581 research outputs found

    Adaptable processes

    Get PDF
    We propose the concept of adaptable processes as a way of overcoming the limitations that process calculi have for describing patterns of dynamic process evolution. Such patterns rely on direct ways of controlling the behavior and location of running processes, and so they are at the heart of the adaptation capabilities present in many modern concurrent systems. Adaptable processes have a location and are sensible to actions of dynamic update at runtime; this allows to express a wide range of evolvability patterns for concurrent processes. We introduce a core calculus of adaptable processes and propose two verification problems for them: bounded and eventual adaptation. While the former ensures that the number of consecutive erroneous states that can be traversed during a computation is bound by some given number k, the latter ensures that if the system enters into a state with errors then a state without errors will be eventually reached. We study the (un)decidability of these two problems in several variants of the calculus, which result from considering dynamic and static topologies of adaptable processes as well as different evolvability patterns. Rather than a specification language, our calculus intends to be a basis for investigating the fundamental properties of evolvable processes and for developing richer languages with evolvability capabilities

    Decidability Issues for Petri Nets

    Get PDF
    This is a survey of some decidability results for Petri nets, covering the last three decades. The presentation is structured around decidability of specific properties, various behavioural equivalences and finally the model checking problem for temporal logics

    A Process Calculus for Expressing Finite Place/Transition Petri Nets

    Full text link
    We introduce the process calculus Multi-CCS, which extends conservatively CCS with an operator of strong prefixing able to model atomic sequences of actions as well as multiparty synchronization. Multi-CCS is equipped with a labeled transition system semantics, which makes use of a minimal structural congruence. Multi-CCS is also equipped with an unsafe P/T Petri net semantics by means of a novel technique. This is the first rich process calculus, including CCS as a subcalculus, which receives a semantics in terms of unsafe, labeled P/T nets. The main result of the paper is that a class of Multi-CCS processes, called finite-net processes, is able to represent all finite (reduced) P/T nets.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    Toward Accessible Multilevel Modeling in Systems Biology: A Rule-based Language Concept

    Get PDF
    Promoted by advanced experimental techniques for obtaining high-quality data and the steadily accumulating knowledge about the complexity of life, modeling biological systems at multiple interrelated levels of organization attracts more and more attention recently. Current approaches for modeling multilevel systems typically lack an accessible formal modeling language or have major limitations with respect to expressiveness. The aim of this thesis is to provide a comprehensive discussion on associated problems and needs and to propose a concrete solution addressing them
    • …
    corecore