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ABSTRACT

Understanding human actions is a fundamental task in computer vision with a wide

range of applications including pervasive health-care, robotics and game control. This

thesis focuses on the problem of egocentric action recognition from RGB-D data, wherein

the world is viewed through the eyes of the actor whose hands describe the actions.

The main contributions of this work are its findings regarding egocentric actions as

described by hands in two application scenarios and a proposal of a new technique that

is based on temporal decision forests. The thesis first introduces a novel framework

to recognise fingertip writing in mid-air in the context of human-computer interaction.

This framework detects whether the user is writing and tracks the fingertip over time to

generate spatio-temporal trajectories that are recognised by using a Hough forest variant

that encourages temporal consistency in prediction. A problem with using such forest

approach for action recognition is that the learning of temporal dynamics is limited to

hand-crafted temporal features and temporal regression, which may break the temporal

continuity and lead to inconsistent predictions. To overcome this limitation, the thesis

proposes transition forests. Besides any temporal information that is encoded in the

feature space, the forest automatically learns the temporal dynamics during training,

and it is exploited in inference in an online and efficient manner achieving state-of-the-

art results. The last contribution of this thesis is its introduction of the first RGB-D

benchmark to allow for the study of egocentric hand-object actions with both hand

and object pose annotations. This study conducts an extensive evaluation of different

baselines, state-of-the art approaches and temporal decision forest models using colour,

depth and hand pose features. Furthermore, it extends the transition forest model to

incorporate data from different modalities and demonstrates the benefit of using hand

pose features to recognise egocentric human actions. The thesis concludes by discussing

and analysing the contributions and proposing a few ideas for future work.
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1
INTRODUCTION

Figure 1.1 presents frames that have been extracted from a video of someone

pouring juice into a plastic glass. Each video has a different point of view,

but they both depict the same action with one difference: on the left, we are

merely spectators in the action we see, while on the right, we see the action as though

we are the ones performing it. We are able to recognise the action that both frames

portray with little difficulty by simply looking at the hands and the objects they are

manipulating. Furthermore, we would likely be able to repeat the same action, even if

we had not poured juice before by looking at her hand, her grasp on the object and the

way in which she handles it. This process of understanding the human action – from

recognising the performed action being to successfully imitating it – is a task that an

intelligent agent should be able to accomplish. This thesis focuses on the recognition of

human actions, which is an important and classic problem in computer vision that has

a wide range of applications, including pervasive health-care, robotics and video game

control.

Figure 1.1: Someone pouring juice into a plastic glass from a third-person viewpoint (left) and
from an egocentric viewpoint (right); we can recognise the action by looking at the
hands and the object that they are manipulating.
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Before proceeding to a more detailed discussion, it is necessary to define ‘action’.

According to Herath et al. (2017),

‘Action is the most elementary human-surrounding interaction with a meaning’.

In the context of computer vision, the meaning of this interaction is the class or

category of the action that we want to recognise. This work focuses on human actions,

although the concept of actions can be broader in nature and extend to other living

organisms, such as animals, or even machines and robots. In the context of this thesis,

this interaction may produce a change in the surroundings when the human manipulates

an object, such as in the juice-pouring example above, or it may not produce a change.

An example of an action that does not change the surroundings can be found in the

context of human-computer interaction (HCI), wherein the human uses his or her hand

or body to communicate with a computer. As Figure 1.2 illustrates, writing a character

in mid-air involves a certain succession of motion patterns, or gestures, that may not

have an innate meaning. Since we have defined action as the most elementary and

meaningful interaction, we can define the action category as the character that the user

wants to communicate to the computer. Other definitions in terms of meaning, duration

and complexity are plausible and we refer the interested reader to (Zabulis et al., 2009;

Aggarwal and Ryoo, 2011; Herath et al., 2017).

Figure 1.2: ‘Writing the character “d” in mid-air’: Spatio-temporal trajectories can be recog-
nised from an egocentric viewpoint and can lead to applications in HCI and virtual
and augmented reality.

In understanding human actions, different tasks are defined depending on the problem

of interest and the assumptions that are made. Following the most common nomencla-

ture in computer vision (Aggarwal and Ryoo, 2011), we refer to action recognition as

2
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the task of classifying an action with the assumption that the video is spatially and tem-

porally segmented, i.e. the spatial location and temporal bounds in which the action

occurs are known. If one relaxes such assumption, the problem is usually referred to

as action detection, whereby one must determine where and when the action is occur-

ring (Ke et al., 2005), in addition to identifying the action. For instance, in the frame

of the film that Figure 1.3 (a) depicts, an action detection system should be able to

localise each subject in the scene, infer each action that is performed and determine

in which frames they started and ended. In contrast, in action recognition, the system

would receive the trimmed video of each separate subject and would independently infer

the action of each video. When action inference is performed after observation of the

full video, it is usually called offline prediction. By contrast, online prediction, does

not offer access to future frames to reason about an on-going video, which is a more

realistic scenario in real-world applications that require instant predictions of ongoing

actions (De Geest et al., 2016). This thesis focuses on action recognition of spatial and

temporally localised actions; however, also presents some algorithmic extensions and

experiments in the case of online action detection.

Human action recognition presents difficult challenges, such as intra-class variation

and across-class similarities. Intra-class variations include different viewpoints, actor

styles, aspects and execution speeds. For instance, Figure 1.3 (a) provides one example

in which the actor who is reading the newspaper is wearing some ‘unexpected’ glasses,

which makes more difficult for the system to determine whether the actor is reading

at home or diving at the ocean. Another example of such variations is the difference

in writing styles, such as that in Figure 1.2, depending on which user is writing in the

system. Across-class similarities occurs when different action categories share similar

characteristics, such as motion or objects involved. Figure 1.4 contains one example

where a subject is manipulating a jar of peanut butter. Without more temporal context,

we cannot determine whether the person is opening or closing the jar, as both action

categories are highly similar in appearance and motion.

Understanding actions involves the recognition of complex spatio-temporal patterns as

an actor depicts them in a video. In computer vision, this problem usually necessitates

the extraction of spatio-temporal features that capture the meaning of the action and

3
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(a) (b) (c)

Figure 1.3: Different actions and modalities in popular action recognition datasets. (a) top: a
frame from film Notting Hill (1999) with two on-going actions of ‘reading’ and ‘talk-
ing by phone’; bottom: ‘diving’ action from popular RGB dataset (Kuehne et al.,
2011); (b) third-view RGB-D action recognition and human body pose (Shahroudy,
Liu, Ng and Wang, 2016); (c) egocentric viewpoint: daily action of ‘pouring wine’
(Rogez et al., 2015b) and a virtual reality game (Jang et al., 2015)

the use of a machine learning classifier to infer this meaning. These features can be

manually designed with domain knowledge (Laptev, 2005) or automatically extracted

while learning the classifier in an end-to-end fashion (Feichtenhofer et al., 2016). They

can range from low-level pixel values to a more meaningful and high-level human body

pose, or skeleton (Yao et al., 2011), depending highly on the nature of the data and

the hardware in use. As for classifiers, one can broadly distinguish between two types.

The first directly maps a feature vector to an action category based on the encoding

of relevant temporal information in the feature space; this occurs in support vector

machines (Simonyan and Zisserman, 2014) and random forests (Fothergill et al., 2012),

for example. The second type tries to automatically model temporal dependencies while

learning the classifier itself; state-space models (Lehrmann et al., 2014) and recurrent

neural networks (Donahue et al., 2015) exemplify this type.

Action recognition (Bobick and Davis, 2001; Efros et al., 2003) has traditionally

utilised standard RGB video cameras to recognise actions. The majority of the literature

in the field involves RGB videos, which is still a highly active area of research (Carreira

4
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Figure 1.4: ‘Opening peanut butter jar’ in egocentric viewpoint with a RGB-D camera and
hand pose features. Note that we need temporal context, i.e. access to previous or
future frames, to differentiate it from ‘closing peanut butter jar’.

and Zisserman, 2017), mainly because of its broad range of applications and the ease

of obtaining RGB video data in the era of the Internet and smartphones. Success-

ful approaches capture low-level, hand-crafted features from spatio-temporal trajecto-

ries (Wang and Schmid, 2013) and with neural networks (Simonyan and Zisserman,

2014). Extracting high-level features from RGB, such as body pose, is still an open

problem, although this could change in the near future (Cao et al., 2017). Figure 1.3

(a) displays some typical examples of actions that have been considered in the RGB

literature.

The study of RGB-D action recognition has emerged as a result of the irruption in

the market of affordable depth sensors by products such as Microsoft KinectTM. In

comparison to RGB video, the addition of a depth channel supports the acquisition of

high-level features, such as human body pose (Shotton, Girshick, Fitzgibbon, Sharp,

Cook, Finocchio, Moore, Kohli, Criminisi, Kipman et al., 2013), which can be useful for

action recognition, and its effectiveness has been clearly demonstrated (Yao et al., 2011).

Similar to human body pose, the study of depth has enabled reliable pose estimators for

hand pose estimation compared to other low-level representations (Tang et al., 2014).

Figure 1.3 (b) presents one example of body pose estimation on a depth image. Given

that the depth channel only works in indoors environment RGB-D action recognition

has focused primarily on recognising daily-life home actions (Wang, Liu, Wu and Yuan,

2012), gaming (Seidenari et al., 2013) and health-care (Baek, Shi, Kawade and Kim,

2017).
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Wearable cameras, such as GoPro®, as well as virtual and augmented reality headsets,

such as Oculus® and HololensTM, have been recently introduced. Such technologies have

led to a new chapter in computer vision that is termed egocentric or first-person vision.

In contrast to the third-person view, the camera in an egocentric viewpoint is not fixed,

and one observes the world ‘from the eyes’ of the camera wearer, illustrated by ‘pouring

juice’ example. Figure 1.3 (c) offers more examples of such viewpoint, wherein the user

is the centre of the action and, thus, one does not have access to his or her full body. In

such paradigm, the observer is no longer a passive subject and can instead influence the

environment. This is the natural point of view of humans and of any intelligent agent,

which makes the study of egocentric vision crucial to understanding how humans act

and to designing intelligent agents (Stadie et al., 2017). This thesis examines actions

performed by humans wearing a RGB-D sensor. In its conclusion, it provides insight

into how this knowledge could be applied to train intelligent agents.

Given that humans naturally use their hands when interacting with the world, a

distinctive characteristic of an egocentric setting is the clear presence of hands in the

scene (Mayol and Murray, 2005; Fathi, Farhadi and Rehg, 2011). Hence, most ap-

proaches for recognising actions from the first-person view have concentrated on hands

to extract low-level spatio-temporal features (Fathi, Farhadi and Rehg, 2011; Ishihara

et al., 2015). The present research studies a variety of actions in two egocentric scenarios

and uses two approaches of extracting spatio-temporal features from hands.

The first scenario is one of HCI. Since wearable cameras are usually small and lack a

keyboard or similar input accessories, user hand motions can serve as natural and unob-

trusive input. Spatio-temporal trajectories that are generated by fingertip movements in

mid-air can represent handwritten characters, such as as in Figure 1.2, and subsequent

steps can utilise these as text input in the wearable system. Other applications of these

spatio-temporal trajectories are possible in, for example, making a virtual blackboard or

directing a virtual orchestra. In this scenario, we extract spatio-temporal features from

trajectories that represent characters by capturing how the fingertip moves on the scene.

However, to successfully capture these features, one must overcome certain challenges,

such as identifying whether the user is writing and detecting the fingertip in space and

time.
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introduction

The second scenario consists of daily actions whereby the actor interacts with quo-

tidian objects, such as those in Figures 1.1 and 1.4. Motivated by the success of using

body pose representations for third-view RGB-D action recognition, we explore the use

of high-level hand pose features to recognise actions. Extracting pose and other mean-

ingful high-level features from hands poses unique challenges compared to from the full

body (Tang, 2015) in regard to self-occlusion, size and shape variances, sensor noise,

segmentation and rapid motion, for example. Furthermore, in contrast to body pose

estimation in depth images with reliable pose estimators and large annotated datasets,

hand pose estimation is a less mature field, especially from the egocentric viewpoint

and in the presence of objects (Yuan et al., 2018). As the first study to use hand pose

features as cues for these kinds of scenario, the present research encountered a problem

in acquiring and annotating data and designing a benchmark.

So far, we have discussed two application scenarios and considered how to extract

spatio-temporal features from them. However, as previously mentioned, the extraction

of meaningful features is only one part of the problem; the choice of a classifier to

deal with these features is also crucial. In this research, we opted for a decision forest

model (Breiman, 2001) in view of several desired properties: clusters obtained in leaf

nodes, scalability, robustness to overfitting, multiclass learning and efficiency.

The main challenge in using decision forests classifiers for temporal problems concerns

temporal dependencies. Previous approaches have encoded the temporal variable in the

feature space by stacking multiple frames (Fothergill et al., 2012), handcrafting tempo-

ral features (Zhu et al., 2013) or creating codebooks (Yu et al., 2010). However, these

methods require that temporal cues are explicitly given instead of automatically learning

them. In an attempt to relieve this, Gall et al. (2011) and Yao et al. (2011) have added

a temporal regression term, and frames individually vote for an action centre. This

breaks the temporal continuity and thus does not fully capture the temporal dynamics.

Lehrmann et al. (2014) have proposed a generative state-space model without exploit-

ing the benefit of having rich labelled data. Dapogny et al. (2015) have grouped pairs

of distant frames and grown trees by using hand-crafted split functions to cover differ-

ent label transitions; however they encountered difficulty in designing domain-specific

functions and making the model complexity increase with the number of labels. This

7
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thesis proposes a transition forest as a temporal decision forest model that aims to solve

the aforementioned issues by automatically learning the temporal dynamics within the

forest.

The following section describes the structure of this thesis and highlights its main

contributions.

1.1 thesis outline and contributions

The thesis proceeds as follows. First, Chapter 2 presents a general literature review

regarding action recognition on different data modalities. Then, Chapters 3, 4 and 5

address main contributions. Finally, Chapter 6 provides the summary, conclusions and

suggestions for future work.

Highlights of main chapters are listed below:

Chapter 3: Understanding egocentric fingertip writing in mid-air with a

trajectory Hough forest

In this chapter, we propose a framework for understanding fingertip writing in mid-air

using an egocentric RGB-D sensor. The proposed approach first detects a writing hand

posture and locates the position of the index fingertip in each frame. Fingertip points

over time define a trajectory that represents a written character in mid-air. The written

character is recognised and localised simultaneously. To achieve this task, we first used

a contour-based view-independent hand posture descriptor that was extracted with a

novel signature function. The proposed descriptor supports both posture recognition

and fingertip detection. To recognise fingertip-written characters from trajectories, we

propose a trajectory Hough forest that utilises sequential data as input and performs

regression in both spatial and temporal domains. To encourage consistent temporal

predictions, we ponder the posterior class probability of the forest with a prior probabil-

ity based on clustering properties of forests. Furthermore, we introduce a new dataset

that includes labels for hand postures and fingertips locations that represent written

character in mid-air. For this research, we conducted experiments on posture estima-

tion, fingertip detection, and character recognition and localisation, which indicate that
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our design choices are more robust than tested baselines. Additionally, we extend the

framework to deal with spatio-temporal trajectories in RGB videos.

This chapter includes content that was published in the journal Computer Vision and

Image Understanding (Chang et al., 2016) and presented at the IEEEWinter Conference

on Applications of Computer Vision (WACV) in 2016 (Garcia-Hernando et al., 2016).

Chapter 4: Transition forests for action recognition and detection

This chapter introduces the novel method of transitions forests, which entails an en-

semble of decision trees that learn to discriminate static frames and transitions between

pairs of two independent frames. During training, node splitting is driven by alternat-

ing two criteria: the standard classification objective that maximises the discrimination

power in individual frames as well as the proposed one in pairwise frame transitions.

Growing the trees tends to group frames with similar associated transitions and the

same action label to incorporate temporal information that was not available otherwise.

Unlike conventional decision trees, whereby the best split in a node is determined inde-

pendently of other nodes, the transition forests jointly seek the best split of nodes within

a layer to incorporate distant node transitions. When inferring the class label of a new

frame, it is passed down the trees, and an efficient, online prediction is made on the basis

of previous frame predictions as well as the current one. The method has been applied

to varied skeleton action recognition and online detection datasets to demonstrate its

superior performance compared to several baselines and state-of-the-art approaches.

A reduced version of this chapter was presented at the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) in 2017 (Garcia-Hernando and Kim, 2017).

Chapter 5: Understanding egocentric hand-object actions with RGB-D videos

and 3D hand pose annotations

This chapter studies the use of three-dimensional (3D) hand poses to recognise first-

person hand actions in interaction with 3D objects. To this end, it proposes a RGB-D
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video benchmark of everyday actions that involve several different objects. To obtain

high-quality hand pose annotations from real sequences, we used our own mo-cap system,

which automatically infers the location of each of the 21 joints of the hand via six

magnetic sensors on the fingertips and the inverse kinematics of a hand model. We

present extensive experimental evaluations of RGB-D and pose-based action recognition

according to baselines and state-of-the-art approaches. We also measure the impact of

using appearance features and poses as well as their combinations with the extension of

the transition forest that is presented in the previous chapter to manage different data

modalities. Furthermore, we assess the readiness of current hand pose estimation in

cases where hands are severely occluded by objects in egocentric views and investigate

its influence on action recognition.

A reduced version of this chapter was presented at the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) in 2018 (Garcia-Hernando et al., 2018).
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2
RELATED WORK

2.1 overview

This chapter surveys previous work in action recognition. It divides the field

into three main categories depending on the nature of the input data, which

vary from RGB videos to RGB-D videos to egocentric videos. Although this

thesis focuses on RGB-D and egocentric action recognition, with a small exception in

Chapter 3, most techniques have their origin and inspiration in RGB action recognition;

thus, for completeness, the chapter begins with a throughout review of this category.

Also, since some of the main contributions of this thesis are based on decision forest

models, Section 2.5 includes a review of decision forests for action recognition. Each

section ends with a short review of popular benchmarks that directs particular attention

to the most relevant datasets for the present research and emphasises those that were

used for the experiments in subsequent chapters. For a more exhaustive list, we refer

interested readers to the following survey papers: Herath et al. (2017) and Zhang, Li,

Ogunbona, Wang and Tang (2016). The chapter concludes with a brief description of

evaluation criteria that were found in the literature and applied in this thesis.

2.2 action recognition in rgb videos

This section reviews relevant work on human action recognition in RGB videos. It

first discusses approaches that use hand-crafted feature representations before describing

recent models that automatically learn feature representations. For an exhaustive review

of the former methods, we refer to the review by Aggarwal and Ryoo (2011); for the

latter, please see Herath et al. (2017).
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2.2.1 Hand-crafted feature representation methods

Holistic and local approaches

This section first reviews holistic approaches that primarily describe a human action

based on global representations of the human body. These representations can include

low-level features that are computed over the spatio-temporal volume of the human

action (Bobick and Davis, 2001; Efros et al., 2003; Yilmaz and Shah, 2005) or higher-level

representations, such as body pose (Wang et al., 2013). For instance, Bobick and Davis

(2001) have constructed templates of actions by using weighted projections of the space-

time volume that summarise the presence and the history of motion from silhouettes

of humans. Efros et al. (2003) have introduced a motion descriptor that is based on

optical flow as computed over the human figure and which classifies actions by using

a nearest neighbour nearest neighbour (NN) classifier. Yilmaz and Shah (2005) have

exploited the differential properties of spatio-temporal volumes to characterise actions,

while Blank et al. (2005) have described actions according to the spatio-temporal saliency

of human silhouettes over time. The use of body pose as a feature representation can

evidently improve performance compared to the use of low-level features (Yao et al.,

2011), but it has been less popular in RGB approaches than in RGB-D approaches. The

reason for this difference is the difficulty of accurately estimating the body pose from

only RGB data; however, promising approaches (Chéron et al., 2015; Cao et al., 2017)

could change this. Due to the inability to obtain satisfactory global representations, the

interest shifted to local representation of actions.

Local representation of actions became popular through the work of Laptev (2005),

the introduction of space-time interest points and an extension to the temporal domain

of the Harris corner detection (Harris and Stephens, 1988). The main approach by

Laptev (2005) was to localise points in space and time with significant spatial and

temporal variation. As a result, sparse interest points could be detected, and derivative

filter responses could be used to characterise actions. Instead of using a sparse set

of interest points, Dollár et al. (2005) have incorporated a denser representation of

interest points that reflects a more accurate modelling of actions compared to a sparse

representation. This approach prompted the trend of using dense representations. A
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small spatio-temporal volume called a cuboid is associated with each interest point, and

appearance features (i.e. normalised brightness, gradients, optical flow) are extracted to

create a vocabulary, or codebook, via k-means and modelling actions that use histograms

in a bag-of-words fashion. Following this line of work, Niebles et al. (2008) have applied a

generative model to learn the probability distribution of each action class as represented

by a collection of vocabulary words. Subsequently, Wong et al. (2007) have further

extended the model to include structural spatio-temporal information that is relative to

the centre of the action.

In addition to the simple representations by Laptev (2005) and Dollár et al. (2005), a

well-studied issue is how to describe these spatio-temporal points. Most of these repre-

sentations are extensions of their two-dimensional (2D) counterparts to the temporal do-

main: Scovanner et al. (2007) have extended the scale-invariant feature transform (Lowe,

2004) to the spatio-temporal domain (3D-SIFT), while Klaser et al. (2008) have ex-

tended the histogram of gradients (Dalal and Triggs, 2005) (HOG) descriptor (Dalal and

Triggs, 2005) to propose HOG3D. Moreover, Laptev et al. (2008) have suggested the

combination the HOG descriptor with a new temporal descriptor, namely the histogram

of optical flow (Laptev et al., 2008) (HOF). This combination together with a spatio-

temporal pyramid to embed structural information, a bag-of-words representation and

a support vector machine (SVM) classifier were proven to be state-of-the-art approaches

at the time and were influential for later work (Wang et al., 2009).

Figure 2.1: The first two images reveal the difference between cuboid sampling and trajec-
tory sampling, and the third image depicts improved dense trajectories (Wang and
Schmid, 2013); all images were extracted from UT-Interaction dataset (Ryoo and
Aggarwal, 2010).
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One fundamental limitation in capturing information from fixed spatio-temporal lo-

cations is that they do not necessarily capture the motion information for a sufficiently

long temporal span. To overcome this limitation, a new line of research has emerged

that tracks a given spatio-temporal point over time and thereby captures longer and

more complex motion information along its spatio-temporal trajectory, as Figure 2.1

illustrates. For instance, Messing et al. (2009) have extracted trajectories by using a

point detector (Laptev, 2005) and a Kanade–Lucas–Tomasi (KLT) feature tracker (Lu-

cas et al., 1981), and they have proposed a graphical model for velocities of trajectories.

Matikainen et al. (2009) have also determined trajectories with a KLT feature tracker

and clustered and classified them in a bag-of-words fashion. Motivated by the improve-

ment of dense sampling over sparse spatio-temporal points, Wang et al. (2011) have

sampled and tracked trajectories in a dense way. In doing so, they extracted local

feature descriptors, such as HOG, HOF and motion boundary histograms (Dalal et al.,

2006) (MBH), along the trajectories and processed them similarly to Laptev et al. (2008).

Although dense sampling can capture non-meaningful trajectories, this problem can be

attenuated by modelling the camera motion according to improved dense trajectories

(Wang and Schmid, 2013) (IDT). Figure 2.1 presents an example of such trajectories.

Oneata et al. (2013) and Peng et al. (2014) have explored the use of Fisher vectors (Per-

ronnin et al., 2010) for feature aggregation as an alternative to bag-of-word trajectory

encoding. Wang and Schmid (2013) work with Fisher vector encoding is considered the

state of the art in action recognition through hand-crafted feature representations. Sec-

tion 2.2.2 introduces methods that learn the feature representation. Although they are

generally able to outperform hand-crafted approaches, it is apparent that most feature-

learned methods benefit from a combination with the improved trajectories of Wang

and Schmid (2013).

Sequential approaches

This section concludes with an overview of approaches to the problem of action recog-

nition as a sequence of observations. In general, these approaches extract a feature

vector that describes the human in every frame, and a decision is made according to a

classifier that considers the temporal structure of the observations. Early approaches
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that compare an observed sequence to a template sequence that represents an action

class include those of Darrell and Pentland (1993) and Gavrila et al. (1995). These two

works have proposed the use of dynamic time warping (DTW) to classify simple human

hand gestures and upper body movements, respectively. The use of state-space models

such as the hidden Markov model (HMM) for action recognition started with the seminal

work by Yamato et al. (1992). An HMM represents each action class, and these are

trained (i.e. observation and transition probabilities are estimated) with the labelled

data for a particular class. In the inference stage, the observed sequence is evaluated

for each model, and the most likely class is selected. Approaches that involve variants

of HMM or similar probabilistic frameworks have appeared constantly in the literature

(Oliver et al., 2000; Duong et al., 2005; Weinland et al., 2007; Lv and Nevatia, 2007;

Tang et al., 2012). In view of their superior performance and efficiency, researchers

have also proposed discriminative approaches as alternatives to generative approaches

via models such as conditional random fields (Sminchisescu et al., 2006; Quattoni et al.,

2007; Raptis and Sigal, 2013), other discriminative state-space models (Ma et al., 2017)

and ranking methods that model frame order (Fernando et al., 2015). Another notable

line of research has been inspired by language models that use sequential models to de-

compose actions in various levels or hierarchies (Ivanov and Bobick, 2000; Oliver et al.,

2002; Ryoo and Aggarwal, 2009). These approaches have the advantage of tailored ap-

plicability to long and complex actions, but they are disadvantaged by their sensitivity

to error propagation between layers. The research direction for sequential approaches

has recently shifted to the use of deep models that involve recurrent neural networks, as

these can be trained in an end-to-end fashion and thus simultaneously learn the feature

representation and sequential model. The following section reviews this line of work.

2.2.2 Learned representation methods

After the success of learning visual representations in still images through convolutional

neural networks (CNNs or ConvNets) (LeCun et al., 1989; Krizhevsky et al., 2012) over

hand-crafted features for several computer vision tasks (Zhou et al., 2014; Girshick

et al., 2014), the application of deep learning to action recognition has not been an

exception (Herath et al., 2017). Ji et al. (2013), Karpathy et al. (2014), Tran et al.

(2015) and Varol et al. (2017) have attempted to extend image convolutions to the
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ConvNet

ConvNet

+ Action

time
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Figure 2.2: Two-stream approach (Simonyan and Zisserman, 2014); deep features are extracted
from both RGB and optical flow channels and combined in prediction.

spatio-temporal domain by demonstrating effective performance through the use of only

RGB cues, but their outcomes were still inferior to the state-of-the-art, hand-crafted

approach of IDT. Given the difficulty of working on spatio-temporal volumes, Simonyan

and Zisserman (2014) have commenced an impactful line of research (see Figure 2.2)

to learn features from two streams, namely the appearance stream (image) and the

motion stream (optical flow). This approach can exploit strong results from the image

recognition domain by pre-training the networks on large visual datasets. Feichtenhofer

et al. (2016) have recently proposed improvements to this architecture on the basis of

their exploration of different temporal fusions, Varol et al.’s (2017) use of temporally

longer convolutions and the addition of correspondences between streams (Feichtenhofer

et al., 2017). However, a drawback of such an approach is the need to compute the

computationally expensive optical flow. Bilen et al. (2016) have suggested one approach

that strives to overcome this limitation without the use of temporal convolutions; this

method creates an image on top of the network that summarises both appearance and

motion.

To more effectively capture temporal dependencies between video frames, another line

of research has incorporated the deep sequential model of recurrent neural network (RNN)

with long-short term memory (Hochreiter and Schmidhuber, 1997) (LSTM) after feature

learning from a CNN (Donahue et al., 2015). This feature learning can occur only on

colour frames (Donahue et al., 2015), by capturing the motion on a flow channel through

standard use of a two-stream model (Yue-Hei Ng et al., 2015) or by adding an attention
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mechanism (Li et al., 2018). In contrast to other tasks of computer vision, results for the

learned representation approaches above can be improved by a combination with hand-

crafted features, such as IDT, wherein deep architectures miss some spatio-temporal

patterns (Feichtenhofer et al., 2016). Recently, Carreira and Zisserman (2017) have

proposed a deep model that involves 3D convolutions on both colour and flow channels

that, jointly with a substantially larger and curated dataset pre-training, was able to

yield better results compared to all previous approaches and without the need to resort

to IDT features.

2.2.3 RGB action recognition benchmarks

From the rich history of RGB action recognition in computer vision, it is clear that

the complexity and difficulty of utilising datasets closely accompany advancements in

the techniques that Chapter 2 has presented. Among the first proposed datasets are

the KTH (Schuldt et al., 2004) and Weizmann (Blank et al., 2005) datasets. These

datasets have a limited number of action classes and have simple categories, such as

‘walk’ and ‘jump’. Both datasets reflect single actors from a third-person viewpoint in

a controlled scenario. In a scenario of surveillance with a higher number of humans in

the scene, we find the UT-Interaction (Ryoo and Aggarwal, 2010) dataset, which we use

in Chapter 3 to evaluate the generalisation of our framework. This dataset consists of

six classes of human-human interactions, such as ‘shake hands’, ‘point’, ‘hug’, ‘push’,

‘kick’ and ‘punch’. In a much more challenging scenario, Marszałek et al. (2009) have

proposed the Hollywood2 dataset, which is comprised of segments from movies. The

difficulty of this dataset compared to the previous one derives from the variability of

viewpoints and scales that naturally appear in movies. Other popular datasets include

(Rodriguez et al., 2008) and Sports-1M (Karpathy et al., 2014), which describe sports.

While the former is a small dataset of only 10 classes, Sports-1M contains more than one

million Youtube videos in almost 500 categories. By obtaining videos from YouTube,

we determined that the most popular datasets at the time of writing this thesis were

UCF-101 (Soomro et al., 2012) and HMDB-51 (Kuehne et al., 2011). The challenges of

these datasets concern the inclusion of subtle actions, such as ‘apply make up’ or ‘apply

lipstick’. Furthermore, videos from YouTube are not professionally recorded, which can

negatively affect camera motion and resolution quality. Carreira and Zisserman (2017)
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have recently proposed Kinetics, a high-scale dataset of Internet videos which allowed for

the training of large, deep models that yielded state-of-the-art results for the UCF-101

and HMDB-51 datasets.

2.3 action recognition in rgb-d videos

The recent introduction of commodity sensors, such as Microsoft KinectTM, has con-

siderably increased interest in action recognition through RGB-D sensors. The use of

depth cameras for action recognition differs from traditional RGB action recognition

in the availability of an additional data modality, depth. While most successful RGB

approaches (Wang et al., 2011; Feichtenhofer et al., 2016) extract information predom-

inantly from static colour images or motion flow, these approaches are not directly

applicable to the depth stream because of its noisy, texture-less and discontinuous pixel

regions.

Researchers have outlined numerous approaches to extracting information from the

depth channel. These methods have usually focused on the extraction of discrimina-

tive features from depth images via geometric descriptors (Ohn-Bar and Trivedi, 2014;

Oreifej and Liu, 2013; Yang and Tian, 2014) that are sensitive to viewpoint changes

and view-invariant approaches (Rahmani et al., 2016; Rahmani and Mian, 2016; Baek,

Shi, Kawade and Kim, 2017). For instance, a depth-based descriptor that was devel-

oped from the histogram of oriented 4D normals (HON4D) (Oreifej and Liu, 2013) can

successfully describe local geometry, and Yang and Tian (2014) have extended it to

incorporate local information for neighbourhood pixels according to super normal vec-

tors. However, these methods suffer when the viewpoint changes from a frontal view

to another view. To overcome this disadvantage, Rahmani et al. (2016) have proposed

a histogram of oriented principal components to detect and characterise interest points

that are robust for viewpoint variations. Moreover, Rahmani and Mian (2016) have

recently promoted the learning of view-invariant features through the use of CNNs from

several synthesised depth views. Lately, a popular trend has entailed the utilisation of

the depth channel to obtain robust human body pose estimates (Shotton, Sharp, Kip-

man, Fitzgibbon, Finocchio, Blake, Cook and Moore, 2013) and use them directly as

a holistic feature or in combination with other RGB-D features to recognise actions.
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Some works have combined the above data modalities to yield multimodal approaches.

For instance, Wang, Liu, Wu and Yuan (2012) have captured local occupancy patterns

around the estimated body joints and identified the most discriminative joints. Mean-

while, Ohn-Bar and Trivedi (2014) have combined joint-angle representations with a

modified histogram of gradients (HOG2), while Zhu et al. (2013) have utilised colour

and flow information together with pose features. Shahroudy, Ng, Yang and Wang

(2016) have combined pose and depth features in a hierarchical learning framework, and

Shi and Kim (2017) have used skeleton information as privileged learning for training

while using only RGB-D information in testing. Hu et al. (2015) have advocated for

jointly learning heterogeneous features (JOULE) for action recognition from all available

data streams (i.e. colour, depth and pose). Given the popularity of using only skeleton

(pose) features for RGB-D action recognition, the following section focuses on this line

of research.

Skeleton-based action recognition

Generative models (Xia et al., 2012; Wu and Shao, 2014; Lehrmann et al., 2014) pose

disadvantages in the difficulty of estimating model parameters and their time-consuming

learning and inference stages. Thus, discriminative approaches have been widely adopted

for their superior performance and efficiency. One main line of research consists of

learning discriminative features from skeleton data. For instance, Vemulapalli et al.

(2014) and Vemulapalli and Chellappa (2016) have represented entire skeletons as points

in a Lie group before temporally aligning sequences with DTW and capturing temporal

dynamics through Fourier temporal pyramids (FTPs), which resembles the approach of

Wang, Liu, Wu and Yuan (2012). This involves a moving pose descriptor (Zanfir et al.,

2013) (MP) that uses both pose and atomic motion information and then temporally

mining key frames through a k-NN approach in contrast to Jung and Hong (2014), who

used DTW. Devanne et al. (2015), Wang, Wang and Yuille (2016) and Zhu, Zhang, Shen

and Song (2016) have investigated the use of key frames or key motion units and have

reported good performance, which reveals the importance of static information for action

recognition. Recently, some works have utilised CNNs to automatically learn features
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directly from skeleton data (Ke et al., 2017) or from Lie group representations (Huang

et al., 2017).

Researchers have also proposed deep sequential models that involve vanilla RNNs (Du

et al., 2015) and with LSTMs (Veeriah et al., 2015; Zhu, Lan, Xing, Zeng, Li, Shen and

Xie, 2016; Liu et al., 2017) to model temporal dependencies. However, these models

have exhibited inferior performance compared to recent models that explicitly exploit

static information (Wang, Wang and Yuille, 2016; Wang, Yuan, Hu, Li and Zhang, 2016)

or well-suited time-series mining called Gram Matrix (Zhang, Wang, Gou, Sznaier and

Camps, 2016). In demonstrating the benefit of combining feature learning and sequential

deep models, Du et al. (2015) have first proposed a hierarchical, end-to-end architecture

that uses a bi-directional HBRNN. This approach contrasts with Veeriah et al. (2015),

who have directly fed hand-crafted features into a RNN with LSTM.

2.3.1 RGB-D action recognition benchmarks

Most datasets for action recognition that use RGB-D sensors also include human body

pose annotations that have been obtained via Microsoft Kinect (Shotton, Girshick,

Fitzgibbon, Sharp, Cook, Finocchio, Moore, Kohli, Criminisi, Kipman et al., 2013).

Since RGB-D sensors work only indoors, action classes are usually limited to daily ac-

tions and gaming or human-computer interaction (HCI). The first proposed RGB-D

benchmark was MSR-Action3D (Li et al., 2010), which depicts actions in a gaming sce-

nario with a fixed background and camera. Other popular gaming datasets are MSRC-

12 (Fothergill et al., 2012) and UT-Kinect datasets (Xia et al., 2012). Gaming actions

include ‘tennis serve’ or ‘shoot a pistol’, and they are usually recorded from a single

viewpoint with the user facing the camera. Popular datasets regarding daily life actions

are MSR-DailyActivity3D (Wang, Liu, Wu and Yuan, 2012), CAD-60 (Sung et al., 2011)

and Florence-3D (Seidenari et al., 2013), which include actions such as ‘drink’, ‘eat’ and

‘answer phone’. These are usually more challenging because they involve objects and

the user might not be facing the camera. One limitation of the aforementioned datasets

is that they are recorded from a single viewpoint (i.e. the camera is fixed). To com-

bat this limitation, the UWA3D Multiview II (Rahmani and Mian, 2016) and NTU

RGB+D (Shahroudy, Liu, Ng and Wang, 2016) datasets were proposed to explore other
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camera settings. The latter has compiled more than 56,000 videos and 60 classes to

become the largest at the present time, and it is thought to be useful for data-hungry

deep learning algorithms. In the next section, we provide more details for the datasets

that we use in Chapter 4.

The MSR-Action3D dataset (Li et al., 2010) contains 20 actions performed by 10

actors as well as 567 videos with a resolution of 320-by-240 pixels. Microsoft recorded

this database with a prototype of the Kinect and only provided depth and skeleton data.

Two popular evaluation protocols are associated with this dataset. The first divides

the dataset into three subsets of eight actions (AS1, AS2 and AS3) and performs cross-

subject validation by assigning half the users to training and half to testing. It measures

final accuracy by averaging the classification performance over 10-fold validation on all

three sets. The second protocol is more difficult but differs only in that it does not divide

the actions into three subsets and performs classification of 20 actions. Actions categories

include ‘high arm wave’, ‘horizontal arm wave’, ‘hammer’, ‘hand catch’, ‘forward punch’,

‘high throw’, ‘draw x’, ‘draw tick’, ‘draw circle’, ‘hand clap’, ‘two hand wave’, ‘side-

boxing’, ‘bend’, ‘forward kick’, ‘side kick’, ‘jogging’, ‘tennis serve’, ‘golf swing’, ‘pickup’

and ‘throw’.

The MSRC-12 dataset (Fothergill et al., 2012) contains 12 actions performed by 30

actors. There are 6,000 instances of actions, and each actor repeats them several times.

The actions are one of two types, namely iconic or metaphoric. Iconic actions focus on

gaming and include ‘hide’, ‘shoot a pistol’, ‘throw an object’, ‘change weapon’, ‘kick’ and

‘put on night vision goggles’, whereas metaphoric actions concern HCI and could include

‘start music’, ‘navigate to next menu’, ‘wind up the music’, ‘end music session’, ‘protest

the music’ and ‘move up the tempo of the song’. In this thesis, we followed the protocol

of Lehrmann et al. (2014); accordingly, we used the six iconic gestures and performed

five-fold leave-person-out cross-validation, which required 24 actors for training and six

for testing per fold.

The Florence-3D dataset (Seidenari et al., 2013) consists of nine actions by 10

subjects. Each subject performed every action two or three times for a total of 215

action sequences. In this research, we followed the protocol of Wang, Wang and Yuille
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(2016) and Wang, Yuan, Hu, Li and Zhang (2016), which dictates a leave-one-subject-

out protocol. This approach uses nine subjects for training and one for testing for a

total of 10 times. Actions include ‘wave’, ‘drink from a bottle’, ‘answer phone’, ‘clap’,

‘tighten lace’, ‘sit down’, ‘stand up’, ‘read’, ‘watch’ and ‘bow’.

The Online Action Detection (OAD) dataset (Li et al., 2016) is not an action

recognition dataset but rather an online action detection dataset. However, we include it

here for completeness, as we perform experiments on it in Chapter 4. The main difference

between this dataset and the previous ones is that actions are not isolated; one can find

multiple actions in the same video as well as an absence of action. The dataset consists of

59 long sequences that contain 10 daily-life actions that are performed by various actors

and recorded with Kinect v2 for a total of over 216 minutes of video. Each sequence

contains different actions and background periods of variable length (3,000 frames on

average) in an arbitrary order with annotated starting and ending frames. Actions

include ‘drinking’, ‘eating’, ‘writing’, ‘opening cupboard’, ‘washing hands’, ‘opening

microwave’, ‘sweeping’, ‘gargling’, ‘throwing trash’ and ‘wiping’.

2.4 action recognition in egocentric viewpoint

Action recognition from an egocentric viewpoint warrants a specific section to discuss

its particularities in contrast to third-person videos. Unlike third-person videos, an ego-

centric viewpoint does not provide access to the body of the actor1 and only depicts

the actor’s current perspective. As such, hands and manipulated objects become the

most descriptive cues of egocentric actions (Mayol and Murray, 2005; Fathi, Farhadi

and Rehg, 2011; Fathi, Ren and Rehg, 2011; Pirsiavash and Ramanan, 2012; Bambach

et al., 2015; Ma et al., 2016; Singh et al., 2016), which compromises the aforementioned

approaches that focus on the human body. As another important characteristic of an

egocentric viewpoint, the sensor is not fixed, and abrupt motion might appear, which

could complicate the application of state-of-the-art tracking methods, such as IDT (Ishi-

hara et al., 2015; Singh et al., 2016). Some researchers have investigated the use of

the human gaze as extracted with a special sensor as an attention cue for egocentric

1 In this thesis we assume that the wearer of the camera performs the action, although in some
works (Ryoo and Matthies, 2013) the wearer is an observer of the action.
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vision (Fathi et al., 2012; Damen et al., 2014; Li et al., 2015). However, this thesis

considers purely vision-based systems.

An early approach by Fathi, Farhadi and Rehg (2011) has found that low-level features

that were extracted from hands were a rich source of information to recognise egocentric

actions. However, Pirsiavash and Ramanan (2012), who have determined that recognis-

ing egocentric action is ‘all about objects’, have used HOG descriptors to model objects.

However, most recent and successful works (Ishihara et al., 2015; Ma et al., 2016; Singh

et al., 2016) have followed a hybrid approach that incorporates a detection stage from

low-level pixel information to combine both hands and object features to model actions.

Ishihara et al. (2015) have extracted motion features with IDT and hand features with

HOG descriptors via Fisher vector encoding. Ma et al. (2016) and Singh et al. (2016)

have adopted the state-of-the-art approach of two-stream networks (Simonyan and Zis-

serman, 2014; Feichtenhofer et al., 2016) in an egocentric setting. Ma et al. (2016) have

proposed the detection of both hands and objects in dedicated networks and the fusion

of the network with a motion network from the optical flow. Similarly, Singh et al.

(2016) have recommended an additional third stream that specifically examines hand

features. Chapter 5 explores the use of fine-grained hand pose features for egocentric

action recognition in contrast to previous approaches.

2.4.1 Egocentric benchmarks

The first benchmark that appeared for egocentric action recognition was the CMU-

Kitchen dataset (Spriggs et al., 2009). Its authors utilised a multi-camera system, which

included one wearable sensor, and combined it with mo-cap system to capture full body

articulations from a third-view camera. Actors who wore special clothes prepared a

variety of recipes in a highly controlled environment, and temporal bounds of actions

are provided. In attempting to advance this work, Fathi, Ren and Rehg (2011) have

proposed Georgia Tech Egocentric Activity (GTEA), a dataset of daily actions that were

captured in ‘the wild’ by users who simply manipulated objects in their kitchens while

wearing a non-intrusive GoPro sensor. The dataset was first labelled with seven high-

level actions, such as ‘make hotdog sandwich’, but was later refined and re-annotated

to contain 71 actions, including ‘put hotdog on bread’. Another related dataset is the
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Activities of Daily Living (ADL) dataset (Pirsiavash and Ramanan, 2012), which in-

cludes 18 daily actions. Unlike GTEA, ADL includes actions that occurred outside of

the kitchen, and some of them do not involve manipulated objects (e.g. ‘watch tele-

vision’). Authors of GTEA proposed a later version of the dataset called Gaze and

Gaze+ (Fathi et al., 2012), which includes gaze annotations with an eye tracker and 44

actions. Damen et al. (2014) also included gaze annotations in the Bristol Egocentric

Object Interactions Dataset (BEOID), which was first referenced to study the automatic

discovery of manipulated objects by users but later annotated with action recognition

labels and temporal bounds (Wray et al., 2016) that involve pairs of a ‘verb’ (action)

plus a ‘noun’ (object). In each dataset that has been mentioned so far, the actor is

alone, and no other humans are involved. By adding interactions with other humans

in which the wearer of the sensor is passive, Ryoo and Matthies (2013) have proposed

the JPL-Interaction dataset, wherein other actors provide the user with actions such as

‘being punched’ and ‘hand shake’. Bambach et al. (2015) have also proposed a dataset

of four actions that involve interactions with other humans and provide pixel-level an-

notations of hands. We present our benchmark in Chapter 5, which includes both daily

and interaction classes in three scenarios.

2.5 action recognition and decision forests

Standard decision forest approaches for action recognition, such as that of Fothergill et al.

(2012), directly stack frames and grow forests to classify them. Zhu et al. (2013) and

Seidenari et al. (2013) have created bags of poses that break the temporal structure and

classified the entirety of sequences. Mikolajczyk and Uemura (2011) have proposed simul-

taneous action recognition and localisation through a local motion-appearance features

method and clustering trees. By clustering the properties of trees, Yu et al. (2010) have

also constructed codebooks with the help of multiple heuristic rules to capture structural

information. Baek, Kim and Kim (2017) have encoded temporal information through the

use of temporal features, such as MP, and the introduction of spatio-temporal contexts

based on RGB-D stacks of frames. Baek, Shi, Kawade and Kim (2017) have introduced

a kinematic term inside the forest to capture the geometry of the scene of indoor actions
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and additionally incorporated MP as a temporal feature. These approaches require that

temporal cues are directly encoded in the feature space.

To relieve the necessity of manually encoding temporal cues in the feature space Gall

et al. (2011), Yu et al. (2013) Jang et al. (2015) and Serrano et al. (2018) have added a

temporal regression term and mapped both appearance and pose features to vote in an

action Hough space. However, in Hough frameworks, temporal information is captured

as temporal offsets with respect to a temporal centre of independent samples, which dis-

rupts the temporal continuity and requires observation of the whole sequence. Pairwise

conditional random forests (Dapogny et al., 2015) (PCRF) have been proposed for the

related field of facial expression recognition and consist of trees for which hand-crafted

split functions operate on pairs of frames. These pairs are formed to cover different

facial dynamics and fed into multiple subsets of decision trees that are conditionally

drawn on the basis of different label transitions, which ensures that the ensemble size is

proportional to the number of labels. Generative forest-based methods include dynamic

forest models (Lehrmann et al., 2014) (DFM), which are ensembles of autoregressive

trees that store multivariate distributions in their leaf nodes. These distributions model

observation probabilities given a short history of previous frames. Similarly to HMM, a

decision forest is trained for each action label, and inference is performed to maximise

the likelihood of the observed sequence. Recently, and in less relation to the scope of

this thesis, Chen et al. (2016) have encouraged the learning of smooth temporal regres-

sors for real-time camera planning, while Charles et al. (2014) have introduced temporal

context in a decision forest framework by warping map confidences through the use of

optical flow for body pose estimation.

A related line of work (Shotton et al., 2008; Nowozin et al., 2011; Kontschieder et al.,

2013; Shotton, Sharp, Kohli, Nowozin, Winn and Criminisi, 2013) has proposed decision

forest methods for image segmentation. The objective of such an approach is to obtain

coherent pixel labels, and decision forests are linked with probabilistic graphical models

to connect multiple pixel predictions. However, these methods focus on the spatial co-

herence of predictions in an image space, while this thesis concentrates on discriminative

changes of data and prediction in a temporal domain.
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2.6 evaluation criteria

There are two popular evaluation criteria in action recognition. The first and most ex-

tended criterion is usually denoted as ‘accuracy’ and is a per-cent measure of the number

of correctly classified videos in relation to the total number of videos. A drawback of

this measure is its sensitivity to dataset class imbalance, wherein some classes are much

more common than others, which introduces bias to the model. To relieve this problem,

another popular measure is the ‘average class accuracy’, which computes the correct

number of classified videos over the total videos for a given class and considers the aver-

age as the final performance indicator. In some large benchmarks, such as Sports-1M, it

is logical to define a ‘top-k’ accuracy, which considers a video classification to be correct

if the true label appears among the top k results of the classifier.

The online action detection experiment that we perform on the OAD dataset in Chap-

ter 4 measures the performance with F1 scores. It identifies a detection as correct if the

intersection over union, IoU , between the prediction action interval I and the ground-

truth interval Igt exceeds a fixed threshold, such as that of 60% in Li et al. (2016):

IoU =
|I ∩ Igt|
|I ∪ Igt|

.

Using the above criterion, the F1 scores are computed as follows:

F1 = 2 precision · recall
precision+ recall

.

For the evaluation of the localisation of starting and ending points of the interval of

an action, where [ts, te] the ground-truth temporal points, the score is computed as

e|t−ts|/|t−te|. For false positive and false negatives, the score is set to zero.
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Figure 3.1: Overview of the proposed framework for recognising egocentric fingertip writing in
mid-air.

Wearable cameras lack a keyboard or similar text input device that can

allow the user to easily communicate with the system. In this chapter, we

propose a framework for using an egocentric RGB-D sensor to recognise

fingertip writing in mid-air. The framework first detects whether the user is writing and

localises the fingertip. It then extracts spatio-temporal features from the trajectories

that the fingertip depicts and feeds them into a trajectory Hough forest (THF). Finally,

the character that the user has written is recognised and localised in the 3D space. As

an extended version of the standard Hough forest (Gall et al., 2011), THF encourages

temporal consistence in prediction through the clustering of forest properties. To test

the suitability of the framework’s components, we introduce a new dataset and perform

multiple experiments on it. Furthermore, we extend the framework to engage with more

general spatio-temporal trajectories (Wang and Schmid, 2013) from RGB data.
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Contributions

The main contributions of this chapter are as follows:

� The proposal of a view-independent hand posture descriptor that is based on

a novel signature function and which leads to robust writing pose and fingertip

detection.

� A new framework termed trajectory Hough forest (THF) that extends the Hough

forest (Gall et al., 2011) and encourages consistence in prediction.

� The introduction of a new fingertip-writing dataset that was captured from an

egocentric view, has positive and negative poses and fingertip positions as well as

character labels of trajectories.

Note on contributions

This chapter contains material that was published in Chang et al. (2016) for which the

author of this thesis shares authorship. The author of this thesis was not involved in

designing, implementing or experimenting with the spatio-temporal feature extraction

or the forest baseline (Hough forest without transition term) that Sections 3.3.3 and 3.5

describe and thus claims no contribution to these parts.

3.2 related work

Trajectories from writing in mid-air

Vision-based systems for recognising handwritten trajectories in mid-air are not new, and

authors have proposed numerous approaches over the last two decades. Such approaches

have been highly dependent on the available hardware and mainly assume a third-person

viewpoint. In the context of augmented reality and the use of a sophisticated device with

an infrared and colour sensor, Oka et al. (2002) have obtained promising results for the

tracking of fingertips and recognition of the trajectories of simple geometric shapes. Alon

et al. (2009) have proposed a mid-air handwriting recognition framework that employs

a standard colour camera. The trajectories that represent digits were collected with the

user facing his or her fist and wearing coloured gloves in the training stage. Schick et al.
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(2012) has proposed a hand-tracking approach that involves a stereo camera system in

front of a virtual blackboard to relieve users of the need to wear special sensors or clothes.

With the arrival of commodity depth sensors, Raheja et al. (2011), Feng et al. (2012),

Zhang et al. (2013), Vikram et al. (2013) and Aggarwal et al. (2015) have explored the

use of depth to recognise fingertips and handwritten trajectories. In our application,

depth sensors allow for easy segmentation of the hands with a simple distance filter; in

contrast, the lighting conditions and background in other RGB camera-based approaches

severely affect the segmentation quality.

The problem remains quite unexplored from an egocentric perspective; however, some

early approaches relate to this work. Liu et al. (2006), Hannuksela et al. (2007), Jin

et al. (2007), Shah et al. (2011) and Ishida et al. (2010) have utilised RGB cameras from

a first-person perspective to recognise finger writing by applying different techniques of

sequence recognition and handwriting recognition fields. These previous approaches did

not consider the problem of an egocentric viewpoint, as the experiments were all un-

dertaken in highly controlled conditions with no challenging hand postures present. By

examining the dataset and applying the framework that this chapter proposes, Hameed

et al. (2015) have explored the spatio-temporal design of offline spatio-temporal fea-

tures. Some time after the publication of this chapter, Huang et al. (2016) proposed

a framework that resembles that of the present study and uses a convolutional neural

network (CNN) to detect hand postures and fingertips in RGB videos.

Hand posture recognition

Recognising hand postures is a difficult and unresolved problem in computer vision.

Variation of illumination, point of view (e.g. 3D rotations, scale) and acquisition noise

complicate the task. The literature presents two major families of methods: generative

and discriminative approaches. Generative approaches (Oikonomidis et al., 2011a) aim

to recover the full 3D hand pose via 3D model fitting. These are not suitable for present

application since their high computational cost is unfavourable for fast hand movements.

In contrast, discriminative methods (Hu and Yin, 2013; Tang et al., 2013; 2014; Rogez

et al., 2014) directly construct mappings between training and testing poses, which is

usually more efficient. In this chapter, we aim to recognise a particular hand posture
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from a binary image that describes a silhouette as a result of a previous segmentation

stage. In view of this purpose, discriminative methods are the most suitable to apply.

A variety of approaches have been proposed to address the general problem of shape

feature representation and recognition (Zhang and Lu, 2004; Yang et al., 2008), and

some of these methods have been applied to hand posture recognition. Such previous

works can be divided into region-based (Hu and Yin, 2013) and contour-based (Belongie

et al., 2002; Persoon and Fu, 1977; Zhang and Lu, 2001) approaches according to whether

features are extracted only from the entire shape region or from the contour. Regarding

region-based techniques, Hu and Yin (2013) have proposed a topological-based feature

descriptor which describes the behaviour of the holes between the hand region and its

convex hull under morphological operations. This feature representation has proven to

be accurate for discriminating between different hand postures from similar viewpoints,

but it fails under drastic viewpoint and shape changes. Among contour-based methods,

shape context (Belongie et al., 2002) has performed well in hand posture recognition un-

der controlled conditions, but its performance drastically declines as the viewpoint varies.

Another popular contour-based approach is the use of Fourier descriptors (Persoon and

Fu, 1977) (FDs), which permits an invariant hand-shape representation for hand pos-

ture recognition (Chen et al., 2003; Bourennane and Fossati, 2012; Conseil et al., 2007).

In advancing applications of FDs, Zhang and Lu (2001) have used signature functions,

which are one-dimensional functions that represent different features – e.g. curvature,

distance to the shape centroid, turning angle - that derive from the shape contour.

Fingertip detection

The detection and tracking of fingertips with both colour and depth cameras has been

an active topic in the fields of human-computer interaction (HCI) and augmented reality

(AR). Hand pose estimation approaches (Tang et al., 2013; 2014; Rogez et al., 2014)

can detect fingertips; however, since we need only an estimation of the fingertip, we

prefer a simpler approach. A popular alternative approach entails first segmenting the

hand silhouette based on colour or depth cues and then detecting fingertips from the

extracted binary shape. Following this line, many works have focused on the structure

of the hand and exploited its contours and geometrical properties to localise fingertip
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points. In contrast to other parts of the hand, fingertips are high curvature points; Lee

and Hollerer (2007) and Pan et al. (2010) have exploited this property in considering

the contour curvature as a cue to detect fingertips. Another typical key characteristic of

fingertips is their substantial distance from the hand palm. In view of this, Bhuyan et al.

(2012) and Liang et al. (2012) have applied a distance metric from the hand palm to the

contour’s furthest points to localise candidate points, which were subsequently refined

by various techniques. Raheja et al. (2012) have proposed a two-step algorithm whereby

the fingertip is localised from the hand edges after estimating the hand direction, while

Maisto et al. (2013) have also taken into account the topological structure of the hand

in extracting points from the convex hull of the silhouette. A notable disadvantage of

these methods is that the fingertips are not always over the hand silhouette’s edge in

all hand postures. To address this assumption, Raheja et al. (2011) have detected the

fingertips as the hand points which are closer to the sensor after segmenting the hand

palm and the fingers, and Yu et al. (2014) later followed and reinforced this approach

with a hand graph model that is similar to that of Krejov and Bowden (2013). Krejov

and Bowden (2013) have extended the distance concept by using a geodesic distance

to localise fingertips in hand configurations for which previous methods had failed and

thereby enforcing it with the natural structure of hand. Most of these approaches assume

that the palm always faces to the camera, which is not an appropriate assumption for

our application. Nevertheless, we are only interested in localising fingertip in one hand-

pointing posture, which simplifies our task compared to the aforementioned works which

have aimed to detect fingertip in any hand configuration.
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3.3 proposed framework

Figure 3.1 displays the proposed framework, which is composed of three main stages:

1) detection of writing hand poses; 2) detection of fingertips; 3) recognition and spatio-

temporal localisation of trajectories. The following sections are organised accordingly.

3.3.1 Handwriting posture detection

The proposed technique for handwriting posture detection assumes that the hand has

been pre-segmented successfully by, for instance, setting a depth threshold or skin colour

selection. For the application of interest where the user is mainly wiring and not ma-

nipulating any object, we found that this is not a hard assumption while using a depth

camera. The posture detection is modelled as a binary problem where positive values

are the closed-hand pointing posture and the rest, including boundary cases, are treated

as negative values.

To make the technique independent from sensors and use only depth values for seg-

mentation, we propose a new contour-based hand posture descriptor using Fourier de-

scriptors (Persoon and Fu, 1977) extracted from a novel shape signature function. The

segmented hand is represented as a binary image as shown in Figure 3.2. A planar con-

tour curve st extracted from the binary image of frame t. We propose a novel signature

function based on a distance-weighted scale invariant measure of the contour curvature.

The advantages of this new signature function are the following: it is a discriminative

feature, which permits a high accurate description of the hand posture; it is not com-

putationally demanding as there is only need to examine one scale; it can be reused for

fingertip detection.

Scale invariant curvature measure. We propose to use a scale invariant measure

of the curvature presented in Feldman and Singh (2005), which we refer to as curvature

entropy u. Consider the extracted hand contour at frame t depicting a curve st of length

L, which is sampled at discrete intervals ∆s = L/n. The curvature κ measures the

change on the tangent direction β and can be locally approximated by:

κ ≈ β

∆s
. (1)
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This approximation becomes exact in the limit (∆s → 0 when n → ∞). Rearranging

terms an expression for β can be obtained:

β ≈ κ∆s. (2)

As shown by Feldman and Singh (2005), β follows a von Mises distribution and thus

κ∆s is distributed likewise, leading to the curvature entropy expression:

u(κ) ∝ −cos(κ∆s). (3)

This quantity is scale-invariant and it is locally proportional to its curvature κ. While

κ is not a scale-invariant quantity, the product κ∆s is. The intuition behind is that κ

and ∆s scale inversely by the same factor when the curve changes in size (Feldman and

Singh, 2005). Computing the entropy values along the contour st, the series u(κ(st))

is obtained, which permits to localise high curvature points without exploring different

scales (Lee and Hollerer, 2007) (Figure 3.2).

Signature function (Ψ). A signature function of a contour Ψ(st) is defined as

the combination of the curvature entropy along the contour u(κ(st)) and a distance

transform δ(st), which represents the distances of every contour point to a centre of

mass of the hand as depicted in Figure 3.2:

Ψ(st) = u(κ(st)) · δ(st)γ . (4)

The parameter γ weights the impact of the distance in the signature function. It also

attenuates the high curvature points which are not a fingertip reducing the false positives

mainly caused by noise. This allows us to reuse the function to localise the fingertip.

Hand posture descriptor. The signature function can be represented as a time

series with variable length due to the different scales of contours in images. Once the

Fourier series a(n) and b(n) are extracted from the signature function Ψ, a normalisation
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Figure 3.2: Hand posture and fingertip detection proposed approach.

step similar to Chen et al. (2003) is performed. This step makes the features invariant

to rotation, translation and scale changes by defining the series:

S(n) =
(a(n)2 + b(n)2)1/2

(a(1)2 + b(1)2)1/2 , (5)

which is sampled to conform the hand posture descriptor xh
t = [S(1), ...,S(D)] ∈ RD.

The total number of samples (i.e. harmonics) D is determined experimentally and it is

discussed on the experimental section.

Hand writing/no writing posture classifier. A standard decision forest (Breiman,

2001) with label space Y = {writing, no writing} is used as a classifier for the binary

classification problem.

34



3.3 proposed framework

3.3.2 Fingertip detection

Fingertips have the property of being points of high curvature and distant from the

hand centre. The signature function presents a peak on the fingertip position caused by

a high curvature entropy value. This point is also highly distant from the centre of the

hand, so it is kept by combining with the distance function, while false positive points

mainly caused by noise are attenuated as shown in Figure 3.2.

The main advantage of the presented approach over other curvature-based ones (Lee

and Hollerer, 2007; Pan et al., 2010) is that there is no need to examine several scales to

find maximum curvature points and thus relieving of computational cost. The advantage

over distance-based methods (Bhuyan et al., 2012) is that more accurate detections can

be obtained in cases where the furthest point is not exactly the fingertip, which occurs

when the user lightly bends their finger or in certain viewpoints as shown in Figure 3.9.

To obtain smooth trajectories for the next stage of the algorithm a Kalman filter is used.

3.3.3 Trajectory Hough forest

In this section THF is presented to recognise and localise handwritten characters in

mid-air depicted by fingertip trajectories. First, the feature extraction step is described.

Second, the training stage of the forest is detailed. Finally, the term that encourages

temporal consistency is introduced.

Spatio-temporal feature extraction. Information within a N -points sliding window,

Wt = {pt, . . . , pt+(N−1)}, is encoded in the triplet xt = [At, Ct, Tt], where At is

an non-parametric appearance term, Ct is a parametric term describing the curvature

information and Tt encodes the temporal information within Wt (see Figure 3.3).

The appearance term (At) is a 2× (N − 1) dimension vector defined as follows:

At =
N−1n

j=1
(pt+j − pt), (6)
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where pt = [pxt , pyt ] is the 2D position vector of time index t. Note that pt indicates the

first point of Wt and pt+(N−1) the last one.
f
denotes the vector element concatenation

operator. This term represents a relative shape of the cropped trajectory Wt.

pt+i-pt

Current frame

N-pixel window Wt

R s(·)

pt+(N-1)

pt+i

pt

pt+2i
pt+i
pt

… …

Appearance Curvature Temporal 𝔸 ℂ 𝕋 Hough voting

pt+(N-1)

ptg(·)

Figure 3.3: Spatio-temporal feature extraction for character recognition. It consists of three
terms: appearance, curvature and temporal. The numbers in brackets indicate
dimension of each term.

The curvature term (Ct) has the dimension of N−1
2 . Menger curvature (Léger, 1999)

is applied to capture the shape of the curvature within Wt. The aim is to approximate

the curvature with a circle that is given by three points and then use reciprocal of the

circle radius as representation. In pursuance of robustness, three points are selected

from the curvature incrementally as follows:

Ct =

(N−1)/2n

j=1

4Area(pt, pt+j , pt+2j)

|pt − pt+j ||pt − pt+2j ||pt+j − pt+2j |
, (7)

whereArea(pt, pt+j , pt+2j) is the area spanned by selected point triplet (pt, pt+j , pt+2j).

The Area(p1, p2, p3) of three points (p1, p2, p3) is calculated as follows:

Area((p1, p2, p3)) = |
p1
x(p

2
y − p3

y) + p2
x(p

3
y − p1

y) + p3
x(p

1
y − p2

y)

2 |, (8)

where px and py are the x and y coordinates of a point p.
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The temporal term (Tt) is a 4-dimensional vector defined as:

Tt = [g(pt, pt+(N−1)), s(pt, pt+(N−1)), ġ(pt, pt+(N−1)), ṡ(pt, pt+(N−1))], (9)

where g(·) stands for geodesic distance (i.e. along the writing trajectory of the fingertip),

s(·) stands for Euclidean distance, ġ(·) and ṡ(·) stand for velocity (in magnitude) in

geodesic and Euclidean space respectively. This term can encode different temporal

writing properties such as different stroke speeds depending on each character. By

considering both the geodesic distance and Euclidean distance, this term can represent

different stroke combinations (e.g. an arc after a straight line, a straight line or a circle,

etc.).

Classification and localisation. Character recognition is formulated as a multiclass

classification problem, while character centre localisation is formulated as regression.

Hough forest (Gall et al., 2011) model is utilised as it is well-suited for the 26-class (26-

character; Y = {a, b, . . . , z}) problem. For each training sequence, the character centres

{∆̄ and Ῡ} are calculated in the spatial and temporal domains respectively.

Each treem in the forestM is constructed from a training set S = {(xt, dspc
t , dtmp

t , yt)}

that is generated from the fingertip trajectories. xt ∈ R(2(N−1)+(N−1)/2+4) is the input

vector encoding the spatio-temporal features at frame t, dspc
t and dtmp

t are displacement

vectors from the first point pt ofWt to the spatio-temporal character centre respectively

and yt ∈ Y is the class label.

Consider a node i and a decision θi that consists of a threshold for a selected dimension

of xt. According to θi, the instances in Si are directed to its left or right child nodes,

2i+ 1 and 2i+ 2 respectively, as S2i+1 = {(xt, dspc
t , dtmp

t , yt) ∈ Si | f(θi, xt) ≤ 0} and

S2i+2 = Si \ S2i+1. The decision θi is chosen based on the minimisation of an objective

function. The ideal decision θi is such that splits Si to minimise the uncertainty of
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both class label and spatio-temporal displacement vectors. To this goal, three different

objective functions to be minimised are defined as follows:

Objective functions =


Ec(θi) =

∑
n∈{1,2} |S2i+n|H(S2i+n),

Erspc(θi) =
∑

n∈{1,2} ||(d
spc
t )2i+n − ∆̄2i+n||2,

Ertmp(θi) =
∑

n∈{1,2} ||(d
tmp
t )2i+n − Ῡ2i+n||2.

(10)

H(·) is the Shannon entropy computed over the class labels yt in the training instances

and Ec(θi) is denoted as classification term. Erspc(θi) and Ertmp(θi) are the regression

terms, with ∆̄ the spatial and Ῡ the temporal centres of each character respectively.

During training, a pool of candidate decisions {θi} is randomly generated at each node

one and the one minimising one (randomly picked) of the above objective functions is

stored. At the end of the tree growth, each leaf node ` ∈ L stores the probability of

the cropped trajectory Wt belonging to the class, estimated by the proportion of feature

per class label reaching the leaf after training, and [dspc
t , dtmp

t ], the cropped trajectories’

respective displacement vectors.

For prediction, xt input vectors are passed through each tree. Starting at the root,

the feature vector traverses the tree, branching left or right according to the split node

function, until reaching a leaf node. Using the stored class distribution π`(xt)(yt) and

offsets at the leaf nodes, each leaf node votes for its corresponding class label and spatio-

temporal centre location. The final class probability is averaged for all trees in the forest

as follows:

p(yt|xt) =
1
|M|

∑
m

(π`(xt)(yt))
(m) . (11)

Aggregating votes of all trees, the final class and centre position of the written tra-

jectory are inferred. To find the centre point a mean shift mode seeking method is

used (Comaniciu and Meer, 2002).
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Encouraging temporal consistence in prediction. A drawback of using Equa-

tion 11 for inference is that it does not take consider previous predictions by the forest.

As presented in the previous section, a Hough forest reduces both class and displacement

uncertainty throughout the tree. The leaf nodes contain similar feature vectors both in

displacement, feature space and category and thus it can be seen as clusters of similar

patches. Such idea of using a decision forest for clustering is not new and it has been

explored in other areas, such as semantic image segmentation (Moosmann et al., 2007;

Shotton et al., 2008), but relatively less for action recognition (Yu et al., 2010). From

this perspective, a spatio-temporal trajectory can be seen as a time-indexed sequence of

codebook values.

Based on the above observation, we introduce a concept of transition between leaf

nodes. Our hypothesis is that different classes of spatio-temporal trajectories have dif-

ferent temporal dynamics within the forest. For example, if we observe that at a given

frame t the trajectory patch xt has reached the node i while at the previous time step

t− 1 the corresponding patch xt−1 reached the node j, it can be quantified how likely

is the transition from leaf node j to node i or, more formally, p(`(xt) = i|`(xt−1) = j)

for a certain class. We name this last term as transition probability, borrowed from the

hidden Markov model (HMM) literature (Rabiner, 1989).

Shotton et al. (2008) showed that adding non-terminal nodes while constructing code-

books captured the hierarchical structure of the tree and led to an increased performance.

Accordingly, we consider transitions between both leaf and split nodes. Although in prac-

tice trees are not balanced and transitions can be observed between different levels of

the tree, we ignore them maintaining its hierarchical nature considering only same level

transitions. In order to compact this information, we define a transition matrix Am(y, l)

that encodes all transitions between nodes for a given class y and level l of a m tree in

one time step (Figure 3.4). Rows of Am(y, l) encode transition probabilities from node

i ∈ Nl to all the rest of the nodes j ∈ Nl in a particular level l of the tree and they are

normalised defining a probability distribution (
∑

j p(n = j|n = i) = 1, i, j ∈ Nl).

To integrate this information into the predictions of the forest, the transition proba-

bility is treated as a prior probability p(yt), in a similar way to Shotton et al. (2008).
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3.3 proposed framework

We want transitions to emphasise classes that are likely in a temporal context and reject

unlikely ones. Given two temporal consecutive input vectors from a trajectory, xt and

xt−1, both patches are passed through the forest, reaching different nodes through each

tree of the forest. The prediction for p(yt|xt) is weighted with the prior probability as

follows:

p′(yt|xt) = p(yt|xt)p(yt), (12)

with p(yt) defined as:

p(yt) =
1
|M|

∑
m

(
1
Z

∑
l

Am(yt, l))α, (13)

where Z is a normalising factor and α a constant that ‘softens’ the prior probability.

t
Am(y, l)

xtxt−1xt−2

Figure 3.4: Procedure to construct a transition matrix. At current frame t the forest is fed with
the current trajectory patch xt of class yt. The path through the forest, tree by tree,
followed by xt is compared with the one followed by xt−1. The transition matrix
A(yt, l) for the first two levels of the tree is shown. As there are two nodes on the
first level and four on the second level, A(yt, 1) is a 2-by-2 matrix and A(yt, 2) a
4-by-4. In this example, xt−1 reached the 2nd node on the first level and the 3rd
node on the second level. xt reached the 1st node on the first level and the 2nd one
on the second level. Thus, the transition probability from 2nd node to 1st on the
transition matrix at the first level and the transition probability from 3rd node to
2nd at the second level are increased.
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3.4 a dataset for egocentric fingertip writing in mid-air

In this section the recorded dataset to evaluate the proposed framework is introduced.

The dataset is composed of depth video sequences containing fingertip written trajec-

tories that represent the 26 English alphabet characters (from ‘a’ to ‘z’). An RGB-D

sensor (Creative* Interactive Gesture Camera) is attached to a cap to record gestures

in egocentric viewpoint. In total, 10 sequences of 26 different characters performed by a

single actor have been recorded (making a total of 260). Furthermore, the sequences are

fully annotated with ground-truth fingertip positions after the detection and tracking

stages to help research on this direction as well. Figure 3.5 displays some examples of

the recorded sequences and Table 3.1 shows detailed statistics.

The hand posture dataset consists of 8,000 images from two classes: {‘writing’, ‘no

writing’}. It has an approximate ratio of 1 : 3 for ‘writing / no writing’ containing

challenging poses that naturally occur in egocentric vision, such as rotations out-of-

plane of the hand, poses corrupted by noise and missing points due to the limitations of

the sensor and the simple segmentation stage. The 2,500 images in ‘writing’ class have

been manually labelled with fingertip positions.

Table 3.1: Characteristics of the proposed dataset

Classes 26 Total frames 15,792
Videos 260 Videos per class 10
Mean video frames 60.74 Resolution 320-by-240
Min. video frames 27 Max. video frames 154
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3.4 a dataset for egocentric fingertip writing in mid-air

Figure 3.5: Examples of the proposed dataset of characters written in mid-air both projected
in 2D space and in 3D space-time.
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3.5 experiments

The proposed descriptor and fingertip detection are implemented on an Intel Core i7-

2600 with 16 GB RAM in C++, and the THF is implemented in Python separately.

Figure 3.8 shows captured images on different stages of the proposed framework.

3.5.1 Hand posture recognition and fingertip detection

Different experiments to test the proposed hand posture descriptors are performed. All

the experiments have been done using 8,000 binary labelled images from our dataset.

All the results presented in this section are with 10-fold cross validation using a standard

random forest classifier (Breiman, 2001) and a resolution of 10 pixels in the computation

of the curvature entropy.

Figure 3.6: Examples of images from the introduced dataset when the user is writing (green)
or not writing (red).

Hand posture recognition. The proposed approach is compared to one state-of-

the art region-based method (Hu and Yin, 2013) and one contour-based method using

FDs (Chen et al., 2003) extracted from contour coordinates. The proposed signature

function is a combination of two signature functions: curvature entropy and distance to

hand centre. For this reason, both functions individually are also tested to study the

impact of their combination. Table 3.2 summarises the results for each approach varying

the two important parameters of a decision forest classifier: tree number and maximum

depth. The proposed descriptor shows a better performance over the baseline methods

and over the individual signature functions for all the combinations of parameters. The

best recognition accuracy for the proposed descriptor is achieved with an ensemble size

of 40 trees and 18 levels as maximum depth.
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Figure 3.7: Parameter impact of the distance weighting parameter γ and the number of har-
monics D on hand writing posture detection

(a) (b)
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Figure 3.8: All figures show different stages of the framework in action. (a) a non-writing hand
posture, no fingertip is detected and the system is in pause. (b) user starts to write,
handwriting posture is detected. Fingertip is tracked in successive frames. (c) user
in process of writing, when enough spatial-temporal points are buffered, on-line
recognition starts. (d) user finished writing character and a ‘h’ is recognised.
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Ablation experiments are performed to evaluate the influence of the parameters of the

proposed descriptor: the distance weighting parameter γ and the number of harmonics

extracted to conform the feature vector D. As shown in Figure 3.7b, only a small number

of harmonics are needed to conform the feature vector, obtaining the highest accuracy

with the first 7 of them. Using a higher number of harmonics does not improve the

accuracy as all the information, in form of energy, is concentrated on the low frequencies

of the spectrum as can be seen in Figure 3.2. The parameter γ describes approximately

a quadratic function (Figure 3.7a) in terms of accuracy with a maximum found in 3.

Table 3.2: Hand posture recognition performance of different hand descriptors.

Max.
depth

Num.
of trees

Descriptor method
FD

(Chen et al., 2003)
MSBNM

(Hu and Yin, 2013)
Distance Curvature

entropy
Proposed

12

5 69.8 88.3 93.8 94.7 98.6
10 71.8 87.8 95.9 94.9 98.7
20 69.1 88.0 95.1 95.3 98.7
30 69.4 88.2 95.8 95.4 98.8
40 69.7 88.0 95.6 95.4 98.8
50 68.6 88.4 95.8 95.3 98.9

14

5 72.4 88.4 93.8 94.7 98.6
10 71.0 88.9 95.9 94.9 98.7
20 69.8 89.1 95.1 95.3 98.7
30 69.3 89.2 95.8 95.4 98.8
40 69.1 89.2 95.6 95.4 98.8
50 69.8 89.4 96.3 95.8 99.0

16

5 74.0 89.5 95.3 95.4 98.8
10 72.4 89.6 95.9 95.8 98.8
20 70.1 89.9 96.3 96.0 98.8
30 71.1 90.0 96.7 96.0 99.0
40 70.4 90.0 96.6 96.1 98.9
50 70.5 90.2 96.4 96.1 98.9

18

5 75.2 89.8 96.1 95.5 99.0
10 74.9 89.7 96.4 96.0 98.9
20 71.6 90.3 96.6 96.4 98.9
30 72.9 90.3 96.8 96.2 99.0
40 72.9 90.4 96.9 96.3 99.1
50 72.9 90.4 97.2 96.2 99.0
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Fingertip detection. To test the proposed fingertip detection approach quanti-

tatively the 2,500 manually labelled images from the proposed dataset are used. As

a measure of error, the Euclidean distance between the estimated fingertip location

p̂ = (p̂x, p̂y) and the actual ground-truth p = (px, py) is computed; a detection is con-

sidered correct if its distance was less than 3 pixels to the ground-truth. The proposed

approach is compared to two different methods. The first method (Bhuyan et al. (2012))

uses only the geodesic distance from the hand shape contour to the centre of the hand

palm, without exploiting the curvature cue.

Figure 3.9: Qualitative fingertip detection
results. Proposed method (top);
distance-based method (bot-
tom) (Bhuyan et al., 2012).

The second method is the one pre-

sented by Raheja et al. (2012), where

fingertip points detection is tackled as

edge detection of the hand binary shape.

The results are presented on Table 3.3.

The proposed approach outperforms com-

pared approaches. The novel combination

of curvature and distance information per-

mits to have accurate estimations of fin-

gertip positions in cases where using only

distance information performs poorly (see

Figure 3.9).

For this configuration, the computation time of extracting one descriptor, passing it

through the forest and the fingertip detection was 2 ms on average. It can be observed

from the results that the proposed hand posture recognition error is 0.9%, which com-

pares favourably to the baselines. Furthermore, it can be concluded that both distance

and curvature entropy cues are complimentary. On the other hand, fingertip detection

error is 2.3%, measured as the percentage of frames where the prediction error is higher

than a certain threshold (3 pixels in the experiment). In Figure 3.9 qualitative results

and comparison to a distance-based method (Bhuyan et al., 2012) are depicted, showing

the suitability of including the curvature term.
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Figure 3.10: Different training parameters of THF vs. classification accuracy. A maximum at 8
trees of depth 25 is observed. Good accuracies are also obtained for deeper trees
with significantly increased computational cost.

3.5.2 Character recognition and localisation

Character recognition. In this section the effect of several training parameters on

classification accuracy is investigated. In Figure 3.10 the effect of the maximum depth

and the number of trees on accuracy using 10-fold cross validation is depicted. For

training, the window size N of Wt is set to 21 and on average 9,299 feature vectors

are used for training and 1,033 for testing. Of all the parameters, the maximum depth

appears to affect most significantly as it directly controls the model capacity of the forest.

Based on the experimental results, we set the number of trees as 8 and the maximum

depth as 25. Significant accuracies are also achieved for deeper trees (e.g. above 40)

although it comes with a much higher computational cost due to the exponential nature

of the forest.

In Table 3.3 the performance of different methods on the proposed dataset is shown.

All the results have been obtained performing 10 leave-one-out cross validation (234 se-

quences for training and 26 for testing). Results of two classical algorithms for sequential
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data recognition, HMM and dynamic time warping (DTW) (Vikram et al., 2013; Chen

et al., 2003) are included. Although none of these methods is suitable for the application

of interest since they do not perform localisation, they are included for completeness.

Furthermore, the table shows results for decision forest-based classifiers: a conventional

random forest (Breiman, 2001) (RF), the forest without transition term and the full

model. For all forest-based algorithms we fixed the number of trees to 8, maximum

depth to 25 and a soften prior parameter α = 0.1. It can be observed that the proposed

THF performs better than the rest of the approaches. Introducing the prior probability

slightly improves the accuracy by a 1.5%. Compared to the conventional random forest,

it can be observed that the addition of localisation also helped classification, a similar

observation found in Gall et al. (2011).

From the confusion matrix (Figure 3.11) it can be concluded that most errors came

from similar characters such as ‘a-d’, ‘m-n’, ‘g-q’ and ‘v-w’, which are all of them very

similar and sometimes difficult to recognise even for humans. We believe that adding a

broader temporal context could help on these cases.

Table 3.3: Performance comparison for fingertip detection and character recognition.

Problem Method Accuracy (%)

Fingertip
detection

Distance-based (Bhuyan et al., 2012) 94.9
Proposed 97.7

Character
recognition

HMM (20 states) (Chen et al., 2003) 66.4
DTW (Vikram et al., 2013) 78.5
RF 79.6

Proposed (no temporal term, no prior) 82.7
Proposed (no prior) 90.4
Proposed 91.9

Character centre localisation. The proposed method can also correctly localise

spatio-temporal centre of each character writing by spatio-temporal offset Hough voting.

Figure 3.12 shows localisation results in the 3D spatio-temporal space and it can be

observed that estimated centres are similar to ground-truth ones. The writing centre
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Figure 3.11: Confusion matrix of character recognition results by the proposed method.
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information of each character can be used as an important to segment each character in

a word or to anchor where the user wrote in an AR scenario.

3.5.3 An experiment on RGB human action recognition

To test the proposed THF in a more general setting, experiments are conducted on

a public RGB benchmark: UT-interaction dataset (Ryoo and Aggarwal, 2010). The

segmented set 1 of the dataset which contains 10 sequences per each class is used. The

methodology recommended by the authors is followed and 10-fold leave-one-out cross

validation to find the average performance is performed.

For tracking and extracting features along spatio-temporal trajectories on RGB video

data, improved dense trajectories (Wang and Schmid, 2013) (IDT) are used. This ap-

proach is selected because of its excellent results and its publicly available code, however

other spatio-temporal trajectory representation could be used. In Wang and Schmid

(2013), each trajectory point is tracked at different scales using optical flow. Tracked

points are sampled in small volumes and rich feature descriptors HOG, HOF and MBH

are extracted. All this information is encoded in the trajectory patches xt. Different to

Wang and Schmid (2013), the feature vectors of tracked points are not concatenated or

averaged. Instead, each point of the trajectory is treated independently and stored as a

patch. The trajectories are defined as ensembles of independent patches.

Table 3.4: Performance on UT-Interaction dataset of the proposed framework and extended to
RGB scenarios compared to baselines and state-of-the-art approaches.

Method Accuracy (%)

Yu et al. (2010) 83.3
Raptis and Sigal (2013) 93.3
Zhang et al. (2012) 95.0

Hough forest (cuboids) (Gall et al., 2011) 88.0
Proposed (no prior) 90.0
Proposed 93.3
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In Table 3.4 the performance of the proposed method compared to baseline and other

state-of-the-art methods is presented. The parameters for extracting trajectories were

the recommended by Wang and Schmid (2013). A total of 15 patches per trajectory were

generated. The Hough forest model using trajectory-based patches and the conventional

Hough forest using dense cuboid sampling (Gall et al., 2011) are set as baselines. Forests

parameters are |M| = 4 and maximum depth 35. Using trajectory sampled descriptors

instead of dense cuboids slightly improves the recognition accuracy. Furthermore, adding

the proposed transition term further improves the performance, making it comparable

to state-of-the-art performance. The proposed approach presents a similar result to

Raptis and Sigal (2013), which used high level features (pose). Compared to Zhang

et al. (2012), the proposed method performs worse likely because we rely on local spatio-

temporal context, while Zhang et al. (2012) also considered long range spatio-temporal

relations. To conclude, the result from Yu et al. (2010) where the clustering capability of

a decision forest was also used is presented, indicating that important spatio-temporal

information was lost on the histogram quantisation stage.
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Figure 3.12: Character centre localisation results. Small yellow crosses are spatio-temporal
offset voting points. Blue circles are estimated centre positions of each character
and green stars indicate ground-truth centre locations.
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3.6 summary

This chapter has presented trajectory Hough forest (THF) as a new framework for ego-

centric fingertip writing recognition. By introducing a new hand posture descriptor,

we were able to improve simultaneous writing hand posture recognition and fingertip

localisation compared to baselines. However, the system has some practical limitations

due to the strong assumptions that we have made. For instance, we have assumed

that the writing would be performed in mid-air instead of, for instance, upon a surface,

which would require a more sophisticated hand segmentation module. Furthermore, we

have assumed that a certain hand posture indicates whether the user is writing. Relax-

ing this assumption would complicate the problem of fingertip detection and temporal

segmentation but be necessary to make the proposed system work outside of the lab.

The proposed forest algorithm also presents limitations. First, the size of the intro-

duced transition matrices increased exponentially with the depth of the tree and linearly

with the number of trees, which complicates its application to large datasets. Second, we

only considered first-order time steps, and it is likely that we could improve the results

with a longer temporal span. Finally, the transitions were simply estimated once the

forest had already been trained, and they are thus not automatically learned within the

forest. The next chapter of this thesis addresses these limitations.
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4
TRANS IT ION FORESTS

4.1 overview

In the previous chapter, we have presented the trajectory Hough forest (THF) as a

variant of a Hough forest model (Gall et al., 2011) to encourage consistent temporal

predictions. We have also noted a few drawbacks. First, the computed histograms

at each level of the tree were computationally expensive to apply for big forests and

larger datasets. Second, the temporal order under consideration was only limited to a

one-time step. More importantly, the temporal dynamics were not learned inside the

forest and only empirically estimated.

Section 2.5 has discussed approaches that use decision forests to deal with temporal

dynamics and identified their limitations. Such approaches typically encode temporal

dependencies that stack multiple frames (Fothergill et al., 2012), design hand-crafted

temporal features (Zhu et al., 2013) and codebooks (Yu et al., 2010) and, as in the

previous chapter, use Hough voting (Gall et al., 2011). We have also reviewed approaches

to learning the temporal dynamics within the forest, such as the generative dynamic

forest models approach (Lehrmann et al., 2014) (DFM) and the discriminative pairwise

conditional random forests (Dapogny et al., 2015) (PCRF).

In this chapter, we propose a transition forest (TF) as an ensemble of randomised

tree classifiers that discriminately learns both static pose information and temporal

transitions. Temporal dynamics are learned while training the forest in addition to any

temporal dependencies in the feature space, and predictions are made on the basis of

previous predictions. The introduction of previous predictions complicates the learning

problem as a consequence of the ‘chicken and egg’ paradox: making a decision in a node
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depends on the decision in other nodes, and vice versa. To tackle this problem, we outline

a training procedure that iteratively groups pairs of frames that have similar associated

frame transitions and class label in a given level of the tree. We combine both static and

transition information by randomly assigning nodes to optimisation by classification or

transition criteria. At the end of the tree growth, training frames that arrive at leaf

nodes effectively represent a class label and associated transitions. We find that the

addition of such temporal relation in training contributed to more robust single-frame

predictions. The use of single frames mitigated the complexity and facilitated online

predictions, which were two crucial conditions for the applicability of our approach to

real-life scenarios.

Contributions

� The proposal of a new temporal decision forest model that can learn to discriminate

both static frames and temporal transitions between pairs of frames.

� Exhaustive experiments in both action recognition and online action detection

benchmarks according to our method and other decision forest baselines.

4.2 related work

Skeleton-based online action detection

The detection of actions on streaming data (De Geest et al., 2016) has been less ex-

plored than the recognition of segmented sequences despite being more interesting in

real scenarios. Early approaches (Fothergill et al., 2012) have included short sequences

of frames or short motion information (Zanfir et al., 2013) to vote if an action is being

performed. Sharaf et al. (2015) have proposed a similar approach that adds multi-scale

information, while Meshry et al. (2016) have suggested a dynamic bag of features. Re-

cently, Li et al. (2016) have introduced a more realistic dataset and baseline methods and

demonstrated state-of-the-art performance with a classification and regression recurrent

neural network (RNN), which Baek, Kim and Kim (2017) later improved through the

use of RGB-D spatio-temporal contexts and decision forests.
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4.3 transition forests

Suppose we are given a training set S composed of temporal sequences of input-output

pairs {(x1, y1), ..., (xt, yt)} where xt is a frame feature vector and yt is its corresponding

action label (or background in detection setting). Our objective is to infer yt for every

given xt using decision trees. On a decision tree, an input instance xt starts at the

root and traverses different internal nodes until it reaches a leaf node. Each internal

node i ∈ N contains a binary split function f with parameters θi deciding whether the

instance should be directed to the left or to the right child nodes.

Consider the set of nodes Nl ⊂ N at a level l of a decision tree. Let Si denote the set

of labelled training instances (xt, yt) that reached node i (see Figure 4.1). For each pair

of nodes i, j ∈ Nl, we can compute the set of pairs of frames T ji that travel from node i

to node j in d time steps as:

T ji = {{(xt−d, yt−d), (xt, yt)} | (xt−d, yt−d) ∈ Si ∧ (xt, yt) ∈ Sj} , (14)

where we term the set of pairs of frames T ji as transitions from node i to j. Note that

T ji depends on frames that reached nodes i and j and time distance d. To capture

different temporal patterns, we vary the distance d from one to a k-distant frame. In

the following, we refer to parameter k as the temporal order of the transition forest.

In the example shown in Figure 4.1 we observe that the decision f(θ0,S0) is quite

good as it separates S0 in two sets, S1 and S2, in which one action label predominates. If

we examine the transitions associated to this split, we see that we obtain two pure sets,

T 1
1 and T 2

2 , one mixed set T 1
2 and one empty set T 2

1 . Imagine now that we observe the

‘kick’ frame in S1 and we would have to decide based on this split, we would certainly

assign the wrong label ‘duck’ with an uncertainty of 2/3. Alternatively, if we check the

previous observed frame (in S2) and inspect its associated transition T 1
2 , the uncertainty

is now 1/2 and thus we would be less inclined to make a wrong decision.

From the above example, we deduce that if we had obtained a better split and both

child nodes were pure, we would certainly make a good decision by only looking at child

nodes. However, good splits are difficult to learn if the temporal dynamics are not well

57



4.3 transition forests

T 1
1

S0

1 2

0

T 1
2

T 2
2

θ0

S1 S2

Figure 4.1: Consecutive frames representing two different actions (in purple ‘duck’, in orange
‘kick’) arrive at node 0. These frames are split in two different subsets S1 and
S2 corresponding to child nodes 1 and 2. We compute the transitions as pairs of
d-distant frames (d = 1 in this example) and we group them according to the route
of each individual frame. T 1

1 and T 2
2 present only one transition, while T 1

2 two (one
per class) and T 2

1 is empty. T j
i are determined by θ0.

captured on the feature space. On the other hand, if we had obtained a split that made

transitions pure, we could also make a good decision. These observations motivate us to

study how learning transitions between frames can help us to improve our predictions

by introducing temporal information that was not available otherwise.

4.3.1 Learning transition forests

Our method for training a transition tree works by growing a tree one level at a time,

similar to the entangled model of Shotton, Sharp, Kohli, Nowozin, Winn and Criminisi

(2013) but limiting ourselves to standard binary trees. At each level, we randomly assign

one splitting criterion to each node, choosing between classification and transition. The

classification criterion maximises the class separation of static poses while the transition

criterion groups frames that share similar transitions. As mentioned above, to maximise

the span of temporal information learned, we learn transitions between d-distant pairs

of frames, Equation 14, from previous frame up to the temporal order of the forest, k.

For each tree, we randomly assign a value of d in the mentioned range and we keep it
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constant during the growth of that particular tree. For a total ensemble of M trees we

will have subsets of trees trained with different d value: M =M1 ∪ ...∪Mk.

Consider a node i ∈ Nl and a decision θi. According to θi, the instances in Si

are directed to its left or right child nodes, 2i+ 1 and 2i+ 2 respectively, as S2i+1 =

{(xt, yt) ∈ Si | f(θi, xt) ≤ 0} and S2i+2 = Si \ S2i+1. Note that the split function f

operates on a single frame, which will be shown important in the inference stage. After

splitting, we can compute the sets of transitions between their child nodes {2i+ 1, 2i+

2} ⊆ Nl+1 as {T 2i+n
2i+m}m,n∈{1,2}. Note that T ii is split in four disjoints sets, each one

related to the combination of transitions associated to its child nodes. The decision θi

is chosen based on the minimisation of an objective function.

Objective function. The objective function has two associated terms: one for single

frame classification Ec and one for transitions between child nodes denoted as Et. The

classification term Ec is the weighted Shannon entropy of the class distributions over the

set of samples that reach the child nodes {S2i+m}m∈{1,2} as in standard classification

forests. Willing to decrease the uncertainty of transitions while growing the tree, the

transition term aims to learn node decisions in a way that subsets of transitions are

purer in the next level. For a node j ∈ Nl, the transition term is a function of the

transitions between its child nodes and it is defined as follows:

Et(θj) =
∑

m,n∈{1,2}
|T 2j+n

2j+m|H(T 2j+n
2j+m) , (15)

where T (·)
(·) is defined in Equation 14 and H(T

(·)
(·) ) is the Shannon entropy computed

over the different label transitions. These two terms could be alternated or weighted-

summed as single node optimisations. However, to reflect transitions between more

distant nodes and capture further temporal information, we extend Et to consider the

set of all available nodes in a given level of a tree as shown in Figure 4.2 (a). For this,

we randomly assign a subset of parent nodes Nc and Nt to be optimised by Ec and

Et respectively. Given that transitions between nodes depend on the split decisions at
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Nl

Nl+1

2i+ 1 2i+ 2 2j + 1 2j + 2
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Figure 4.2: Growing a level l of a transition tree depends on all the node decisions θi and θj

at the same time. Each T j
i divides in four disjoint sets according to the different

routes that a pair of samples can follow.

different nodes, the task of learning a level can be formulated as the joint minimisation

of an objective function over the split parameters associated to the level nodes as:

min
{θi}

Ec({θi}i∈Nc) +Et({θi}i∈Nc∪Nt) . (16)

Optimisation. The problem of minimising the objective function, Equation 16, is

hard to solve. One could think of randomly assigning values to {θi} and pick the values

that minimise the objective in a similar way to standard greedy optimisation in decision

trees. However, the search space grows exponentially with the depth of the tree and

evaluating Et for all nodes and samples at the same time is computationally expensive.

Our strategy to relieve these problems is presented in Algorithm 4.1. Given that Ec

only depends on decisions in Nc nodes, we can optimise these nodes using the standard

greedy procedure. Once optimised and fixed all nodes in Nc, we iterate over every node

in Nt to find the split function that minimises a local version of Et, denoted as E′t, that

keeps all the split parameters fixed except the one of the considered node. It is defined
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for a node j ∈ Nt and it depends on the transitions between its child nodes and all the

transitions from and to these child nodes:

E′t(θj |{θi}i6=j∈Nc∪Nt) =
∑

m,n∈{1,2}

between j’s child nodes (c.n.)︷ ︸︸ ︷
|T 2j+n

2j+m|H(T 2j+n
2j+m)

+
∑
i

m,n∈{1,2}

|T 2i+n
2j+m|H(T 2i+n

2j+m)︸ ︷︷ ︸
from j’s c.n. to i’s c.n.

+ |T 2j+n
2i+m|H(T 2j+n

2i+m)︸ ︷︷ ︸
to j’s c.n. from i’s c.n.

. (17)

The value of E′t decreases (or does not change) at each iteration, thus indirectly minimis-

ing Et. Following this strategy, it is not likely to reach a global minimum, but in practice

we found that is effective to our problem. Note that computing Equation 17 needs the

split parameters in other nodes to be available, forcing us to initialise them before the

first iteration. We found that an initialisation of nodes using Ec helped the algorithm

to converge faster than using a random initialisation relieving us of computational cost.

Input: Set of nodes Nl at level l and temporal order d
Output: Set of split function parameters {θi}

1: procedure LearnLevel(Nl)
2: randomly assign nodes in Nl to Nc and Nt
3: for all i ∈ Nc do
4: optimise Nc using Ec
5: save and fix θi
6: end for
7: initialise {θj} for j ∈ Nt
8: while something changes do
9: for all j ∈ Nt do

10: Θ← random feature/threshold selection
11: θj ← argminθ′∈Θ E

′
t(θj |{θi}i6=j∈Nc∪Nt)

12: end for
13: end while
14: end procedure

Algorithm 4.1: Learning level l of a transition tree
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Discussion on training strategy. We made various decisions when designing the

training and inference stage of our model. When training a transition forest, we passed

the order of the forest k as a parameter. This parameter can be viewed as a truncation

of the number of previous time steps from which the forest will try to learn transitions.

When growing a particular tree, its temporal order was randomly assigned to a number

between one and k, and it remained constant for all nodes in that tree (denoted as d

in Algorithm 4.1). On average, we had the same number of trees for each time order,

and we thus forced the forest to learn equally for all temporal distances. Although we

did not explore this direction in this thesis, other training strategies are plausible. For

instance, regarding the standard training strategy of recurrent neural networks whereby

gradients for different time steps are combined when optimising the network weights,

one could similarly compute and add Et for all values between one and k and choose the

split value that minimises the total objective function for all time steps. This strategy

would significantly increase the computational cost of training a tree, as we would need

to evaluate and memorise the objective function for each time order, which, as the

previous section has mentioned, is the computational bottleneck of transitions. Another

plausible training strategy would be to randomise the temporal order and include it in

the parameter pool Θ, which would ensure that the temporal distance is learned; in

other words, we could seek the value d that maximises the objective function. This task

would require a rethinking of Equation 19 and potentially induce normalisation issues

when deciding on the optimal d value. We believe this could be an interesting means

to extend the transition forest, as decision trees models usually benefit from further

randomisation (Geurts et al., 2006).
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4.3.2 Inference

Restricting ourselves to the set of leaf nodes L, we assign each transition subset {T ji }i,j∈L

a conditional probability distribution over label transitions denoted πji (yt|yt−d). This is

different from classification forests where the classification probability πi(yt) is estimated

over all the set of training instances Si that reached the leaf node i. Instead, we focus on

subsets of transitions that depend on the leaf node (prediction) that previous d-distant

frame reached. Note that the split function f is defined for a single frame, enabling us

to perform individual frame predictions. For an ensemble of Md transition trees, we

define a prediction function given two d-distant frames:

pd(yt|xt, xt−d, yt−d) =
1
|Md|

∑
m∈Md

(π
`(xt−d)

`(xt)
(yt|yt−d))(m) , (18)

where `(xt) and `(xt−d) are the leaf nodes reached by xt and xt−d at m-th tree respec-

tively. We name this probability as transition probability. We combine the transition

probability for different previous pairs of frames up to k with the classification prob-

ability (see Figure 4.2 (b)). Combining the static classification probability with the

temporal transition probability defines our final prediction equation for a transition

forest of temporal order k:

p(yt|xt, xt−1, ..., xt−k, yt−1, ..., yt−k) =
1
|M|

∑
m

(π`(xt)(yt))
(m) 1

k

∑
1≤d≤k

pd(yt|xt, xt−d, yt−d) . (19)

For each frame xt we obtain a probability of the frame belonging to one action (plus

background in detection setting) based on k previous predictions. In the action recog-

nition setting we average the per-frame results to predict the whole sequence. On the

other hand, for online action detection, we define two thresholds, βs and βe, to locate

the start and the end frame of the action. When the score for one action exceeds βs,

we aggregate the results since the start of the action and we do not allow any action

change until the score is less than βe.
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yt−2 yt−1 yt

xt−2 xt−1 xt

d = 1
d = 2

Figure 4.3: In inference, each individual frame is passed down the forest and static pose classi-
fication is combined with transition probability. Transition probability is computed
using the trees trained for specific d-distant frames (shown in different colour). In
this example k = 2 and |M| = 2.

4.3.3 Implementation details

If the training data is not enough, we may encounter empty transition subsets at low

levels of the tree. For this reason, we set a minimum number of instances needed to

estimate their probability distribution and we empirically set this parameter to ten in

our experiments. This parameter is conceptually the same as the stopping criterion of

requiring a minimum number of samples to keep splitting a node.
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4.4 experimental evaluation

In the following we present experiments to evaluate the effectiveness of the transition.

We start evaluating the proposed model for action recognition task and we follow with

the evaluation on online action detection task. In all experiments we performed standard

pre-processing on given joint positions similar to (Vemulapalli et al., 2014) making them

invariant to scale, rotation and point of view.

4.4.1 Baselines

We compare the transition forest with five different forest-based baselines detailed next.

For fair comparison, we always use the same number of trees in all methods and we

adjust the maximum depth for best performance.

Random forest (Breiman, 2001) (RF). To assess how well a decision forest

performs while only using static information, we implement a single frame-based random

forest only using Ec.

Sliding window forest (Fothergill et al., 2012) (SW). To compare our learning

of temporal dynamics with the strategy of stacking multiple frames, we implement a

forest using the sliding window setting in which the temporal order k the number of

previous frames in the window.

Dynamic forest model (Lehrmann et al., 2014) (DFM). To compare our dis-

criminative forest approach with a generative one, our third baseline is a generative

forest, where k is the order of their non-linear Markov model. With no public imple-

mentation available, we directly report results in Lehrmann et al. (2014).

Pairwise conditional random Forest (Dapogny et al., 2015) (PCRF). To

assess the discriminative pairwise information, we implement a pairwise forest similar

to the one used for expression recognition by Dapogny et al. (2015). We grow and

combine classification trees for different pairwise temporal distance up to k.
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Figure 4.4: Temporal order k for different baselines and our approach on MSRC-12 dataset. The
proposed TF performs better for all temporal orders. The temporal order defines
the number of previous time steps considered to make a prediction.

Trajectory Hough Forest (Chapter 3) (THF) To compare with a temporal re-

gression method, we implement the THF presented in the previous chapter and adapt

the colour trajectories to poses and the histograms to deal with a temporal order of k.

4.4.2 Action recognition experiments

We evaluate the proposed algorithm on three different action recognition benchmarks:

MSRC-12 (Fothergill et al., 2012), MSR-Action3D (Li et al., 2010) and Florence-3D (Sei-

denari et al., 2013). First, we perform detailed control experiments and parameter eval-

uation on MSRC-12 dataset. Next, we evaluate our approach comparing with baselines

and state-of-the-art on all datasets.

MSRC-12 experiments

The MSRC-12 (Fothergill et al., 2012) dataset consists of 12 iconic and metaphoric

gestures performed by 30 different actors. We follow the experimental protocol in

(Lehrmann et al., 2014): only the 6 iconic gestures are used, making a total of 296

sequences and we perform 5-fold leave-person-out cross-validation, i.e. 24 actors for

training and 6 actors for testing per fold.
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Figure 4.5: (a) Ec vs Ec +Et and terms in Equation 19. (b) contribution of different d order
trees to transition probability shown in (a) and defined in Equation 18 on MSRC-12.

Temporal order k and comparison with baselines. In Figure 4.4 we show

experimental results varying the temporal order parameter k for all approaches. We

observe that using only static information on single frames (RF) to recognise action is

limited and it can be improved by stacking multiple frames (SW). Adding a regression

term as in THF helps to increase the accuracy. DFM uses the same exact input window as

SW, while being more robust because of their explicit modelling of time. Better than the

rest of baselines, PCRF shows that capturing pairwise information is effective to model

the temporal dynamics of the actions. On the other hand, TF shows the best performance

for all temporal orders. This shows that both combining static and temporal information

in a discriminative way is very effective. In the next two paragraphs we analyse the

contribution of both sources of information.

Discriminative power of learned transitions. We measure the impact of the

transition training procedure presented in Section 4.3.1. For this, we train two different

transition forests, one using only Ec and one using Ec and Et. For each forest, we

show the performance by breaking down the terms of Equation 19: (i) using only the

classification probability; (ii) using only the transition probability (Equation 18); (iii)

combining both terms (Equation 19).

Results are shown in Figure 4.5 (a). We observe that our proposed training algorithm

increases the performance of both static and transition terms, leading to an important

overall improvement. The static classification term improves substantially, meaning that
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Table 4.1: MSRC-12: Comparison with state-of-the-art using different frame representations.

Method Real-time Online Acc. (%)

DFM (Lehrmann et al., 2014) X X 90.90
ESM (Jung and Hong, 2014) 7 7 96.76
Riemann (Devanne et al., 2015) 7 7 91.50
PCRF (Dapogny et al., 2015) X X 91.77
Bag-of-poses (Zhu, Zhang, Shen and Song, 2016) 7 7 94.04

Proposed (JP) X X 94.22
Proposed (RJP) X X 97.54
Proposed (MP) X X 98.25

Et helps to separate categories on the feature space by introducing temporal information

that was not available otherwise. In Figure 4.5 (b) we show the contribution of each

temporal distance to the overall transition probability in Equation 18.

Frame representation. In addition to joint positions (JP) from above experi-

ments, we experimented with two different frame representations: one static and one

dynamic. The static one consists of pairwise relative distance of joints (Vemulapalli et al.,

2014) (RJP), proven to be more robust than JP while being very simple. The dynamic

one, named moving pose descriptor (Zanfir et al., 2013) (MP), incorporates temporal

information by adding velocity and acceleration of joints using nearby frames. In Ta-

ble 4.1 we observe that RJP and MP perform similarly well performing better than JP,

showing that the TF can benefit of different static and dynamic feature representations.

Initialisation. We initialised the transition nodes Nt in two ways: randomly and

using Ec. We found that the latter initialisation provided slightly better results by 0.35%

after ten iterations. However, after doubling the number of iterations, the difference was

reduced to 0.07%, leading to the conclusion that our algorithm is robust to initialisation,

but correctly initialising reduces the training time. Based on this, we limited the number

of iterations to ten.

Ensemble size. A single tree of maximum depth 10 gave us an accuracy of 86.42%,

six trees 93.10% and twelve 94.22%. As a tree-based algorithm, adding more trees is
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expected to increase the performance (up to saturation) at the cost of computational

time.

Comparison with the state-of-the-art. In Table 4.1 we compare the proposed

approach with the state-of-the-art. We observe that using the simple JP representation,

we achieve the best except for ‘enhanced sequence matching’ (Jung and Hong, 2014)

(ESM). However, ESM uses a slow variant of DTW and MP representation. Using both

RJP and MP representation our approach achieves the best performance while being able

to run in real time (1,778 fps).

MSR-Action3D experiments.

The MSR-Action3D (Li et al., 2010) dataset is composed of 20 actions performed by

10 different actors. Each actor performed every action two or three times for a total of

557 sequences. We perform our main experiments following the setting proposed by Li

et al. (2010). In this protocol, the dataset is divided into three subsets of eight actions,

named AS1, AS2 and AS3. The classification is performed on each subset separately

and the final classification accuracy is the average over the three subsets. We perform a

cross-subject validation in which half of the actors are used for training and the rest for

testing using ten different splits. We use RJP frame representation, k = 4 and 50 trees

of maximum depth 8.

Baselines and state-of-the-art comparison are shown in Tables 4.2 and 4.3 respectively.

The proposed approach achieves better performance than all baselines. Offline state-of-

the-art methods (Zhang, Wang, Gou, Sznaier and Camps, 2016; Wang, Wang and Yuille,

2016) achieve the best performance. Focusing on methods that are both real-time and

online, the best performance is achieved by HURNN-L (Du et al., 2015), which uses a

deep architecture to learn an end-to-end classifier. We obtain better results than (Du

et al., 2015) on both their online and offline flavours.

Some authors (Zanfir et al., 2013; Veeriah et al., 2015) show results using a different

protocol (Wang, Liu, Wu and Yuan, 2012) in which all 20 actions are considered. For

comparison, using this protocol we achieved an accuracy of 92.8%, which is superior

to state-of-the-art online approaches of MP, 91.7%, and dLSTM (Veeriah et al., 2015),
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Table 4.2: Comparison with forest-based baselines.

Method MSRC-12 MSR-Action3D Florence-3D

RF 86.83 87.77 85.46
SW 87.81 90.48 88.44
THF (Chapter 3) 89.46 91.31 89.06
DFM 90.90 - -
PCRF 91.77 92.09 91.23

Proposed 94.22 94.57 94.16

92.0%, but inferior to the offline approach of Gram matrix (Zhang, Wang, Gou, Sznaier

and Camps, 2016), 94.7%. It is important to note that the inference complexity of both

Zanfir et al. (2013) and Zhang, Wang, Gou, Sznaier and Camps (2016) increases with

the number of different actions, which is not the case of our approach, making it more

suitable for realistic scenarios. Zhang, Wang, Gou, Sznaier and Camps (2016) reported

an inference time (ten runs over whole testing set) of 1,523 seconds, for the same setting

we report a significantly lower time of 289 s.
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Table 4.3: State-of-the-art comparison on MSR-Action3D dataset.

Method Real-time Online AS1 (%) AS2 (%) AS3 (%) Avg (%)

Zhu et al. (2013) 7 7 - - - 90.90
Vemulapalli et al. (2014) 7 7 95.29 83.87 98.22 92.46
Du et al. (2015) X 7 93.33 94.64 95.50 94.49
Wang, Yuan, Hu, Li and Zhang (2016) 7 7 93.75 95.45 95.10 94.77
Zhang, Wang, Gou, Sznaier and Camps (2016) X 7 98.66 94.11 98.13 96.97
Wang, Wang and Yuille (2016) X 7 - - - 97.44

Dapogny et al. (2015) X X 94.51 85.58 96.18 92.09
Du et al. (2015) X X 92.38 93.75 94.59 93.57

Proposed X X 96.10 90.54 97.06 94.57
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Table 4.4: Optimising transitions reduces the class uncertainty for both classification and tran-
sition probabilities leading to more robust predictions by the proposed forest.

Training Prob. Mean entropy (bits) Accuracy (%)

Ec Class. 0.5006 70.27
Ec +Et Class. 0.4454 75.68

Ec Trans. 0.1815 81.92
Ec +Et Trans. 0.0752 91.89

Evaluation of forest leaf nodes and their transitions. The transition forest

aims to produce pure probability distributions on both classification leaf nodes and their

associated transitions. To evaluate the quality of the resulting leaf posteriors in both

classification and transition probabilities, we learn two different transition forests, one

using Ec and the other one using Ec +Et. We compute the mean entropy of leaf nodes

and their associated transitions. To have a significant number of leaf nodes, we grow

a forest with 500 trees of maximum depth 8 and k = 4 on a random training/testing

subject split on MSR-Action3D AS2. The results are shown in Table 4.4. The highest

entropy for a 8-class problem would result from an uniform distribution and the value

would be 3 bits. We observe that the mean entropy of leaf nodes in Ec+Et forest is lower

than in Ec and thus purer. This supports the results obtained in the previous section

where we observed that adding Et helped to obtain better results by only using the

classification probability. On the other hand, the mean entropy of transitions between

leaf nodes is lower in both forests, which is consistent with the obtained higher accuracies

by using transition probabilities. For the Ec +Et forest, the mean entropy is less than

a half of the one in Ec, which is coherent with the fact that we are directly optimising

the transitions subsets an thus making them more pure while growing the tree. For all

the results, we observe that lower mean entropy values lead to higher accuracies.

Visualisation and details of our proposed optimisation. In Figure 4.6 we show

how our proposed objective function develops as a function of the training iterations at

the last level of the tree with the proposed initialisation. To plot the figure, we used the

same experimental setting as in the previous section and we show the averaged value

of the summation of Equation 17 for all level nodes over ten randomly selected trees.

We observe that the function value rapidly decreases with the number of iterations until
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Figure 4.6: Value of objective function by number of iterations for one level of the tree.

it converges. We evaluated the accuracy for one, ten and twenty iterations, obtaining

88.2%, 91.89% and 92.01% respectively. Increasing the number of iterations after ten

does not significantly increase the accuracy, while it increments the training time (7.92

seconds/tree for ten iterations, 15.44 seconds/tree for twenty, evaluating 100 random

features/thresholds per node). Additionally, we believe that a very high number of

iterations would reduce the randomness of individual trees making the ensemble more

prone to overfitting.

Florence-3D experiments

The Florence-3D dataset (Seidenari et al., 2013) consists of 9 different actions performed

by 10 subjects. Each subject performed every action two or three times making a total

of 215 action sequences. Following previous work (Wang, Wang and Yuille, 2016; Wang,

Yuan, Hu, Li and Zhang, 2016), we adopt a leave-one-subject-out protocol, i.e. nine

subjects are used for training and one for testing for ten times. We used the same

parameters as in the previous experiment.

73



4.4 experimental evaluation

Table 4.5: State-of-the-art comparison on Florence-3D dataset.

Method Real-time Online Acc. (%)

Seidenari et al. (2013) 7 7 82.15
Vemulapalli et al. (2014) 7 7 90.88
Dapogny et al. (2015) X X 91.23
Vemulapalli and Chellappa (2016) 7 7 91.40
Wang, Yuan, Hu, Li and Zhang (2016) 7 7 91.63
Wang, Wang and Yuille (2016) X 7 92.25

Proposed X X 94.16

We compare the proposed approach with baselines and state-of-the-art in Tables 4.2

and 4.5 respectively. We can see that our approach achieves the best performance over all

baselines and state-of-the-art. Note that on this dataset we outperform the recent Key-

poses approach (Wang, Wang and Yuille, 2016), which achieved the best performance

on MSR-Action3D dataset.

Fingertip writing in mid-air experiment

We performed an additional experiment in the dataset presented in Chapter 3, using the

same frame representation as in THF and same parameters as in previous experiment. We

obtained a result of 94.2%, which is considerable better than the result of 91.9% obtained

by THF. Note that TF does not perform spatio-temporal regression and performance

might be improved by adding a regression term, with the cost of losing computational

efficiency and online capability.
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4.4.3 Online action detection experiments

We end our experimental evaluation in a more realistic scenario. We test the proposed

transition forest for online action detection on the very recently proposed Online Action

Detection (OAD) dataset Li et al. (2016). The dataset consists of 59 long sequences

containing 10 different daily-life actions performed by different actors. Each sequence

contains different action/background periods of variable length in arbitrary order anno-

tated with start/end frames. We use the same splits and evaluation protocol as Li et al.

(2016). Previous work Li et al. (2016) fixed the number of considered previous frames to

10, in consequence we set k = 10. We use RJP representation and 50 trees of maximum

depth 20. Thresholds βs and βe were empirically set to 0.79 and 0.16 respectively.
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Table 4.6: Performance comparison on Online Action Detection (OAD) dataset.

Baselines State-of-the-art

Action RF SW PCRF
RNN

(Zhu, Lan, Xing, Zeng, Li, Shen and Xie, 2016)
JCR-RNN

(Li et al., 2016) Proposed

drinking 0.598 0.387 0.468 0.441 0.574 0.705
eating 0.683 0.590 0.550 0.550 0.523 0.700
writing 0.640 0.678 0.703 0.859 0.822 0.758
open cupboard 0.367 0.317 0.303 0.321 0.495 0.473
washing hands 0.698 0.792 0.613 0.668 0.718 0.740
open microwave 0.525 0.717 0.717 0.665 0.703 0.717
sweeping 0.539 0.583 0.635 0.590 0.643 0.645
gargling 0.298 0.414 0.464 0.550 0.623 0.633
throwing trash 0.340 0.205 0.350 0.674 0.459 0.518
wiping 0.823 0.765 0.823 0.747 0.780 0.823

Overall 0.578 0.556 0.607 0.600 0.653 0.712

SL 0.361 0.366 0.378 0.366 0.418 0.514
EL 0.391 0.326 0.412 0.376 0.443 0.527

Inference time (s) 0.59 0.61 3.58 3.14 2.60 1.84
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In Table 4.6 we report class-wise and overall F1-score for baselines, state-of-the-art and

the proposed approach. We also report the accuracy of start and end frame detection

‘SL’ and ‘EL’ respectively. We observe that the proposed approach outperforms all

baselines. PCRF forest shown the best results among the baselines with a performance

comparable to RNN, showing that temporal pairwise information is important. On the

other hand, RF performs particularly well on this dataset, revealing that distinguishing

static poses is important in addition to temporal information. Combining both static

and temporal information results on better performance than the current state-of-the-

art JCR-RNN (Li et al., 2016), which added a regression term on a LSTM to predict

both start and end frames of actions.

Efficiency. We measure the average inference time on 9 long sequences of 3,200

frames on average. We present the results at the bottom of Table 4.6 with a C++

implementation on a Intel Core i7 (2.6 GHz) and 16 GB RAM. All compared approaches

are real-time, with JCR-RNN achieving 1,230 fps for 1,778 fps of the proposed approach,

showing that high performance can be obtained while keeping the complexity low.

Qualitative results. In Figure 4.7 we present qualitative results for the Online

Action Detection (OAD) dataset for the proposed model and the baselines. We observe

that TF is more robust to false positives and false negatives than other forest baselines

and more accurate predicting the start and the end of the ongoing action. Note that Li

et al. (2016) did not report any qualitative result and thus we cannot compare.
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Figure 4.7: Qualitative results in OAD dataset. We show two sequences (a,b) in which the
transition forest obtains good performance and one (c) in which it fails to detect
several actions. Each action instance is represented with different colour depending
on its category. First row in each figure represents the ground-truth (GT) tempo-
ral bounds and BG in ‘white’ represents background (i.e. no meaningful actions
ongoing).

78



4.5 summary

4.5 summary

This chapter has proposed a new forest-based classifier that can discriminatively learn

both static poses and transitions. Our proposed training procedure enhances the cap-

ture of temporal dynamics compared to other strong forest baselines. The introduction

of temporal relationships while growing the trees and their use in inference yield more

robust frame-wise predictions and demonstrate state-of-the-art performance for challeng-

ing problems of both action recognition and online action detection.

In contrast to the trajectory Hough forest (THF) in the previous chapter, transition

forest (TF) learns the transitions within the forest in a discriminative way. Furthermore,

actively decreasing the uncertainty of transitions during the tree growth and storing

them at the leaf nodes diminishes the complexity of storing histograms at every level of

the tree and renders the approach more suitable for real-world applications.

However, our presented work has some limitations. For example, our learning stage

was limited to pairwise transitions, and we believe that it would have been interesting

to follow one of the training strategies that were discussed in page 62 and incorporate

different time orders within the same tree learning. Also, given the generality of our

work, it could be interesting to test its performance when using other data modalities,

such as RGB and depth frame features, or when applied to other temporal problems

that require efficient online classification. The next chapter explores the use of other

data modalities.
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5
UNDERSTANDING EGOCENTRIC HAND-OBJECT ACTIONS

WITH RGB -D V IDEOS AND 3D HAND POSE ANNOTATIONS

Figure 5.1: Two frames belonging to the action class ‘pour juice’ (two top rows). In this chapter
a novel first-person action recognition dataset with RGB-D sequences and 3D hand
pose annotations is proposed. Magnetic sensors and inverse kinematics of a hand
are used to capture the pose. Depth image and hand pose (right); 6D object pose
for a subset of hand-object actions is captured to enable further research by the
object pose community (bottom).
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5.1 overview

Most previous work on RGB-D action recognition has focused on actions

that are performed by the whole human body. The exceptions have been

mainly application-oriented for contexts such as hand gestures for HCI (Liu

and Shao, 2013; Ohn-Bar and Trivedi, 2014; Molchanov et al., 2016; De Smedt et al.,

2016) and sign language recognition (Wang, Liu, Chorowski, Chen and Wu, 2012). As

Chapter 2 has discussed, the use of skeleton features has led action recognition in RGB-D

because it offers a powerful holistic representation of the body.

Previous work on first-person action recognition (Ishihara et al., 2015; Cai et al., 2016;

Ma et al., 2016; Singh et al., 2016) has found that daily actions are effectively explained

by examining hands and a similar observation was found for the third-person view (Yang

et al., 2015). These approaches extract hand information from hand silhouettes (Ma

et al., 2016; Singh et al., 2016) or discrete grasp classification (Ishihara et al., 2015; Cai

et al., 2016; Rogez et al., 2015b) that employs low-level image features. Rogez et al.

(2015b) have provided static actions and hand poses in synthetic data, whereas our work

involves dynamic actions and hand poses in real sequences. In full-body human action

recognition, the inclusion of higher-level features, such as body pose, can benefit action

recognition (Yao et al., 2011; Wu and Shao, 2014; Zhang, Wang, Gou, Sznaier and

Camps, 2016; Shahroudy, Liu, Ng and Wang, 2016). Compared to full-body actions,

hand actions present unique differences; for example, style and speed variations across

subjects are more pronounced, as there is a higher degree of mobility for fingers, and

the motion can be remarkably subtle.

A setback of using hand rather than full-body poses for action recognition is the

absence of reliable and immediately available pose estimators (Shotton, Sharp, Kipman,

Fitzgibbon, Finocchio, Blake, Cook and Moore, 2013; Wei et al., 2016). This absence is

mainly due to the lack of hand pose annotations on real data in contrast to synthetic

data sequences, especially those involving objects (Rogez et al., 2014; 2015a;b). To bridge

this gap, we collected RGB-D video sequences of more than 100,000 frames of 45 daily

hand action categories that involved 25 objects in several hand-grasp configurations.

To obtain high-quality hand pose annotations from real sequences, we utilised our own
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mo-cap system, which automatically infers the location of each of the 21 joints of the

hand via six magnetic sensors on the finger tips and the inverse kinematics of a hand

model. To the best of our knowledge, this is the first benchmark for RGB-D hand

action sequences with 3D hand poses. Additionally, we recorded the 3D rotations and

3D locations of objects.

This chapter presents an extensive experimental evaluation of RGB-D and pose-based

action recognition baselines and state-of-the-art approaches, including the temporal for-

est models from the previous chapter. The evaluation measures the impact of employing

appearance features, poses and their combinations. It also assesses the readiness of the

current hand pose estimation when hands are severely occluded by objects in egocen-

tric views and considers its influence on action recognition. The results evidence clear

benefits of using hand pose as a cue for action recognition compared to other data

modalities.

Contributions

� Dataset. We propose the first fully annotated dataset to support the study of

egocentric hand actions and poses. This dataset is the first to combine both fields

in the context of hands in real sequences and quality hand pose labels.

� Action recognition. We evaluate several baselines and state-of-the-art approaches

in RGB-D and pose-based action recognition according to our proposed dataset.

Our selected methods cover most of the research trends in both methodology and

use of different data modalities. Furthermore, we extend the transition forest (TF)

model from the previous chapter to use colour and depth features.

� Hand pose. We evaluate the state-of-the-art hand pose estimator in our real

dataset, i.e. the occluded setting of hand-object manipulations, and evaluate its

performance for action recognition.
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5.2 related work

Egocentric vision and manipulation actions

The leading role of hands in object manipulation has attracted the interest of both the

computer vision and robotics communities. From an action recognition perspective and

through the use of only RGB cues, recent work (Fathi, Farhadi and Rehg, 2011; Fathi,

Ren and Rehg, 2011; Pirsiavash and Ramanan, 2012; Ma et al., 2016; Singh et al., 2016;

Bambach et al., 2015) has delved into the recognition of daily actions and discovered

that both objects and hands are important cues for the recognition problem. Another

related line of work is the study of the human grasp from a robotics perspective (Bullock

et al., 2015; Cai et al., 2015) as a cue for action recognition (Yang et al., 2015; Ishihara

et al., 2015; Cai et al., 2016; Fermüller et al., 2018) or force estimation (Rogez et al.,

2015b; Fermüller et al., 2018) and as a recognition problem itself (Huang et al., 2015;

Rogez et al., 2015b). These previous works have modelled hands with low-level features

or intermediate representations that follow empirical grasp taxonomies (Bullock et al.,

2015), and these were thus limited in comparison to the 3D hand pose sequences in the

present work. From a hand pose perspective, Rogez et al. (2014) have proposed a small

synthetic dataset of static poses that is limited to train recent data-hungry algorithms.

In a more relevant development for the scope of this chapter, Moghimi et al. (2014) have

mounted a depth sensor to recognise egocentric activities and modelling hands with low-

level skin features. In a similar setting, Damen et al. (2012) have utilised an egocentric

depth sensor for workspace monitoring and were able to track manipulated objects in

3D space. Through an approach that is similar to our own but from a third-person

view, Yang et al. (2014) and Lei et al. (2012) have used a hand tracker to obtain noisy

estimates of hand pose in kitchen manipulation actions, while De Smedt et al. (2016)

have recognised basic hand gestures for HCI that does not involve objects. The low

quality of the hand tracker drastically limited the performed actions and pose labels

in this work, but our own research provides accurate hand pose labels to study more

realistic hand actions.
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Hand pose estimation

Due mainly to the recent availability of RGB-D sensors, the field has made significant

progress regarding an objectless third-person view (Oikonomidis et al., 2011a; Keskin

et al., 2012; Tang et al., 2013; Ionescu et al., 2014; Liang et al., 2014; Qian et al., 2014;

Neverova et al., 2014; Oberweger et al., 2015; Sharp et al., 2015; Ye et al., 2016) as

well as more modest advances with the first-person view (Rogez et al., 2014; Oberweger

et al., 2016; Mueller et al., 2017; Choi et al., 2017) have investigated the 3D tracking of

a hand as it interacts with an object from a third-person view. Hamer et al. (2010) have

previously studied the use of object grasp as a hand pose, while Romero et al. (2013)

have considered the object shape as a cue. An important limitation is the difficulty

of obtaining accurate 3D hand pose annotations, which has led researchers to resort

to synthetic (Rogez et al., 2014; Sharp et al., 2015; Mueller et al., 2017; Choi et al.,

2017; Baek et al., 2018), manually or semi-automatically annotated (Tang et al., 2014;

Tompson et al., 2014; Sun et al., 2015; Oberweger et al., 2016) datasets that have in

turn yielded non-realistic images, low numbers of samples and frequently inconsistent

annotations. With the help of magnetic sensors for annotation and in a similar approach

to Wetzler et al. (2015), Yuan, Ye, Stenger, Jain and Kim (2017) have proposed a major

benchmark that includes egocentric poses without objects and demonstrated that a

convolutional neural network (CNN) baseline can achieve state-of-the-art performance

when sufficient training data is available. Yuan, Ye, Garcia-Hernando and Kim (2017)

have confirmed this insight in a public challenge that utilised a subset of our proposed

dataset, which was followed by an analysis by Yuan et al. (2018) of the current state of

the art in the field.
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Figure 5.2: Hand actions: We have captured daily hand actions using a RGB-D sensor and used mo-cap to annotate hand pose. Left - from top to
bottom: ‘open peanut butter’, ‘put sugar’, ‘pour milk’ and ‘wash with sponge’ (all in kitchen). Right - from top to bottom: ‘charge cell
phone’ and ‘tear paper’ (office); ‘handshake’ and ‘toast with wine glass’ (social).
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5.3 daily hand-object actions dataset

In this section, the proposed Daily Hand-Object Actions dataset is described, and a

variety of relevant statistics are shown.

Dataset overview

The dataset contains 1,175 action videos belonging to 45 different action categories in

three different scenarios and performed by six actors. A total of 105,459 RGB-D frames

are annotated with accurate hand pose and action category. Action sequences present

high both inter-subject and intra-subject variability of style, speed, scale and viewpoint.

Object 6-dimensional (location and angle in 3D) pose and mesh model are also provided

for four objects involving ten different action categories. In Figure 5.2 we show some

example frames for different action categories and hand-pose annotation visualisation.

Hand-object actions

45 different daily hand action categories involving 25 different objects were captured

(Figure 5.7 (a)). Action categories are designed to span a high number of different grasp

configurations and be diverse in both hand pose and action space (see Figure 5.4). Each

object has a minimum of one associated action (e.g. pen-‘write’) and a maximum of

four (e.g. sponge-‘wash’, ‘scratch’, ‘squeeze’ and ‘flip’). These 45 hand actions were

recorded and grouped in three different scenarios: kitchen (25), office (12) and social

(8). Kitchen scenario (Figure 5.2 left) comprises actions such as ‘stir’, ‘sprinkle’, ‘prick’

and ‘pour’, while some of the office actions (Figure 5.2 top-right) include ‘write’, ‘type’

and ‘tear paper’. The social scenario (Figure 5.2 bottom-right) contains interactions

with other humans such as ‘handshake’, ‘high five’ and ‘toast with a glass of wine’. We

also provide 6-dimensional object pose and mesh models for the following objects: ‘milk

bottle’, ‘salt’, ‘juice carton’ and ‘liquid soap’. These objects are involved in 10 different

hand-object action categories in the kitchen scenario.

In this work we have considered each hand-object manipulation as a different action

category similar to previous datasets (e.g. Fathi, Ren and Rehg (2011)), although other

definitions are plausible. For example, one could label ‘open juice carton’ and ‘open
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Figure 5.3: Taxonomy of our hand actions involving objects dataset. Some objects are associ-
ated with multiple actions (e.g. spoon, sponge, liquid soap) while some others have
only one linked action (e.g. calculator, pen, cell charger)

peanut butter’ as same action ‘open’ and/or make grammar combinations (Yang et al.,

2014) of nouns (objects) and verbs (actions) (Wray et al., 2016). Our criteria to select

objects and action categories was two-fold: we tried to have as many grasp configurations

as possible following the same taxonomy as in Rogez et al. (2015b) and we tried to inject

ambiguity in the action space by selecting objects that had multiple uses.
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5.3 daily hand-object actions dataset

Figure 5.4: t-SNE (Maaten and Hinton, 2008) visualisation of hand pose embedding over our
dataset. Each coloured dot represents a full hand pose and each trajectory an action
sequence. Our dataset is rich in both hand pose configurations and actions space.
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Sensors and data acquisition

Visual data. To capture visual data, the most recent version of the Intel RealSense

SR300 RGB-D camera was mounted on the shoulder of the subject. RGB and depth

streams were captured in the highest possible resolutions (i.e. 1920-by-1080 and 640-by-

480 for the colour and depth stream respectively). The same frame rate of 30 fps was

used in both streams.

MCP

PIP

DIP

TIP

(a) (b)
Figure 5.5: Hand model used (Yuan, Ye, Stenger, Jain and Kim, 2017) in our benchmark. (a)

The hand model has 21 joints and moves with 31 degrees of freedom. (b) Example
of the model over a depth image.

Pose annotation. To obtain quality annotations of hand and object pose, we follow

the approach of Yuan, Ye, Stenger, Jain and Kim (2017). Hand pose is captured using

six magnetic sensors (NDI trakSTAR) attached to the user’s hand (five fingertips and

one wrist). Each sensor provides position and orientation with 6 degrees of freedom

and the full hand pose is inferred using inverse kinematics over a defined 21-joint hand

model depicted in Figure 5.5. Each sensor is 2 mm wide and when attached to the

human hand does not influence the depth image. The colour image is affected as the

sensors and the tape to attach them can be seen, however the hand is fully visible and

actions distinguishable by using the colour image (see Figure 5.1). For the object pose,

we attach one another sensor to the closest point we can reach to the centre of mass.

More details about the capture system can be found in Yuan, Ye, Stenger, Jain and

Kim (2017) and in Appendix A.
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Recording process. We asked six people, all right-handed, to perform the actions

while having the mo-cap sensor and the camera attached as shown in Figure 5.6. In-

structions on how to perform the action in a safe manner (for the sensitive attached

sensors) were given, however no instructions about style or speed were provided in order

to capture realistic data. We found difficulties while acquiring the data due to the mag-

netic nature of the sensor as any metallic object would interfere and make the hand pose

impossible to recover. This limited the objects to use and, in some cases, we resorted

to their plastic versions (e.g. fork and spoon). Action labels were annotated manually.

Figure 5.6: Dataset recording process during action ‘pour juice’ in kitchen scenario. The RGB-
D sensor is placed on the shoulder of the subject for egocentric setting. Magnetic
sensors are attached to both subject’s fingers and manipulated object. The magnetic
transmitter is attached to the camera to facilitate the mapping between magnetic
sensors and camera coordinates.
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Figure 5.7: (a) Number of action instances per hand action class. (b) Average number of frames
in each video per hand action class. Our dataset contains both atomic and more
temporally complex action classes. (c) Distribution of hand viewpoints, defined as
angles between the direction of the camera and the direction of the palm of the
hand.
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pour juice open juice pour milk

open soda write drink mug clean glasses
sprinkle spoon

open milk

Figure 5.8: Correlation between objects, grasps and actions. Shown poses are the average pose
over all action sequences of a certain class. One object can have multiple grasps
associated depending on the action performed (e.g. ‘juice carton’ and ‘milk bottle’)
and one grasp can have multiple actions associated (e.g. lateral grasp present at
‘sprinkle’ and ‘clean glasses’).

Dataset statistics

Taxonomy. Figure 5.3 shows the distribution of different actions per involved object.

Some objects such as spoon have multiple actions (‘stir’, ‘sprinkle’, ‘scoop’, ‘put sugar’)

while some objects have one specific action (‘use calculator’). Although it is not an

object per se, we include ‘hand’ as an object in actions ‘handshake’ and ‘high five’.

Videos per action class. On average there are 26.11 sequences per class action and

45.19 sequences per object. For detailed per class numbers see Figure 5.7 (a).

Duration of videos. Figure 5.7 (b) shows the average number of video duration for the

45 action classes. Some action classes such as ‘put sugar’ and ‘open wallet’ involve short

atomic movements (on average one second) while others such as ‘open letter’ require

more time to be executed.

Grasps. We identified 34 different grasps following the same taxonomy as in (Ro-

gez et al., 2015b), including the most frequently studied ones (Cai et al., 2016) (i.e.

precision/power grasps for different object attributes such as prismatic/round/flat/de-
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formable). In Figure 5.8 we show some examples of correlation between objects, hand

poses and actions.

Viewpoints. In Figure 5.7 (c) we show the distribution of frames per hand viewpoint.

We define the viewpoint as the angle between the camera direction and the palm of the

hand. The dataset presents challenging viewpoints, in contrast to typical easy hand

poses in third person view with palm facing the camera (around 90 degrees).

Hand occlusion. Figure 5.16 (bottom) shows the average number of visible (not

occluded by object or viewpoint) hand joints per action class. Most actions present a

high degree of occlusion (on average 10 visible joints out of 21).

Comparison with other datasets

Table 5.1: First-person view datasets with hands and objects involved. The proposed dataset is
the first providing both hand pose and action annotations on real data (cf. synthetic).

Dataset Sensor Real? Class. Seq. Frames Labels

Yale (Bullock et al., 2015) RGB X 33 - 9100 Grasp
UTG (Cai et al., 2015) RGB X 17 - - Grasp
GTEA (Fathi, Ren and Rehg, 2011) RGB X 61 525 31,222 Action
EgoHands (Bambach et al., 2015) RGB X 4 48 4,800 Action

GUN-71 (Rogez et al., 2015b) RGB-D X 71 - 12,000 Grasp
UCI-EGO (Rogez et al., 2014) RGB-D 7 - - 400 Pose
Choi et al.(Choi et al., 2017) RGB-D 7 33 - 16,500 Grasp+Pose
SynthHands (Mueller et al., 2017) RGB-D 7 - - 63,530 Pose
EgoDexter (Mueller et al., 2017) RGB-D X - - 3190 Fingertips

Ours RGB-D X 45 1175 105,459 Action+Pose

In Table 5.1 we summarise popular egocentric datasets that involve hands and ob-

jects in both dynamic and static fashion depending on their problem of interest. For

conciseness, we have excluded from the table related datasets that do not partially or

fully contain objects manipulations, such as Pirsiavash and Ramanan (2012), Oberweger

et al. (2016) and Yuan, Ye, Stenger, Jain and Kim (2017). Note that previous datasets

in action recognition (Bambach et al., 2015; Fathi, Ren and Rehg, 2011) do not include

hand pose labels. On the other hand, pose and grasp datasets (Rogez et al., 2014;

2015b; Bullock et al., 2015; Cai et al., 2015; Choi et al., 2017; Mueller et al., 2017) do

94



5.4 evaluated algorithms and baselines

not contain dynamic actions and hand pose annotation is obtained by generating syn-

thetic images or rough manual annotations (Mueller et al., 2017). Our dataset ‘fills the

gap’ of egocentric dynamic hand action using pose and compares favourably in terms of

diversity, number of frames and the use of real data.

5.4 evaluated algorithms and baselines

5.4.1 Action recognition

To evaluate the current state-of-the-art in action recognition we chose a variety of ap-

proaches that, we believe, cover the most representative trends in the literature (Table

5.3). As the nature of our data is RGB-D and we acquired hand pose annotations, we

focus our attention to RGB-D and pose-based action recognition approaches, although

we also evaluate two RGB action recognition methods (Feichtenhofer et al., 2016; Hu

et al., 2015). Note that as discussed above, most of previous work in RGB-D action

recognition involve full body poses instead of hands and some of them might not be

tailored for hand actions, we elaborate further on this in Section 5.5.1.

We start with one baseline to assess how the current state-of-the-art in colour action

recognition performs in our dataset. For this and given that most successful (colour)

action recognition approaches (Ma et al., 2016; Singh et al., 2016) use CNNs to learn de-

scriptors from colour and motion flow, we evaluate a recent two-stream architecture (Fe-

ichtenhofer et al., 2016) fine-tuned on our dataset.

About the depth modality, we first evaluate two local depth descriptor approaches,

HOG2 (Ohn-Bar and Trivedi, 2014) and HON4D (Oreifej and Liu, 2013), that exploit

gradient and surface normal information as a feature for action recognition. As a global-

scene depth descriptor, we evaluate the recent approach ‘novel view’ by Rahmani and

Mian (2016) that learns view invariant features using a CNN from several synthesised

depth views of human body pose.

We continue the evaluation with pose-based action recognition methods. As our

main baseline, we implemented a recurrent neural network (RNN) with long-short term
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memory (Hochreiter and Schmidhuber, 1997) (LSTM) module inspired in the architecture

by Zhu, Lan, Xing, Zeng, Li, Shen and Xie (2016). We also evaluate several state-of-

the-art pose action recognition approaches. We start with descriptor-based methods

such as moving pose descriptor (Zanfir et al., 2013) (MP) that encodes atomic motion

information and (Vemulapalli et al., 2014) who represents poses as points on a Lie group.

For methods focusing on learning temporal dependencies, we evaluate HBRNN (Du

et al., 2015) and Gram matrix (Zhang, Wang, Gou, Sznaier and Camps, 2016). HBRNN

consists of a bidirectional recurrent neural network with hierarchical layers designed to

learn features from the body pose. Gram matrix is currently the best performing method

for body pose and uses Gram matrices to learn the dynamics of actions. Furthermore, we

evaluate one hybrid approach jointly learning heterogeneous features (Hu et al., 2015)

(JOULE). JOULE uses a three-step iterative optimisation algorithm to learn features

jointly considering all the data channels (colour, depth and hand pose).

To conclude, we evaluate the TF presented in Chapter 4 using different features ex-

tracted from different data modalities: colour, depth, hand pose and their combination.

We compare these results to the state-of-the-art approaches discussed above and to

the forest baselines studied in previous chapters: random forest (Breiman, 2001) (RF),

sliding window forest (Fothergill et al., 2012) (SW), pairwise conditional random forests

(Dapogny et al., 2015) (PCRF) and trajectory Hough forest (THF).

5.4.2 Hand pose estimation

To evaluate the state-of-the-art hand pose estimation we use the same CNN architecture

as Yuan, Ye, Stenger, Jain and Kim (2017). We choose this approach as it is easy to

interpret and provided the best performance in a cross-benchmark evaluation (Yuan,

Ye, Stenger, Jain and Kim, 2017). The chosen method is a discriminative approach

operating on a frame-by-frame basis, which does not need any initialisation and manual

recovery when it fails in tracking (Oikonomidis et al., 2011a; Intel, 2013). Most existing

methods focus on hands alone, while some tracking-based methods deal with occlusions

in hand-object interactions (Oikonomidis et al., 2011b). We include details of this model

in Appendix B.
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5.5 evaluation results

5.5.1 Action recognition

In the following we present our experiments in action recognition. In this section we

assume the hand pose is given, i.e. we use the hand pose annotations obtained using the

magnetic sensors and inverse kinematics. We evaluate the use of estimated hand poses

without the aid of the sensors for action recognition in Section 5.5.2. As a measure of

performance, we use the total accuracy of predicted actions or, in other words, correct

number of predictions over total number of predictions. When possible, we used publicly

available codes with default parameters.

Following the standard practice in body-pose action recognition (Zanfir et al., 2013;

Vemulapalli et al., 2014), we compensate for anthropomorphic differences by normalising

the hand poses to all have the same distance between pairs of joints. Furthermore, to

be invariant to viewpoints, we define the center of coordinates to be the hand wrist.

We found in our experiments that this normalisation is important to obtain acceptable

results.

A baseline: LSTM

We start our experimental evaluation with a simple yet powerful baseline: a recurrent

neural network (RNN) with a long-short term memory (Hochreiter and Schmidhuber,

1997) (LSTM). The architecture of our network is inspired by Zhu, Lan, Xing, Zeng,

Li, Shen and Xie (2016) with two differences: we do not ‘go deep’ and we use a more

conventional unidirectional network instead of bidirectional. We set the number of

neurons to 100 and a probability of dropout of 0.2. We use TensorFlow and Adam

optimiser. We feed the normalised hand poses sequences into the LSTM.

Training and test protocols. We experiment with two protocols. The first protocol

consists of using different partitions of the data for training and the rest for test and

we tried two different training:test ratios of 1 : 1 and 3 : 1. The second protocol is

a 6-fold ‘leave-one-person-out’ cross-validation, i.e. each fold consists of 5 subjects for

training and one for test. Results are presented in Table 5.2. We observe that following
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Table 5.2: Results for different training-test protocols. 3:1 stands for ‘75% of the dataset is
used for training and 25% for test’. In cross-person protocol perform 6-fold leave-
one-person-out cross-validation.

Protocol 1:1 3:1 cross-person

Accuracy (%) 78.73 84.82 62.06

a cross-person protocol yields the worst results taking into account that in each fold

we have similar training/test proportions to the 3 : 1 setting. This can be explained

by the difference in hand action styles between subjects. In the rest of the chapter we

perform our experiments using the 1:1 setting with 600 action sequences for training

and 575 for test. The result for this protocol is 78.73% using 1-layer LSTM. We also

experimented adding with more layers, for example using 2-layer LSTM the accuracy

improved to 80.14%. We did not observe any significant improvements by stacking more

layers likely due to the given size of our dataset.
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Figure 5.9: (a) We show class accuracies of some representative methods for different data modalities on a subset of classes. (b) Top-k action accuracy:
true action label is in the top-k action prediction hypothesis. (c) Top-k object accuracy: manipulated object is in the top-k action prediction
hypothesis. (d) Impact of each of the five fingers, combinations of them and fingertips on action recognition.
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State-of-the-art discussion

In Table 5.3 we show results for state-of-the-art approaches in different data modalities

and the TF introduced in the previous chapter. We observe that the two-stream method

(Feichtenhofer et al., 2016) performs better when combining both colour and flow cues.

Depth methods tend to perform slightly worse than the rest of the methods, suggesting

that they are not able to fully capture neither the object cues nor the hand pose. Note

that for ‘novel view’ (Rahmani and Mian, 2016) we extracted deep features from a

network trained on several synthetic views of bodies, which might not generalise well to

hand poses and fine-tuning in our dataset did not help. From all approaches, we observe

that the ones using hand pose are the ones that achieve the best performance, with Gram

matrix (Zhang, Wang, Gou, Sznaier and Camps, 2016) and Lie group (Vemulapalli et al.,

2014) performing particularly well, a result in line with the ones reported in body pose

action recognition.

In Figure 5.9 we select some of the most representative methods and analyse their

performance in more detail. We observe that the pose method Gram matrix outper-

forms the rest in most of the measures, particularly when we retrieve the top k action

hypothesis (Figure 5.9 (b)), showing the benefit of using hand pose for action recogni-

tion. Looking at Figure 5.9 (a), we observe that the two-stream network outperforms

the rest of methods in some categories in which the object is big and the action does

not involve much motion, e.g. ‘use calculator’ and ‘read paper’. This good performance

can be due to the pre-training of the spatial network on a big image recognition dataset.

We further observe this in Figure 5.9 (c) where we analyse the top k hypothesis given by

the prediction and look whether the predicted action contains the object being manip-

ulated, suggesting that the network correctly recognises the object but fails to capture

the temporal dynamics.

Combining different data modalities can improve the performance. For instance, we

observe that HOG2 can benefit when learning features with the help of the poses. The

same is observed for JOULE and TF: hand pose features are the most discriminative

ones, although the performance can be increased by combining them with RGB and

depth cues. This result suggests that hand poses provide complementary information
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Table 5.3: Hand action recognition performance by different evaluated approaches on the pro-
posed dataset.

Method Colour Depth Hand pose Acc. (%)

Two stream-colour (Feichtenhofer et al., 2016) X 7 7 61.56
Two stream-flow (Feichtenhofer et al., 2016) X 7 7 69.91

Two stream-all (Feichtenhofer et al., 2016) X 7 7 75.30

HOG2-depth (Ohn-Bar and Trivedi, 2014) 7 X 7 59.83
HOG2-depth+pose (Ohn-Bar and Trivedi, 2014) 7 X X 66.78
HON4D (Oreifej and Liu, 2013) 7 X 7 70.61
Novel view (Rahmani and Mian, 2016) 7 X 7 69.21

1-layer LSTM 7 7 X 78.73
2-layer LSTM 7 7 X 80.14

MP (Zanfir et al., 2013) 7 7 X 56.34
Lie group (Vemulapalli et al., 2014) 7 7 X 82.69
HBRNN (Du et al., 2015) 7 7 X 77.40
Gram matrix (Zhang, Wang, Gou, Sznaier and Camps, 2016) 7 7 X 85.39

JOULE-colour (Hu et al., 2015) X 7 7 66.78
JOULE-depth (Hu et al., 2015) 7 X 7 60.17
JOULE-pose (Hu et al., 2015) 7 7 X 74.60

JOULE-all (Hu et al., 2015) X X X 78.78

TF (Chapter 4) only colour deep features X 7 7 53.74
TF (Chapter 4) only depth deep features 7 X 7 49.56
TF (Chapter 4) only hand pose features 7 7 X 80.69

TF (Chapter 4) with all above features X X X 85.04

to RGB and depth cues as previously observed in body pose action recognition. In the

next section we analyse in depth the results obtained by TF and the contribution of each

data modality.
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Figure 5.10: Transition forest model using colour, depth and hand pose features. For a particu-
lar frame, colour features are extracted from both RGB and optical flow channels.
Hand pose features can be estimated using our hand pose baseline.

We evaluate the forest-based algorithms presented in previous chapters using four

different experimental settings depending on the data channel considered: colour, depth,

hand pose and their combination. To be able to perform such experiments, we need to

obtain features at frame-level for both colour and depth channels. To evaluate the colour

channel, we extract deep features for both RGB and flow streams from the last fully

connected layer, fc7, of the two-stream network presented in Simonyan and Zisserman

(2014) fine-tuned on our dataset. Features are extracted in a per-frame basis before

any temporal fusion and the feature dimension is 8,192. For the depth channel, we

use the 4,096-dimensional features from Rahmani and Mian (2016) before any temporal

fusion and for each frame. We found that the high dimensionality and the sparsity of

these features were a problem when combined. To minimise this effect, using principal

component analysis (PCA) we reduce each channel dimension to 150, a number found

empirically and that allowed us to reduce action recognition errors in the order of 25%

for all forest-based approaches. We use the same parameters for all methods: 50 trees

of maximum depth 10 and temporal order k = 4.
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Table 5.4: Temporal decision forest approaches on proposed benchmark.

Method Colour Depth Hand pose All combined

RF 53.04 51.48 74.78 78.43
SW 53.39 49.91 76.34 79.30
PCRF 54.96 50.01 74.96 80.35
THF (Chapter 3) 58.26 50.21 73.39 78.95
TF (Chapter 4) 53.74 49.56 80.69 85.04

In Table 5.4 we present the results for the considered forest-based approaches. All

the evaluated methods have similar performance for colour and depth channels, being

THF the most robust one when colour features are used likely because of its temporal

regression. We observe that TF, performs the best by a significant margin when all

modalities are combined due to a better capture of temporal dynamics. Consistent with

the results in the previous chapter but by a narrow margin, PCRF is the most robust

forest-based method after TF. We found that the recognition accuracy for both colour

and depth channels is rather low compared to state-of-the-art approaches in Table 5.3

and to results on the hand pose channel. We believe there are two reasons for this

behaviour.
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Figure 5.11: Different data modalities action and object retrieval with a TF. (a) Top-k action
accuracy: true action label is in the top-k action prediction hypothesis. (b) Top-
k object accuracy: manipulated object is in the top-k action prediction. Colour
and depth features mainly encode coarse hand-object and background informa-
tion making hard to learn temporal dynamics in contrast to hand pose features.
Combining all feature channels leads to a more robust result.
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The first reason is the challenge of making online per-frame predictions compared to

full video predictions (Feichtenhofer et al., 2016; Rahmani and Mian, 2016; Hu et al.,

2015; Vemulapalli et al., 2014; Zhang, Wang, Gou, Sznaier and Camps, 2016). To verify

this, we did a simple experiment where we performed temporal averaging of deep colour

features over a video and using this video-level descriptor with a RF, increasing from

53.05% to 66.09%. Also, note the only offline forest, THF, achieves a considerable better

performance than the rest of the forest methods.

The second reason, also found in the previous section, is the limitation of the used

deep features compared to hand pose: they are good at obtaining a gist of the scene but

not at capturing a fine-grained description of the hand-object interaction. To confirm

this, we investigate the hypothesis generated by each modality TF and analyse them in

Figure 5.11. We observe that both colour and depth streams are better at recognising

the object of interest than the action itself, reducing the accuracy gap with hand pose

features. Furthermore, if instead of objects and actions we check whether the hypothesis

is correct regarding the background (i.e. kitchen, office and social) we obtain the fol-

lowing accuracies: 97.74% for colour, 91.83 for depth, 90.96% for hand pose and 96.35%

for all combined. Combining all channels improves the performance in all the tested

approaches, mainly because colour and depth can reduce ambiguity on similar hand

poses by giving object and background information.

In Figure 5.12 we show the performance in a subset of classes for different modalities

using a TF. We observe that the forest is able to deal with temporal ambiguities (e.g.

‘open peanut butter’ and ‘close peanut butter’) when using hand poses but it fails when

using only colour or depth. Mostly encoding static background and object cues makes

difficult to TF to learn transitions between frames when using colour and depth features

compared to clean and high level pose features. Feature learning could be improved by

using some attention mechanism to focus on hands (Ishihara et al., 2015). For some

actions such as ‘prick with fork’ and ‘stir spoon’, colour and depth features show to be

complimentary to hand poses. For some actions such as ‘charge cell’, using colour and

depth cues can degrade the performance compared to hand poses. If we observe the

confusion matrix on Figure 5.13, we see that ‘charge cell’ is often confused with ‘tear

paper’. To understand why this high confusion occurs, we visualise in Figure 5.14 one
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Figure 5.12: Performance of a subset of classes for different feature channels with a TF. We
show that combining feature channels is beneficial, unless the performance of one
channel is very poor (e.g. ‘charge cell’ and ‘flip sponge’).

colour frame for each action category and their temporally averaged hand pose. We

observe that in the colour stream both actions are very similar in terms of background,

colour of objects and configuration of both hands, making them almost indistinguishable

when using colour and depth features. In the pose space we also observe similarities with

slight differences in the thumb pose, making it more distinguishable when looking to pose

and their dynamics.
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1.open juice

2.close juice

3.pour juice

4.open peanut b.

5.close peanut b.

6.prick fork

7.sprinkle spoon

8.scoop spoon

9.put sugar sp.

10.stir spoon

11.open milk

12.close milk

13.pour milk

14.drink mug

15.put tea bag

16.put salt

17.open dish soap

18.close dish soap

19.pour dish soap

20.wash sponge

21.flip sponge

22.scratch sponge

23.squeeze sponge

24.open soda can

25.use spray

26.write pen

27.tear paper

28.squeeze paper

29.open letter

30.take out letter

31.read paper

32.flip pages

33.use calculator

34.light candle

35.charge cell

36.unfold glasses

37.clean glasses

38.open wallet

39.pay coin

40.receive coin

41.give card

42.pour wine

43.toast glass

44.handshake

45.high five

Figure 5.13: Action confusion matrix for a transition forest trained with colour, depth and hand
pose features. Some action categories are classified without problems (e.g. ‘pour
juice’ and ‘put salt’), while others are often confused (e.g. ‘flip sponge’ and ‘charge
cell’).
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(a) (b)

Figure 5.14: ‘charge cell’ and ‘tear paper’ action categories are often confused; (a) both cate-
gories look similar in terms of background, colour of objects and configuration of
both hands. (b) time-averaged hand poses of each category show also similarities
with a slight difference in the thumb.
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Object pose. An extra experiment is performed by using the object pose as an addi-

tional feature for action recognition on the subset of actions that have annotated object

poses: a total of 261 sequences for 10 different classes and 4 objects. The LSTM baseline

is trained on half of the sequences and using three different inputs: hand pose, object

pose and both combined. In Table 5.5 the results are shown and it can be concluded

that combining both pose features can help on the action recognition task. Although

in this thesis we do not explore this direction, we believe this is an interesting line of

research as we discuss in the next chapter.

Table 5.5: The use of 6D object pose for action recognition is evaluated on a subset of the
proposed dataset. We observe the benefit of combining them with the hand pose.

Pose feature Hand Object Hand+Object

Action accuracy (%) 87.45 74.45 91.97

5.5.2 Hand pose estimation

Input pre-processing. Most approaches for hand pose estimation require to have as

an input the depth channel containing only the hand. To crop the hand, we used the

bounding boxes automatically annotated using the magnetic sensors. Detecting hands

in depth images is still an open problem (Rogez et al., 2015b) that we do not investigate

further. The quality of the detection is likely to affect the hand pose estimation.

Training with objects vs. no objects. One question raised while designing our

experiments was whether we needed to annotate the hand pose in a close to ground-truth

accuracy to experiment with hand dynamic actions. We try to answer this question by

estimating the hand poses of the proposed hand action dataset in two ways partitioning

our data as in our action split: using the nearly 300,000 object-free egocentric samples

from Yuan, Ye, Stenger, Jain and Kim (2017) and using the images in the training set of

our hand action dataset. As observed in Table 5.6 and Figure 5.15, the results suggest

that having hand-object images in the training set is crucial to train state-of-the-art

hand pose estimators likely because occlusions and object shapes need to be seen by
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the estimator beforehand. To confirm this, we conducted two extra experiments: cross-

subject (half of the users in training and half in testing, all objects seen in both splits)

and cross-object (half of the objects in training and half in testing, all subjects seen

in both splits). In Figure 5.15 and Table 5.6 we observe that the network is able to

generalise to unseen subjects but struggles to do so for unseen objects, suggesting that

recognising the shape of the object and its associated grasp is crucial to train hand

pose estimators. This shows the need of having annotated hand poses interacting with

objects and thus why our dataset can be of interest for the hand pose community. In

Figure 5.17 we show some qualitative results in hand pose estimation in our proposed

dataset and observe, that while not perfect, they are good enough for action recognition.

Table 5.6: Average hand pose estimation error (Euclidean distance between magnetic poses and
estimates) for different protocols and its impact on action recognition. The hand pose
estimation baseline generalises better to unseen subjects than to unseen objects.

Hand pose protocol Hand pose error (mm) Action Acc. (%)

Cross-subject 11.25 -
Cross-object 19.84 -

Action split (training without objects) 31.03 29.63
Action split (training with objects) 14.34 72.06

Action split (GT magnetic+IK poses) - 78.73

Hand pose estimation and action recognition. In this section we try to answer the

following key question: ‘how good the current hand pose estimation is for recognising

hand actions?’. In Table 5.6 we show results of hand action recognition by swapping the

hand pose labels by the estimated ones in the testing set. We observe that reducing the

hand pose error in a factor of two yields a more than twofold improvement in action

recognition. The difference in hand action recognition between using the hand pose

labels in testing and using the estimated ones is 6.67%. We also tested the two best

performant methods from previous section, Lie group Vemulapalli et al. (2014) and Gram

matrix Zhang, Wang, Gou, Sznaier and Camps (2016). For Lie group we obtained an
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Figure 5.15: Percentage of frames for different hand pose estimation error thresholds and differ-
ent protocols. Seeing objects and occlusions in training is crucial to have a robust
hand pose estimator in a manipulation scenario.

accuracy of 69.22%, while for Gram matrix a poor result of 32.22% likely due to their

strong assumptions in the noise distribution. TF showed to be more sensitive to noise

than Lie group or LSTM dropping the accuracy to 66.78%.

In Figure 5.16 we show how the hand occlusion affects the pose estimation quality

and its impact on class recognition accuracies. Although some classes present a clear

correlation between hand pose error and action accuracy degradation (e.g. ‘receive coin’,

‘pour wine’), the LSTM is still able to obtain acceptable recognition rates likely due to

being able to infer the action from temporal patterns and correctly estimated joints.

For more insight, we analysed the pose error per finger (thumb: 12.45; index: 15.48;

middle: 18.08; ring: 16.69; pinky: 18.95; all in mm). Thumb and index joints are the

best estimated ones and, according to previous section where we found that motion from

these two fingers were a high source of information, this can be a plausible explanation

why we can still obtain a good action recognition performance while having noisy hand

pose estimates.
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5.6 summary

5.6 summary

This chapter has proposed a novel benchmark and presented experimental evaluations for

RGB-D and pose-based hand action recognition in first-person settings. The benchmark

provides temporal action labels, full 3D hand pose labels and six-dimensional (6D) object

pose labels within the dataset. Both RGB-D action recognition and 3D hand pose

estimation are relatively new fields, and this research represents a first attempt to relate

both of them as happened for full human body. As the first benchmark of its kind,

we believe that this study can encourage future work in multiple fields, including action

recognition, hand pose estimation, object pose estimation and grasp analysis in addition

to emerging topics, such as joint hand-object pose estimation.

We have evaluated several baselines in our dataset and concluded that hand pose

features are a rich source of information for recognising manipulation actions. We ex-

tended the transition forest (TF) model from the previous chapter to engage with colour

and depth cues by extracting deep features that lead to state-of-the-art performance.

We found that combining hand pose and object pose features can enhance action recog-

nition performance. Although colour and depth features are complementary to hand

poses, the incorporation of all of these features into a practical scenario is not currently

possible in view of the high computational costs of running four networks in parallel

and computing the optical flow in real time. Regarding the optical flow channel, we did

not apply any technique for camera motion compensation, as there was relatively stable

ego-motion in our benchmark. However, in a real scenario, such application should be

considered. Nevertheless, our hand pose estimator baseline can run at 25 fps, and its

frame-based nature renders it not sensitive to camera motion. Thus, it is suitable for

real-world application.
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Figure 5.16: Effect of hand occlusion in action recognition and hand pose estimation; (bottom):
average number of visible (i.e. not occluded) joints for hand actions on our dataset
and its impact on hand pose estimation; (top) class action recognition accuracies
for our LSTM baseline using estimated hand poses (accuracies with ground-truth
poses are represented with black triangles).

Figure 5.17: Top: pose labels obtained using the magnetic sensors; (bottom) hand pose esti-
mates. Some estimates are noisy but good enough for action recognition.
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6
SUMMARY AND FUTURE IDEAS

6.1 overall summary

This thesis proposes a novel temporal decision forest to investigate egocentric

actions in two scenarios. This chapter summarises the research findings and

discusses future directions.

Chapter 1 first provided a general overview of action recognition and motivated the

study of egocentric hand actions with examples of applications that motivated Chapters

3 and 5. It further introduced limitations to the use of decision forest classifiers for

action recognition, which motivated the contributions of Chapter 4.

Chapter 2 categorised existing work in human action recognition according to data

modalities and methodologies and provided an overview of several benchmarks. It addi-

tionally discussed the evolution of action recognition depending on the available hard-

ware and complexity of solutions.

Chapter 3 proposed a trajectory Hough forest (THF) as the framework for the appli-

cation of fingertip writing in mid-air with an egocentric RGB-D sensor. Moreover, it

suggested a hand posture descriptor that can enable fingertip detection in depth im-

age. The chapter introduced the extension of the Hough forest to encourage temporal

consistence in predictions. The framework proved to be effective for the recognition of

fingertip writing in mid-air as well as for generalising spatio-temporal trajectories that

were extracted from RGB videos.

Chapter 4 proposed a transition forest (TF) as a new temporal decision forest model

that can learn both static and temporal dynamics from skeleton data. The proposed
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6.2 future ideas

approach overcomes most of the drawbacks of applying decision forests to action recog-

nition that Chapters 2 and 3 have noted. We compared TF with several powerful forest-

based baselines and state-of-the-art approaches and demonstrated the suitability of the

approach to recognise and detect actions in an efficient and online manner.

Chapter 5 introduced a new RGB-D benchmark for egocentric action recognition and

extended the TF to include various data modalities. The main novelty of this benchmark

is its introduction of accurate hand pose and object pose labels, which enable the study

of pose-based approaches in egocentric action recognition. The introduced benchmark

has potential for use in other applications, such as 3D hand pose estimation and robot

imitation learning.

6.2 future ideas

Fingertip writing recognition

Several aspects can be explored from our starting point. First, similarly to Huang et al.’s

(2016) work with RGB video, it could be interesting to consider applications of deep

learning architectures to the problem of fingertip detection in depth images, especially in

a end-to-end manner. Second, our approach only considers isolated characters, but this

could be extended to recognise complete words with the help of grammar that is similar

to the NLP field. Finally, our framework considers only a limited scenario of indoor

recognition with characters from only one actor, which restricts its application to real-

life technology. Additional studies should examine how to generalise to any background,

user and sensor in order to implement this idea in a product, and the application of an

end-to-end deep learning approach should likely accompany such research.

Decision forests for temporal data

Our presented approach learns one temporal transition order per tree. However, in this

regard, there is room for improvement by adding more temporal complexity to the tree

learning. In Chapter 4 (page 62) we discussed a variety of training strategies that could

extend our transition forest with additional temporal context in the node splitting or

by including the temporal distance in the optimisation process. Another interesting
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6.2 future ideas

option could be to extend the framework to address longer temporal relationships in a

hierarchical manner that resembles the hierarchical recurrent neural network of Du et al.

(2015).

Egocentric hand action recognition

Our benchmark is the first to include hand poses in an egocentric setting. We believe

that there are many lines of research to explore. One interesting idea would be to jointly

learn hand actions and hand poses in a similar fashion to Iqbal et al. (2017). Moreover,

future research could incorporate hand poses, object poses and actions in the same

learning process. As Chapter 5 has mentioned, the proposed extension of transitions

forests is not currently feasible in real time, as there is a need to process different

channels independently and estimate optical flow, which is a slow process. Features

could be fused in the first stage of a joint network to accelerate the learning process

and free the process of data redundancy. Moreover, motion features could be learned

from hand poses instead of from the optical flow, which would accelerate the whole

pipeline. Unlike Rogez et al. (2015b), we did not explore other interesting properties

of hand manipulations, such as contact points and force estimation, which could be of

interest to the robotics community. We believe that using high-level hand pose features

to understand actions can support multiple applications that require high precision, such

as hand rehabilitation (Allin and Ramanan, 2007), virtual or augmented reality (Jang

et al., 2015), teleoperation (Fritsche et al., 2015) and robot imitation learning (Argall

et al., 2009).

Imitation learning using hand pose demonstrations

An interesting application of the benchmark and framework in Chapter 5 is the use of the

recorded actions to demonstrate an imitation-learning framework. Recent work (Amor

et al., 2012; Deimel and Brock, 2016; Rajeswaran et al., 2017) has explored the use of

anthropomorphic hand models for dexterous manipulation task imitation by humans.

An important drawback of these approaches is the need for specialised hardware, such

as gloves, to record trajectories of human interaction with objects. Our dataset reflects a

step forward in training hand pose and object pose estimators in unconstrained environ-
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6.2 future ideas

ments, and our recorded sequences can thus serve as human demonstrations. Defining

the state of the environment according to fine-grained features, such as hand pose and

object pose, has the advantage of easy transformation between domains compared to the

use of raw images (Stadie et al., 2017). However, the employment of human hand poses

to guide a robot is not straightforward, and two components warrant further study. First,

hand poses should be mapped to the robotic hand, which may have different degrees

of freedom and kinematics. Second, our hand pose estimator produces noisy estimates,

which should be taken into account when transferring the knowledge to the robot. An

interesting approach would be to record trajectories in a physics simulator, such as that

in Kumar and Todorov (2015) and similarly to Rajeswaran et al. (2017), of humans

grasping virtual objects. This approach could possibly reduce the amount of noise due

to occlusion from objects. Furthermore, working on a virtual environment would permit

the exploitation of recent advances that require a vast amount of sampling in imitation

learning (Ho and Ermon, 2016) and reinforcement learning (Rajeswaran et al., 2017;

Peng et al., 2018; Zhu et al., 2018).
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A
APPENDIX A : HAND POSE ANNOTATION SYSTEM DETAILS

We follow the approach described by Yuan, Ye, Stenger, Jain and Kim (2017) to annotate

the 3D hand pose with the help of six 6D magnetic sensors that provide their 3D location

and 3D orientation. In Figure A.1 (a-b) the used 21-joint hand model is shown. Some

physical constraints are applied: (1) wrist and 5 MCPs are relatively fixed (Figure A.1

Top (c)) (2) bone lengths are maintained, and (3) MCP, PIP, DIP and TIP are in the

same plane for each finger.

As shown in Figure A.1 (top), five magnetic sensors are attached to the five fingertips:

from thumb to pinky and denoted as S1, S2, S3, S4 and S5. The sixth sensor, S6, is

attached to the back of the palm and it is used to infer the wrist and the five MCPs

joints. For each finger i, sensor’s orientation is used to find the three orthogonal axes,

with V i1 in the direction along the finger and V i2 orthogonal to V i1 pointing to the inside

of the finger (Figure A.1 (bottom)). Using this, TIP’s location T i and DIP’s location

Di can be inferred:

T i = L(Si) + bil1V
i

1 + riV i2 ,

Di = L(Si)− bil2V i1 + riV i2 ,

where L(Si) is the location of the i sensor, bi and ri are the (manually measured) bone

length connecting D and T and its thickness respectively. l1 and l2 are length ratios

and sum to 1.

To infer the last joint position, PIP (P ), the following conditions are used to derive a

unique solution: (1) T , D, M are given, (2) ‖P −D‖ and ‖P −M‖ are fixed, (3) T , D,

M and P are in the same plane, and (4) T and P are on different sides of the line ←−→MD.
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appendix a: hand pose annotation system details

MCP

PIP

DIP

TIP

(a) (b)

(c) (d)

x

y

z

6D sensor

V1

V2

l 1
l 2

r
S2

S1

T

D2

P2 M2

T1 D1

P1

M1

W

S6

D P

P ′

M

T2

Depth camera

Transmitter

6D sensor

Figure A.1: Top: (a-b) 21-joint hand model used for our 3D hand pose annotations, (c-d)
Physical constraints. Middle: 3D hand pose is inferred using six 6D magnetic
sensors and inverse kinematics. Bottom: Equipment used to annotate hand pose.
In our first-person setting we mounted the depth camera and the transmitter on
the user’s shoulder. Figure credit: Yuan, Ye, Stenger, Jain and Kim (2017).
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APPENDIX B : HAND POSE EST IMATION BASEL INE DETAILS

In Figure B.1 the architecture of the CNN baseline inspired in the architecture of Yuan,

Ye, Stenger, Jain and Kim (2017) is shown. The input image is the cropped depth hand

image projected and normalised to 96-by-96 pixels. This normalised image is subsampled

two times to sizes of 48-by-48 and 24-by-24 and all three normalised images are fed into

the CNN. The cost function is the mean squared distance between joint location estimates

and annotated locations. We used the same implementation parameters as Yuan, Ye,

Stenger, Jain and Kim (2017).
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appendix b: hand pose estimation baseline details
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Figure B.1: Architecture of the CNN baseline for hand pose estimation used on experiments
(Section 5.5.2). This architecture has been shown to achieve state-of-the-art per-
formance in Yuan, Ye, Stenger, Jain and Kim (2017). Figure credit: Yuan, Ye,
Stenger, Jain and Kim (2017).
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