. We restrict to �nitely

branching transition systems.

De�nition 4.3 A well-structured transition system is a transition system

TS = (S;!), equipped with a quasi-ordering � on S, such that the two

following conditions hold:

(i) well-quasi-ordering: � is a well-quasi-ordering, and

(ii) compatibility: � is (upward) compatible with !, i.e., for all s1 � t1

and all transitions s1 ! s2, there exists a sequence t1 !
�

t2 such that

t1 � t2.

29

dec(0) = ;

dec(open n:P) = fopen n:Pg

dec(n[P]) = fn[dec(P)]g

dec(P jQ) = dec(P)� dec(Q)

dec(recX:P) = frecX:Pg

Table 1

Decomposition function.

A well-structured transition system has transitive compatibility if for all
s1 � t1 and transition s1 ! s2 there exists a sequence t1 !

+
t2 such that

t1 � t2.

Theorem 4.4 Let TS = (S;!) be a well-structured transition system with

transitive compatibility, decidable � and computable Succ. The existence of

an in�nite computation starting from a state s 2 S is decidable.

4.2 Divergence is decidable in MA�mv

��

In this section we de�ne a transition system corresponding to a MA�mv

��
process

P , whose states represent processes reachable from P and each state exhibits
the same behaviour of the corresponding process w.r.t. divergence.

A state is basically a multiset containing sequential processes (i.e., pro-
cesses of kind open n:P or recX:P) or a representation of an ambient (i.e.,
items with the form n[m], where m is a multiset). Note that, because of the
restricted form of unboxed recursion we adopt, there exists an upper bound
to the level of nesting of ambients in the processes reachable from a given
process P . Moreover, as the no new name generation mechanism is present
in the fragment MA�mv

�� , the multisets corresponding to processes reachable
from P have a �nite domain. To lighten the notation, in the following we
consider only processes containing a single variable for recursion.

De�nition 4.5 Given a set S, a �nite multiset over S is a function m : S !
IN such that the set dom(m) = fs 2 S jm(s) 6= 0g is �nite. The multiplicity

of an element s in m is given by the natural number m(s). The set of all �nite
multisets over S, denoted by Mfin(S), is ranged over by m. A multiset m
such that dom(m) = ; is called empty .

Given the multiset m and m
0, we write m�m

0 to denote multiset union:
m�m

0(s) = m(s) +m
0(s) for all s 2 S.

De�nition 4.6 Let P 2MA�mv

�� . The transition system TS(P) = (S;!) is
de�ned as follows.

The set S is the least set satisfying the following equation:

30

open n:Q� n[m] ! dec(Q)�m

if dec(QfrecX:Q=Xg) = open n:Q
0 �m

0 then

recX:Q� n[m] ! dec(Q0)�m
0 �m

if dec(RfrecX:R=Xg) = n[m0]�m
00 then

open n:Q� recX:R ! dec(Q)�m
0 �m

00

if dec(QfrecX:Q=Xg) = open n:Q
0 �m

0 and

dec(RfrecX:R=Xg) = n[m00]�m
000 then

recX:Q� recX:R ! dec(Q0)�m
0 �m

00 �m
000

m ! m
0

n[m] ! n[m0]

m ! m
0

m�m
00 ! m

0 �m
00

Table 2

Transitions speci�cation.

S =Mfin(fopen n:Q; recX:Q j n is a name occurring in P and open n:Q;

recX:Q are subprograms of Pg [
fn[m] j n is a name occurring in P and m 2 Sg)

The function dec, associating to each process Q 2MA�mv
�� the correspond-

ing multiset in S, is de�ned in Table 1.

The set ! is the least set satisfying the axioms and the rules in Table 2.

The following de�nition introduces a quasi-ordering relation on states of
the transition system associated to a process. The underlying idea is the
following: a marking m1 is related to m2 if, for each sequential process, the
number of its occurrences in m1 is lesser that the number of its occurrences
in m2; moreover, for each occurrence of ambient n[m0

1
] in m1 there exists an

ambient n[m0

2
] in m2 such that m0

1
is lesser than m

0

2
.

De�nition 4.7 Let P 2MA�mv
�� and TS(P) = (S;!). The relation � on S

is de�ned as follows.

31

Let m1; m2 2 S.

We have that m1 � m2 i� one of the following conditions holds:

� there exists �m such that m2 = m1 � �m, or

� there exist m0

1
; m

00

1
; m

0

2
; m

00

2
; n such that m1 = n[m0

1
]�m

00

1
, m2 = n[m0

2
]�m

00

2
,

m
0

1
� m

0

2
and m

00

1
� m

00

2
.

The relation � is a quasi-ordering, making TS(P) a well-structured tran-

sition system with transitive compatibility.

Proposition 4.8 Let P 2MA�mv

��
and TS(P) = (S;!). The relation � is a

quasi-ordering.

Lemma 4.9 Let P 2MA�mv

��
and TS(P) = (S;!).

The transition system TS(P) equipped with the quasi-ordering � is a well-

structured transition system with transitive compatibility.

As a consequence of Theorem 4.4, we have that divergence is decidable for

TS(P), hence also for the MA process P .

Corollary 4.10 Let P 2MA�mv

��
and TS(P) = (S;!).

The existence of an in�nite computation starting from dec(P) is decidable.

5 MA
�� : the Fragment without Restriction

In the previous sections we �rst noted that MA is Turing-complete even with-

out the ability to move ambients, and we have subsequently proved that this

result holds only if we consider the ability to create new names via the restric-

tion operator. In this section, we wonder whether the restriction operator is

strictly necessary to model every recursive function even if you re-introduce in

the calculus the in and out primitives for ambient movement; we prove that

this is not the case. This is proved by showing how to encode RAMs in the

fragment MA
�� .

The encoding of RAMs that we present uses a simpler form of recur-

sively de�ned processes which corresponds to the replication operator !P =

recX:(XjP). In this way, we can conclude that the result proved in this

section applies also to the standard Pure Mobile Ambients with replication

instead of explicit recursive de�nition.

We start our description of RAMs taking into account how to model reg-

isters. The fact that register ri contains value k is represented by the process

[[ri = k]], de�ned as follows:

[[ri = 0]] = zeroi[!open increq0i:(msg[out zeroi :si[SCONTi]] j

in si:incacki[out zeroi:!out si]) j

!open zeroreqi:okzeroi[out zeroi:in dji]]

32

[[ri = n+ 1]] = si[SCONTi j [[ri = n]]]

where

SCONTi = open decreqi:okdeci[out si:in dji] j

!open msg

When register ri is empty, it is modeled by an ambient named zeroi, when
it is not empty, by an ambient named si. The requests of increment, test
for zero, or decrement of the register ri are sent to the register by means
ambients named respectively increqi, zeroreqi, and decreqi which enter the
register boundary.

When an increment request is received, the register modi�es its structure
by creating a new ambient si and moving itself inside this new boundary. In
this way, when the register contains value n then register is formed by n nested
ambients named si and a inner ambient named zeroi. Besides changing its
nesting structure, the register replies to the request with an acknowledgement,
modeled by an ambient named incacki.

On the other hand, when a zeroreqi enters the ambient named zeroreqi,
there is no modi�cation of the structure of the register, but simply a reply is
produced represented by an ambient name okzeroi.

Finally, in the case a request decreqi enters an ambient si, a reply is pro-
duced, which is represented by an ambient named okdeci (this behaviour is
given by the term SCONTi which is present at any level of nesting of the
ambients named ni). As described below, the reply will be managed by the
instruction that performed the decrement operation, which is responsible to
dissolve the outer si boundary in order to update the nesting structure of the
register.

We are now ready to describe the encoding of instructions. The i-th in-
struction is modeled by (the replication of) an ambient named pi, which con-
tains processes de�ned according to the kind of instruction. An instruction
is activated by dissolving the boundary of one of the corresponding ambi-
ents (replication ensures the possibility to execute each instruction for an
unbounded amount of times).

If the i-th instruction is an increment of register rj, its encoding is the
process

[[i : Succ(rj)]] =!pi[increqj [!in sj j in zeroj:increq0j[out increqj]] j

open incackj:open pi+1]

The ambient pi contains two processes. The �rst process models the increment
request: it is an ambient named increqi which has the ability to enter register
ri, move through all its nested ambients si, and �nally enter the inner ambient
zeroi. The second process waits for the acknowledgement of the increment
instruction, and then activates the subsequent instruction.

On the other hand, if the i-th instruction is a decrement of rj or jump to

33

s, its encoding is

[[i : DecJump(rj; s)]] =!pi[decreqj[in sj] j

zeroreqj[in zeroj] j

djj[DJCONTijs]]

where

DJCONTijs =

open okdecj:in garbage:msg[out dji:out garbage:open zeroreqj:

open sj:open pi+1] j

open okzeroj:in garbage:msg[out dji:out garbage:

open decreqj:open ps]

In this case, the ambient pi contains three processes. The �rst two processes

are ambients which respectively represent the request for decrement or test

for zero of register rj, while the third one, named djj is an ambient which is

used to model the reaction to the answer that will be provided by the register

rj.

One and only one of the two requests for decrement and test for zero will

succeed. Indeed, the former requires to enter an ambient si while the latter

considers ambient zeroj. Due to the modeling of registers describe above, it

is ensured that either an ambient sj or zeroj is available, but not both. In the

�rst case, the answer of the register rj will be an ambient named okdecj, in

the second one an ambient named okzeroj. In both cases the reply will move

inside the third ambient named djj cited above.

Inside this ambient a process DJCONTijs is present which is responsible

for managing the reply. In the case of a okdecj reply, the process is responsible

for removing the request of test for zero which has failed, to dissolve an ambient

boundary sj in order to actually decrement the register rj, and then activating

the subsequent instruction, by dissolving an ambient pi+1. On the other hand,

if a okzeroj is received, the process will remove the decrement request which

has failed, before activating the s-th instruction.

Finally, the encoding of a RAM formed by instructions I1 : : : Ik, starting

the computation with values v1 : : : vl in registers r1 : : : rl, is the following pro-

cess:

[[I1]] j : : : j [[Ik]] j

[[r1 = v1]] j : : : j [[rn = vn]] j

open p1 j !open msg j garbage[]

Observe that an extra ambient named garbage is used in order to introduce

in it all those empty ambients named djj which are created but not consumed

by the DecJump instruction. Moreover, observe that at the outer level, as

34

well as in each level of the nested ambients si, there is a process !open msg

which opens all those ambients named msg containing processes which enter

that speci�c ambient level in order to perform actions in that ambient.

6 Conclusion and Future Work

In this paper we started an investigation on the expressiveness of some frag-

ments of Mobile Ambients. More precisely, we study the impact of move-

ment capabilities and new name generation on the Turing-completeness of

the communication-free fragment of the calculus, or, in other words, on the

decidability of properties such as divergence.

The �rst result shows that the calculus remains Turing-complete even if

we remove movement capabilities, and also if we restrict to the subcalculus

with empty ambients. As this result exploits nesting of restrictions to model

the contents of registers, we wonder if it is possible to get rid of restriction,

while retaining Turing-completeness. The answer is negative, because we show

that the existence of an in�nite computation is decidable for the movement

free and restriction free fragment of the calculus. This second result yields

to asking whether restriction is an unavoidable ingredient to obtain Turing-

completeness of Mobile Ambients: we show that it is possible to get rid of

restriction, at the price of reintroducing the movement capabilities.

A lot of interesting problems remain to be investigated. For example, it

could be interesting to study what happens if the open capability, instead of

the movement capabilities, is dropped. An interesting starting point for such

an investigation is [2], where boxed ambients, a variant of mobile ambients

obtained by removing the open capability and by adding new primitives for

parent-children communication, are introduced.

Finally, we would like to point out that the Turing-completeness result

of MA
�mv

relies on the ability of representing natural numbers by sequences

of nested restrictions, which can easily be modeled in the variant of MA

with recursive de�nitions we adopted in this paper. Consider the variant

of MA
�mv

with replication instead of recursive de�nitions. While we claim

that the addition of communication makes this calculus Turing-complete, it is

not clear if communication is really necessary to reach Turing-completeness.

Hence, it could be worthwhile to investigate the interchangeability of replica-

tion and recursive de�nitions in (fragments of) Mobile Ambients, as already

done in [12] for Temporal Concurrent Constraint Programming Languages.

Acknowledgement: We would like to thank Luca Cardelli for his insightful

comments and suggestions.

35

References

[1] M. Bugliesi and G. Castagna. Secure safe ambients. In Proc. of POPL'01,
pages 222{235. ACM Press, 2001.

[2] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Proc. of TACS'01,
volume 2215 of Lecture Notes in Theoretical Computer Science, pages 38{63.
Springer-Verlag, Berlin, 2001.

[3] N. Busi, R. Gorrieri, and G. Zavattaro. A Process Algebraic View of Linda
Coordination Primitives. Theoretical Computer Science, 192(2):167{199, 1998.

[4] L. Cardelli and A.D. Gordon. Anytime, anywhere, modal logics for mobile
ambients. In Proc. of POPL'00, pages 365{377. ACM Press, 2000.

[5] L. Cardelli and A.D. Gordon. Mobile Ambients. Theoretical Computer Science,
240(1):177{213, 2000.

[6] W. Charatonik, A.D. Gordon, and J. Talbot. Finite-control mobile ambients. In
Proc. of ESOP'02, volume to appear of Lecture Notes in Theoretical Computer

Science. Springer-Verlag, Berlin, 2002.

[7] A. Finkel and Ph. Schnoebelen. Well-Structured Transition Systems
Everywhere ! Theoretical Computer Science, 256:63{92, 2001.

[8] D. Hirschko�, E. Lozes, and D. Sangiorgi. Separability, expressiveness, and
decidability in the Ambient Logic. In Proc. of LICS'02, 2002.

[9] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[10] M.L. Minsky. Computation: �nite and in�nite machines. Prentice-Hall, 1967.

[11] U. Nestmann and B.C. Pierce. Decoding Choice Encodings. Information and

Computation, 163:1{59, 2000.

[12] M. Nielsen, C. Palamidessi, and F. D. Valencia. On the expressive power of
temporal concurrent constraint programming languages. In Proc. of PPDP'02.
ACM Press, 2002.

[13] D. Sangiorgi. Extensionality and intensionality of the ambient logics. In Proc.

of POPL'01, pages 4{17. ACM Press, 2001.

[14] J.C. Shepherdson and J.E. Sturgis. Computability of recursive functions.
Journal of the ACM, 10:217{255, 1963.

[15] P. Zimmer. On the expressiveness of pure safe ambients. Technical Report RR-
4350, INRIA Research, to appear in a special issue of Mathematical Structures
of Computer Science, Cambridge University Press, 2002.

36

