137 research outputs found

    Human activity recognition using a wearable camera

    Get PDF
    Advances in wearable technologies are facilitating the understanding of human activities using first-person vision (FPV) for a wide range of assistive applications. In this thesis, we propose robust multiple motion features for human activity recognition from first­ person videos. The proposed features encode discriminant characteristics form magnitude, direction and dynamics of motion estimated using optical flow. M:>reover, we design novel virtual-inertial features from video, without using the actual inertial sensor, from the movement of intensity centroid across frames. Results on multiple datasets demonstrate that centroid-based inertial features improve the recognition performance of grid-based features. Moreover, we propose a multi-layer modelling framework that encodes hierarchical and temporal relationships among activities. The first layer operates on groups of features that effectively encode motion dynamics and temporal variaitons of intra-frame appearance descriptors of activities with a hierarchical topology. The second layer exploits the temporal context by weighting the outputs of the hierarchy during modelling. In addition, a post-decoding smoothing technique utilises decisions on past samples based on the confidence of the current sample. We validate the proposed framework with several classi fiers, and the temporal modelling is shown to improve recognition performance. We also investigate the use of deep networks to simplify the feature engineering from first-person videos. We propose a stacking of spectrograms to represent short-term global motions that contains a frequency-time representation of multiplemotion components. This enables us to apply 2D convolutions to extract/learn motion features. We employ long short-term memory recurrent network to encode long-term temporal dependency among activiites. Furthermore, we apply cross-domain knowledge transfer between inertial­ based and vision-based approaches for egocentric activity recognition. We propose sparsity weightedcombination of information from different motion modalities and/or streams . Results show that the proposed approach performs competitively with existing deep frameworks, moreover, with reduced complexity.Los avances en tecnologías wearables facilitan la comprensión de actividades humanas utilizando cuando se usan videos grabados en primera persona para una amplia gama de aplicaciones. En esta tesis, proponemos características robustas de movimiento para el reconocimiento de actividades humana a partir de videos en primera persona. Las características propuestas codifican características discriminativas estimadas a partir de optical flow como magnitud, dirección y dinámica de movimiento. Además, diseñamos nuevas características de inercia virtual a partir de video, sin usar sensores inerciales, utilizando el movimiento del centroide de intensidad a través de los fotogramas. Los resultados obtenidos en múltiples bases de datos demuestran que las características inerciales basadas en centroides mejoran el rendimiento de reconocimiento en comparación con grid-based características. Además, proponemos un algoritmo multicapa que codifica las relaciones jerárquicas y temporales entre actividades. La primera capa opera en grupos de características que codifican eficazmente las dinámicas del movimiento y las variaciones temporales de características de apariencia entre múltiples fotogramas utilizando una jerarquía. La segunda capa aprovecha el contexto temporal ponderando las salidas de la jerarquía durante el modelado. Además, diseñamos una técnica de postprocesado para filtrar las decisiones utilizando estimaciones pasadas y la confianza de la estimación actual. Validamos el algoritmo propuesto utilizando varios clasificadores. El modelado temporal muestra una mejora del rendimiento en el reconocimiento de actividades. También investigamos el uso de redes profundas (deep networks) para simplificar el diseño manual de características a partir de videos en primera persona. Proponemos apilar espectrogramas para representar movimientos globales a corto plazo. Estos espectrogramas contienen una representación espaciotemporal de múltiples componentes de movimiento. Esto nos permite aplicar convoluciones bidimensionales para aprender funciones de movimiento. Empleamos long short-term memory recurrent networks para codificar la dependencia temporal a largo plazo entre las actividades. Además, aplicamos transferencia de conocimiento entre diferentes dominios (cross-domain knowledge) entre enfoques inerciales y basados en la visión para el reconocimiento de la actividad en primera persona. Proponemos una combinación ponderada de información de diferentes modalidades de movimiento y/o secuencias. Los resultados muestran que el algoritmo propuesto obtiene resultados competitivos en comparación con existentes algoritmos basados en deep learning, a la vez que se reduce la complejidad

    Human activity recognition using a wearable camera

    Get PDF
    Tesi en modalitat cotutela Universitat Politècnica de Catalunya i Queen Mary, University of London. This PhD Thesis has been developed in the framework of, and according to, the rules of the Erasmus Mundus Joint Doctorate on Interactive and Cognitive Environments EMJD ICE [FPA n° 2010-0012]Advances in wearable technologies are facilitating the understanding of human activities using first-person vision (FPV) for a wide range of assistive applications. In this thesis, we propose robust multiple motion features for human activity recognition from first­ person videos. The proposed features encode discriminant characteristics form magnitude, direction and dynamics of motion estimated using optical flow. M:>reover, we design novel virtual-inertial features from video, without using the actual inertial sensor, from the movement of intensity centroid across frames. Results on multiple datasets demonstrate that centroid-based inertial features improve the recognition performance of grid-based features. Moreover, we propose a multi-layer modelling framework that encodes hierarchical and temporal relationships among activities. The first layer operates on groups of features that effectively encode motion dynamics and temporal variaitons of intra-frame appearance descriptors of activities with a hierarchical topology. The second layer exploits the temporal context by weighting the outputs of the hierarchy during modelling. In addition, a post-decoding smoothing technique utilises decisions on past samples based on the confidence of the current sample. We validate the proposed framework with several classi fiers, and the temporal modelling is shown to improve recognition performance. We also investigate the use of deep networks to simplify the feature engineering from first-person videos. We propose a stacking of spectrograms to represent short-term global motions that contains a frequency-time representation of multiplemotion components. This enables us to apply 2D convolutions to extract/learn motion features. We employ long short-term memory recurrent network to encode long-term temporal dependency among activiites. Furthermore, we apply cross-domain knowledge transfer between inertial­ based and vision-based approaches for egocentric activity recognition. We propose sparsity weightedcombination of information from different motion modalities and/or streams . Results show that the proposed approach performs competitively with existing deep frameworks, moreover, with reduced complexity.Los avances en tecnologías wearables facilitan la comprensión de actividades humanas utilizando cuando se usan videos grabados en primera persona para una amplia gama de aplicaciones. En esta tesis, proponemos características robustas de movimiento para el reconocimiento de actividades humana a partir de videos en primera persona. Las características propuestas codifican características discriminativas estimadas a partir de optical flow como magnitud, dirección y dinámica de movimiento. Además, diseñamos nuevas características de inercia virtual a partir de video, sin usar sensores inerciales, utilizando el movimiento del centroide de intensidad a través de los fotogramas. Los resultados obtenidos en múltiples bases de datos demuestran que las características inerciales basadas en centroides mejoran el rendimiento de reconocimiento en comparación con grid-based características. Además, proponemos un algoritmo multicapa que codifica las relaciones jerárquicas y temporales entre actividades. La primera capa opera en grupos de características que codifican eficazmente las dinámicas del movimiento y las variaciones temporales de características de apariencia entre múltiples fotogramas utilizando una jerarquía. La segunda capa aprovecha el contexto temporal ponderando las salidas de la jerarquía durante el modelado. Además, diseñamos una técnica de postprocesado para filtrar las decisiones utilizando estimaciones pasadas y la confianza de la estimación actual. Validamos el algoritmo propuesto utilizando varios clasificadores. El modelado temporal muestra una mejora del rendimiento en el reconocimiento de actividades. También investigamos el uso de redes profundas (deep networks) para simplificar el diseño manual de características a partir de videos en primera persona. Proponemos apilar espectrogramas para representar movimientos globales a corto plazo. Estos espectrogramas contienen una representación espaciotemporal de múltiples componentes de movimiento. Esto nos permite aplicar convoluciones bidimensionales para aprender funciones de movimiento. Empleamos long short-term memory recurrent networks para codificar la dependencia temporal a largo plazo entre las actividades. Además, aplicamos transferencia de conocimiento entre diferentes dominios (cross-domain knowledge) entre enfoques inerciales y basados en la visión para el reconocimiento de la actividad en primera persona. Proponemos una combinación ponderada de información de diferentes modalidades de movimiento y/o secuencias. Los resultados muestran que el algoritmo propuesto obtiene resultados competitivos en comparación con existentes algoritmos basados en deep learning, a la vez que se reduce la complejidad.Postprint (published version

    Human activity recognition using a wearable camera

    Get PDF
    Advances in wearable technologies are facilitating the understanding of human activities using first-person vision (FPV) for a wide range of assistive applications. In this thesis, we propose robust multiple motion features for human activity recognition from first­ person videos. The proposed features encode discriminant characteristics form magnitude, direction and dynamics of motion estimated using optical flow. M:>reover, we design novel virtual-inertial features from video, without using the actual inertial sensor, from the movement of intensity centroid across frames. Results on multiple datasets demonstrate that centroid-based inertial features improve the recognition performance of grid-based features. Moreover, we propose a multi-layer modelling framework that encodes hierarchical and temporal relationships among activities. The first layer operates on groups of features that effectively encode motion dynamics and temporal variaitons of intra-frame appearance descriptors of activities with a hierarchical topology. The second layer exploits the temporal context by weighting the outputs of the hierarchy during modelling. In addition, a post-decoding smoothing technique utilises decisions on past samples based on the confidence of the current sample. We validate the proposed framework with several classi fiers, and the temporal modelling is shown to improve recognition performance. We also investigate the use of deep networks to simplify the feature engineering from first-person videos. We propose a stacking of spectrograms to represent short-term global motions that contains a frequency-time representation of multiplemotion components. This enables us to apply 2D convolutions to extract/learn motion features. We employ long short-term memory recurrent network to encode long-term temporal dependency among activiites. Furthermore, we apply cross-domain knowledge transfer between inertial­ based and vision-based approaches for egocentric activity recognition. We propose sparsity weightedcombination of information from different motion modalities and/or streams . Results show that the proposed approach performs competitively with existing deep frameworks, moreover, with reduced complexity.Los avances en tecnologías wearables facilitan la comprensión de actividades humanas utilizando cuando se usan videos grabados en primera persona para una amplia gama de aplicaciones. En esta tesis, proponemos características robustas de movimiento para el reconocimiento de actividades humana a partir de videos en primera persona. Las características propuestas codifican características discriminativas estimadas a partir de optical flow como magnitud, dirección y dinámica de movimiento. Además, diseñamos nuevas características de inercia virtual a partir de video, sin usar sensores inerciales, utilizando el movimiento del centroide de intensidad a través de los fotogramas. Los resultados obtenidos en múltiples bases de datos demuestran que las características inerciales basadas en centroides mejoran el rendimiento de reconocimiento en comparación con grid-based características. Además, proponemos un algoritmo multicapa que codifica las relaciones jerárquicas y temporales entre actividades. La primera capa opera en grupos de características que codifican eficazmente las dinámicas del movimiento y las variaciones temporales de características de apariencia entre múltiples fotogramas utilizando una jerarquía. La segunda capa aprovecha el contexto temporal ponderando las salidas de la jerarquía durante el modelado. Además, diseñamos una técnica de postprocesado para filtrar las decisiones utilizando estimaciones pasadas y la confianza de la estimación actual. Validamos el algoritmo propuesto utilizando varios clasificadores. El modelado temporal muestra una mejora del rendimiento en el reconocimiento de actividades. También investigamos el uso de redes profundas (deep networks) para simplificar el diseño manual de características a partir de videos en primera persona. Proponemos apilar espectrogramas para representar movimientos globales a corto plazo. Estos espectrogramas contienen una representación espaciotemporal de múltiples componentes de movimiento. Esto nos permite aplicar convoluciones bidimensionales para aprender funciones de movimiento. Empleamos long short-term memory recurrent networks para codificar la dependencia temporal a largo plazo entre las actividades. Además, aplicamos transferencia de conocimiento entre diferentes dominios (cross-domain knowledge) entre enfoques inerciales y basados en la visión para el reconocimiento de la actividad en primera persona. Proponemos una combinación ponderada de información de diferentes modalidades de movimiento y/o secuencias. Los resultados muestran que el algoritmo propuesto obtiene resultados competitivos en comparación con existentes algoritmos basados en deep learning, a la vez que se reduce la complejidad

    Understanding egocentric human actions with temporal decision forests

    Get PDF
    Understanding human actions is a fundamental task in computer vision with a wide range of applications including pervasive health-care, robotics and game control. This thesis focuses on the problem of egocentric action recognition from RGB-D data, wherein the world is viewed through the eyes of the actor whose hands describe the actions. The main contributions of this work are its findings regarding egocentric actions as described by hands in two application scenarios and a proposal of a new technique that is based on temporal decision forests. The thesis first introduces a novel framework to recognise fingertip writing in mid-air in the context of human-computer interaction. This framework detects whether the user is writing and tracks the fingertip over time to generate spatio-temporal trajectories that are recognised by using a Hough forest variant that encourages temporal consistency in prediction. A problem with using such forest approach for action recognition is that the learning of temporal dynamics is limited to hand-crafted temporal features and temporal regression, which may break the temporal continuity and lead to inconsistent predictions. To overcome this limitation, the thesis proposes transition forests. Besides any temporal information that is encoded in the feature space, the forest automatically learns the temporal dynamics during training, and it is exploited in inference in an online and efficient manner achieving state-of-the-art results. The last contribution of this thesis is its introduction of the first RGB-D benchmark to allow for the study of egocentric hand-object actions with both hand and object pose annotations. This study conducts an extensive evaluation of different baselines, state-of-the art approaches and temporal decision forest models using colour, depth and hand pose features. Furthermore, it extends the transition forest model to incorporate data from different modalities and demonstrates the benefit of using hand pose features to recognise egocentric human actions. The thesis concludes by discussing and analysing the contributions and proposing a few ideas for future work.Open Acces

    HUMAN ACTIVITY RECOGNITION FROM EGOCENTRIC VIDEOS AND ROBUSTNESS ANALYSIS OF DEEP NEURAL NETWORKS

    Get PDF
    In recent years, there has been significant amount of research work on human activity classification relying either on Inertial Measurement Unit (IMU) data or data from static cameras providing a third-person view. There has been relatively less work using wearable cameras, providing egocentric view, which is a first-person view providing the view of the environment as seen by the wearer. Using only IMU data limits the variety and complexity of the activities that can be detected. Deep machine learning has achieved great success in image and video processing in recent years. Neural network based models provide improved accuracy in multiple fields in computer vision. However, there has been relatively less work focusing on designing specific models to improve the performance of egocentric image/video tasks. As deep neural networks keep improving the accuracy in computer vision tasks, the robustness and resilience of the networks should be improved as well to make it possible to be applied in safety-crucial areas such as autonomous driving. Motivated by these considerations, in the first part of the thesis, the problem of human activity detection and classification from egocentric cameras is addressed. First, anew method is presented to count the number of footsteps and compute the total traveled distance by using the data from the IMU sensors and camera of a smart phone. By incorporating data from multiple sensor modalities, and calculating the length of each step, instead of using preset stride lengths and assuming equal-length steps, the proposed method provides much higher accuracy compared to commercially available step counting apps. After the application of footstep counting, more complicated human activities, such as steps of preparing a recipe and sitting on a sofa, are taken into consideration. Multiple classification methods, non-deep learning and deep-learning-based, are presented, which employ both ego-centric camera and IMU data. Then, a Genetic Algorithm-based approach is employed to set the parameters of an activity classification network autonomously and performance is compared with empirically-set parameters. Then, a new framework is introduced to reduce the computational cost of human temporal activity recognition from egocentric videos while maintaining the accuracy at a comparable level. The actor-critic model of reinforcement learning is applied to optical flow data to locate a bounding box around region of interest, which is then used for clipping a sub-image from a video frame. A shallow and deeper 3D convolutional neural network is designed to process the original image and the clipped image region, respectively.Next, a systematic method is introduced that autonomously and simultaneously optimizes multiple parameters of any deep neural network by using a bi-generative adversarial network (Bi-GAN) guiding a genetic algorithm(GA). The proposed Bi-GAN allows the autonomous exploitation and choice of the number of neurons for the fully-connected layers, and number of filters for the convolutional layers, from a large range of values. The Bi-GAN involves two generators, and two different models compete and improve each other progressively with a GAN-based strategy to optimize the networks during a GA evolution.In this analysis, three different neural network layers and datasets are taken into consideration: First, 3D convolutional layers for ModelNet40 dataset. We applied the proposed approach on a 3D convolutional network by using the ModelNet40 dataset. ModelNet is a dataset of 3D point clouds. The goal is to perform shape classification over 40shape classes. LSTM layers for UCI HAR dataset. UCI HAR dataset is composed of InertialMeasurement Unit (IMU) data captured during activities of standing, sitting, laying, walking, walking upstairs and walking downstairs. These activities were performed by 30 subjects, and the 3-axial linear acceleration and 3-axial angular velocity were collected at a constant rate of 50Hz. 2D convolutional layers for Chars74k Dataset. Chars74k dataset contains 64 classes(0-9, A-Z, a-z), 7705 characters obtained from natural images, 3410 hand-drawn characters using a tablet PC and 62992 synthesised characters from computer fonts giving a total of over 74K images. In the final part of the thesis, network robustness and resilience for neural network models is investigated from adversarial examples (AEs) and automatic driving conditions. The transferability of adversarial examples across a wide range of real-world computer vision tasks, including image classification, explicit content detection, optical character recognition(OCR), and object detection are investigated. It represents the cybercriminal’s situation where an ensemble of different detection mechanisms need to be evaded all at once.Novel dispersion Reduction(DR) attack is designed, which is a practical attack that overcomes existing attacks’ limitation of requiring task-specific loss functions by targeting on the “dispersion” of internal feature map. In the autonomous driving scenario, the adversarial machine learning attacks against the complete visual perception pipeline in autonomous driving is studied. A novel attack technique, tracker hijacking, that can effectively fool Multi-Object Tracking (MOT) using AEs on object detection is presented. Using this technique, successful AEs on as few as one single frame can move an existing object in to or out of the headway of an autonomous vehicle to cause potential safety hazards

    Human activity recognition using a wearable camera

    Get PDF
    PhDAdvances in wearable technologies are facilitating the understanding of human activities using first-person vision (FPV) for a wide range of assistive applications. In this thesis, we propose robust multiple motion features for human activity recognition from first-person videos. The proposed features encode discriminant characteristics from magnitude, direction and dynamics of motion estimated using optical flow. Moreover, we design novel virtual-inertial features from video, without using the actual inertial sensor, from the movement of intensity centroid across frames. Results on multiple datasets demonstrate that centroid-based inertial features improve the recognition performance of grid-based features. Moreover, we propose a multi-layer modelling framework that encodes hierarchical and temporal relationships among activities. The first layer operates on groups of features that effectively encode motion dynamics and temporal variations of intra-frame appearance descriptors of activities with a hierarchical topology. The second layer exploits the temporal context by weighting the outputs of the hierarchy during modelling. In addition, a post-decoding smoothing technique utilises decisions on past samples based on the confidence of the current sample. We validate the proposed framework with several classifiers, and the temporal modelling is shown to improve recognition performance. We also investigate the use of deep networks to simplify the feature engineering from firstperson videos. We propose a stacking of spectrograms to represent short-term global motions that contains a frequency-time representation of multiple motion components. This enables us to apply 2D convolutions to extract/learn motion features. We employ long short-term memory recurrent network to encode long-term temporal dependency among activities. Furthermore, we apply cross-domain knowledge transfer between inertial-based and vision-based approaches for egocentric activity recognition. We propose sparsity weighted combination of information from different motion modalities and/or streams. Results show that the proposed approach performs competitively with existing deep frameworks, moreover, with reduced complexity

    Modeling the environment with egocentric vision systems

    Get PDF
    Cada vez más sistemas autónomos, ya sean robots o sistemas de asistencia, están presentes en nuestro día a día. Este tipo de sistemas interactúan y se relacionan con su entorno y para ello necesitan un modelo de dicho entorno. En función de las tareas que deben realizar, la información o el detalle necesario del modelo varía. Desde detallados modelos 3D para sistemas de navegación autónomos, a modelos semánticos que incluyen información importante para el usuario como el tipo de área o qué objetos están presentes. La creación de estos modelos se realiza a través de las lecturas de los distintos sensores disponibles en el sistema. Actualmente, gracias a su pequeño tamaño, bajo precio y la gran información que son capaces de capturar, las cámaras son sensores incluidos en todos los sistemas autónomos. El objetivo de esta tesis es el desarrollar y estudiar nuevos métodos para la creación de modelos del entorno a distintos niveles semánticos y con distintos niveles de precisión. Dos puntos importantes caracterizan el trabajo desarrollado en esta tesis: - El uso de cámaras con punto de vista egocéntrico o en primera persona ya sea en un robot o en un sistema portado por el usuario (wearable). En este tipo de sistemas, las cámaras son solidarias al sistema móvil sobre el que van montadas. En los últimos años han aparecido muchos sistemas de visión wearables, utilizados para multitud de aplicaciones, desde ocio hasta asistencia de personas. - El uso de sistemas de visión omnidireccional, que se distinguen por su gran campo de visión, incluyendo mucha más información en cada imagen que las cámara convencionales. Sin embargo plantean nuevas dificultades debido a distorsiones y modelos de proyección más complejos. Esta tesis estudia distintos tipos de modelos del entorno: - Modelos métricos: el objetivo de estos modelos es crear representaciones detalladas del entorno en las que localizar con precisión el sistema autónomo. Ésta tesis se centra en la adaptación de estos modelos al uso de visión omnidireccional, lo que permite capturar más información en cada imagen y mejorar los resultados en la localización. - Modelos topológicos: estos modelos estructuran el entorno en nodos conectados por arcos. Esta representación tiene menos precisión que la métrica, sin embargo, presenta un nivel de abstracción mayor y puede modelar el entorno con más riqueza. %, por ejemplo incluyendo el tipo de área de cada nodo, la localización de objetos importantes o el tipo de conexión entre los distintos nodos. Esta tesis se centra en la creación de modelos topológicos con información adicional sobre el tipo de área de cada nodo y conexión (pasillo, habitación, puertas, escaleras...). - Modelos semánticos: este trabajo también contribuye en la creación de nuevos modelos semánticos, más enfocados a la creación de modelos para aplicaciones en las que el sistema interactúa o asiste a una persona. Este tipo de modelos representan el entorno a través de conceptos cercanos a los usados por las personas. En particular, esta tesis desarrolla técnicas para obtener y propagar información semántica del entorno en secuencias de imágen
    corecore