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Human activity recognition using a wearable camera

Abstract

Advances in wearable technologies are facilitating the understanding of human activities us-

ing first-person vision (FPV) for a wide range of assistive applications. In this thesis, we propose

robust multiple motion features for human activity recognition from first-person videos. The

proposed features encode discriminant characteristics from magnitude, direction and dynamics

of motion estimated using optical flow. Moreover, we design novel virtual-inertial features from

video, without using the actual inertial sensor, from the movement of intensity centroid across

frames. Results on multiple datasets demonstrate that centroid-based inertial features improve

the recognition performance of grid-based features.

Moreover, we propose a multi-layer modelling framework that encodes hierarchical and tem-

poral relationships among activities. The first layer operates on groups of features that effectively

encode motion dynamics and temporal variations of intra-frame appearance descriptors of activ-

ities with a hierarchical topology. The second layer exploits the temporal context by weighting

the outputs of the hierarchy during modelling. In addition, a post-decoding smoothing technique

utilises decisions on past samples based on the confidence of the current sample. We validate the

proposed framework with several classifiers, and the temporal modelling is shown to improve

recognition performance.

We also investigate the use of deep networks to simplify the feature engineering from first-

person videos. We propose a stacking of spectrograms to represent short-term global motions

that contains a frequency-time representation of multiple motion components. This enables us

to apply 2D convolutions to extract/learn motion features. We employ long short-term memory

recurrent network to encode long-term temporal dependency among activities. Furthermore, we

apply cross-domain knowledge transfer between inertial-based and vision-based approaches for

egocentric activity recognition. We propose sparsity weighted combination of information from

different motion modalities and/or streams. Results show that the proposed approach performs

competitively with existing deep frameworks, moreover, with reduced complexity.
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Rj jth recording of the IAR dataset, page 42

Sj jth subject of the BAR dataset, page 42



Chapter 1

Introduction

1.1 Motivation

Due to the emergence of pervasive computing as well as the development of small, efficient and

low power sensing devices, the use of wearable sensors becomes a common practice across dif-

ferent research domains. Among these devices, wearable visual sensors, i.e. wearable cameras,

are getting more attention from both the industry and academic communities (Fig. 1.1).

Computer vision research has been traditionally focused on analysing video content recorded

from third-person point-of-view, i.e. third-person vision (TPV). However, wearable cameras

bring a new computer vision research, i.e. first-person vision (FPV) that provides egocentric

information of a subject, i.e. records almost what the subject sees, and results in rich and contin-

uous data while the privacy is partially protected as the subject is not directly seen in the recorded

videos.

Wearable camera systems can be categorized according to their applications as lifelogging,

activity recording and eye tracking. Lifelogging is a digital capture of life experiences typically

through mobile sensors [10, 21, 22, 28, 40, 41]. It can also be considered as an automated

biography [20]. Lifelogging oriented wearable cameras, such as SenseCam, Autographer and

Memoto, are characterized by their tendency to make automatic snapshots in FPV whenever they

are triggered. Although most lifelogging devices are equipped with other built-in sensors, they

do not have a video recording feature. Activity recorders refer to wearable vision sensors, such

as GoPro, Looxcie, and Google Glass, which have been used to record high-quality egocentric

1
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(a) GoPro (b) Looxcie (c) MeCam (d) ReplayXD

(e) Glass (f) Eyetap (g) Pivothead (h) Recon Jet

Figure 1.1: Activity recording cameras (©Google).

videos, e.g. in sports and augmented reality systems [4, 71, 81, 104, 108]. Eye trackers are

different from activity recorders with their additional feature to collect user’s attention in a scene,

which will be valuable for human activity recognition and behaviour understanding [13, 30].

Human activities can be motion-oriented individual proprioceptive activities, e.g. Walk [25,

50, 64, 103, 104, 106, 108, 109], or interaction-based activities such as person-to-object interac-

tive daily activities, e.g. Cook, Read, Write and Web browse [30, 66, 69]; and person-to-person

interactions, e.g. Handshake, Hug and Punch [65, 80]. In particular, proprioceptive activities

involve a full-body motion caused by the movement of muscles and joints (Fig. 1.2) and are of

interest in a range of tasks from (self-) monitoring of the elderly to performance analysis of ath-

letes. Some of the proprioceptive activities particularly involve upper-body motion, e.g. Bow and

Waist-turn [108]. These activities can also be more specific sport activities, e.g. Dribble, Defend,

Sprint, Pivot and Shoot [4].

(a)

(b)

Figure 1.2: Some of the proprioceptive activities considered in this work; (a): activities viewed
from an external camera; (b) frames from the first-person vision acquired by a wearable camera
while a user performs the corresponding activity in the top row. The activities in order are Bow,
Sit-Stand, Left-right turn, Walk, Jog, Run, Sprint, Pivot, Shoot, Dribble and Defend.
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(a) (b) (c) (d)

Figure 1.3: Sample frames showing some of the challenges in proprioceptive activity recognition
in first-person vision: (a) outlier motions; (b) illumination changes; (c) motion blur; and (d)
self-occlusions.

1.2 Challenges

The main challenges for the accurate and robust analysis of activities from FPV include occlu-

sions, motion blur, illumination changes and local motions that do not reflect the activity being

performed (e.g. other people captured by the camera) (Fig. 1.3). In addition to this, the specific

mounting position of the camera makes the problem more difficult because of self-occlusions [94]

(especially for chest-mounted cameras) and spurious motions [71, 104] (especially for head-

mounted cameras). Other sensors, such as inertial sensors, could be used to complement the

video acquisition in order to address these challenges [64, 104]; however, the signals generated

by these additional sensors would require synchronization with the video stream.

Proprioceptive activities are characterized by full-body (global) motion [4], hence, it is nec-

essary to extract features that encode magnitude, direction and dynamics of the global motion

while smoothing the noisy local motions [70, 81, 104, 108]. In addition, effective integration

of multiple features is required, which exploits the discriminative characteristics of each feature

group.

Besides the motion dynamics inside a short video segment, it is crucial to encode the long

term motion dynamics that reflect the temporal dependency among activities, which is often im-

plemented with complex modelling frameworks [50, 104]. In addition to temporal relationships,

the exploitation of their hierarchical relationship also provides plausible classification of the ac-

tivities.

The lack of validation datasets is another challenge in the proprioceptive activity recognition

in FPV. This is partly because FPV-based research is relatively at its early stage compared to tra-

ditional (third-person) vision research. Particularly, the lack of data makes it difficult to explore

the recent advances of deep neural architectures in the field.
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1.3 Problem formulation

Let VVV =(Fk)
Nv
k=1 be a video sequence captured from FPV and it contains Nv frames. Let C =

{c j}Nc
j=1 denote a set of Nc ego-centric activities (classes). VVV might contain only one activity or

more activities that occur one after the other. Hence, a windowed segment, Vn, often corresponds

to a single activity c j ∈ C. Vn segmented on the transition between two activities takes the one

with the longest duration as its label. The main aim of the thesis is to exploit the short- and long-

term motion dynamics in order to recognise the activity label corresponding to Vn. In addition

to the temporal encoding, hierarchical relationships among activities, environment (appearance)

and multi-modal information can be utilised. While allowing local motions due to occlusions,

we assume that a global motion is dominant over the majority of the frames in Vn.

1.4 Contributions

The main contributions of the thesis are the following:

• To design multiple motion features in FPV that encode the dynamics, direction and magni-

tude of optical flow data both in time and frequency domains. In addition, we propose novel

virtual-inertial features from video without using the actual inertial sensor, which comple-

ment the grid-based inertial features [1, 4]. Extensive experiments that include sensitivity

to parameter values and robustness to noise demonstrate the goodness of the method.

• To propose a framework that encodes the hierarchical relationships among activities and

exploits the temporal continuity during modelling and decision [1]. The outputs of the

hierarchy from previous samples are temporally weighted and confidence-based decision

smoothing is applied during classification. In addition to grid-based and centroid-based

low-level features, we employ pooled frame-level appearance features in the pipeline that

has been demonstrated to improve the performance. To address the class imbalance prob-

lem, we propose a balancing strategy that undersamples data-rich activities and oversamples

data-scarce activities.

• We propose a novel global motion representation that contains a stack of spectrograms of

different axial motion components [3]. The stacking helps us to employ 2D convolutions

rather than 3D to extract/learn high-level short-term temporal information, which also ex-

ploits the intrinsic relationships between motion components and reduces the amount of
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training data necessary and therefore the complexity. The LSTM is shown to improve the

recognition performance by encoding the long-temporal dependency.

• We apply a cross-domain knowledge transfer between virtual and inertial data [2]. Partic-

ularly, by stacking the spectrograms of different components of inertial data, we employ

existing image-based deep convolutional networks to encode motion features rather than

designing a dedicated deep framework on the inertial data and train it from scratch. In

addition, we propose a sparsity weighted combination of multiple features from different

modalities, e.g. inertial and visual streams. To the best of our knowledge, this is the first

work that takes into account deep features extracted from egocentric inertial and FPV data.

• Two datasets are collected and made publicly available to facilitate research in FPV. The

datasets include indoor activity recognition (IAR) and basketball activity recognition (BAR)

.

1.5 Organization of the thesis

The thesis is organized as follows. Chapter 2 reviews the existing methods in FPV-based propri-

oceptive activity recognition related with data capture, extraction of multiple features, classifiers,

temporal context exploitation, feature fusion and performance evaluation.

Chapter 3 presents the extraction of multiple motion features that encode the direction,

magnitude and dynamics of optical flow motion data, both in time and frequency domains. The

extraction of novel virtual-inertial features from the movement of intensity centroid is also pre-

sented. Existing hand-crafted features are compared against the concatenation of the proposed

motion features and validated on multiple datasets.

Chapter 4 introduces a multi-layered modelling framework that contains both hierarchical

and temporal modelling of activities. The hierarchy is designed manually in order to encode the

natural hierarchical relationships among activities, whereas the temporal relationship is encoded

both during modelling and decision stages. Features from multiple motion sources are weighted

by their temporal distance from a current sample and a confidence-based decision is applied

later. New temporal pooling operations are presented on frame-level appearance features. The

framework is validated on the largest FPV datasets of proprioceptive activities and compared

against the state-of-the-art methods.

Chapter 5 focuses on the use of high-level motion features extracted using existing deep
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neural networks. This contains an intra-sample encoding, i.e. a novel stacked spectrogram rep-

resentation of short-term global motion information that enables us to employ 2D convolutions

rather than the more complex 3D convolutions. This also helps to exploit existing convolutional

models trained on large image datasets. Hence, high-level motion features are extracted from

the spectrograms of optical flow and centroid movement without training a dedicated deep con-

volutional neural networks. Inter-sample temporal encoding is performed using long short-term

memory (LSTM) recurrent neural network (RNN) , which encodes the long-term temporal de-

pendency among activities. The proposed CNN features in FPV are compared with existing video

representations. We also present cross-domain knowledge transfer between vision-and inertial-

based recognition of egocentric human activities. Sparsity-weighted combination of multi-modal

information is presented that weight the information based on its discriminative characteristics.

The sparsity weighting is validated on multiple inertial and visual datasets.

Chapter 6 concludes the thesis and outlines future research directions on FPV-based propri-

oceptive activity recognition.



Chapter 2

State of the art

2.1 Introduction

In this chapter, we describe the state-of-the-art proprioceptive activity recognition in FPV. We

provide an in-depth description of the main stages, namely data capture, feature extraction and

classification (see Fig. 2.1). Data capture represents the collection of first-person videos us-

ing wearable cameras that may have different specifications and can be mounted at different

parts of the human body. Feature extraction refers to the encoding of robust features that help

to distinguish activities. The features can be manually designed using task-specific knowledge

(handcrafted) or learned from data. Efficient fusion of features is necessary to integrate informa-

tion from multiple streams or modalities. Classification includes the recognition of activities by

exploiting the discriminative characteristics of the features using activity modelling procedures.

Moreover, we discuss key components of the recognition pipeline such as temporal context ex-

ploitation, which encodes the temporal relationships among activities and improves the recog-

nition performance. Existing solutions that address FPV challenges, such as self-occlusion and

motion blur, are also discussed across the stages in the pipeline.

This chapter is organized as follows. Section 2.2 describes data capture modes using wear-

able cameras and publicly available datasets for validation. Section 2.3 presents state-of-the-art

motion encoding and filtering techniques followed by feature extraction, learning and fusion.

Section 2.4 discusses classifiers, temporal context exploitation techniques and decision-level fu-

sion of different feature groups. Multiple recognition performance metrics and decomposition

7
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Figure 2.1: A unified pipeline for a generic proprioceptive activity recognition system that uses
data from a wearable camera. The switches account for alternative state-of-the-art methods.

strategies of available data to train and test sets are also described in-detail. Finally, Section 2.5

concludes the review and outlines future directions.

2.2 Capturing proprioceptive activities

Commonly studied proprioceptive activities (see Fig. 2.2) involve full-body motion, e.g. Walk,

Run, Go-upstairs, Go-downstairs, Sit-down and Stand-up or upper-body motion, e.g. Bow and

Waist-turn [71, 106, 108]. Examples of key frames for some of the activities are shown in Fig. 2.3.

Stationary states, such as Sit, Stand and Lie, might contain motion while the user is stationary

[71].

Figure 2.2: Venn diagram of different related works that shows commonly studied proprioceptive
activities. Each box represents an existing work referred as shown in its bottom right corner.
Inside each box are shown the corresponding proprioceptive activities studied.
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Figure 2.3: Sample key frames from first-person videos of different activities.

Data capture for proprioceptive activities often employs either chest- or head-mounting of

wearable cameras. Chest-mount capture provides stable videos, but it might contain self-occlusions,

particularly due to user’s hands (see Fig. 2.3 (k)) [64, 108, 109]. Head-mount is subject to large-

scale and noisy head-motion though it provides more FPV characteristics, i.e. both the subject

and the camera tend to share similar field of view [50, 71]. A camera can also be embedded on

eyeglasses that achieve a more natural positioning to record what the user sees [103, 104, 105,

106]. Beyond the proprioceptive activity framework, other mounting positions such as wrist [60]

can be employed to record objects that are manipulated by a user’s hands. Recent trends show

that a head-mount is often preferred over a chest-mount for data capture (see Table 2.1) as the

former possesses better FPV characteristics.

Proprioceptive activity recognition from first-person videos is an emerging field that does not

have a standard validation dataset yet. The few existing datasets are often affected by the class



Chapter 2: State of the art 10

imbalance problem, which is the disproportional representation of activities in a dataset [70, 71].

To facilitate the improvement of the state of the art, we list publicly available datasets that can be

used for validation in Table 2.1.
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Table 2.1: Summary of public datasets that can be used for the validation of proprioceptive activity recognition frameworks. #: number; I: indoor; O: outdoor;
IO: indoor/outdoor; C: chest; H: head; E: eyeglasses; Res/Fr: resolution and frame rate; D: contains different resolutions and frame rates; IMU: inertial
measurement unit; Mic.: microphone; ET: eye tracker; TPV: third-person vision; NS: not specified; S and F are segment- and frame-level annotations.
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IAR [4] I C Walk, Run, Sit down, Stand up, Jump, Go-upstairs/downstairs, Turn 1080p60 0.67 394 1 S

BAR [4] O C
Bow, Defend, Dribble, Jog, Left-right turn, Shoot, Sit-stand, Sprint,
Walk

720p30 1.20 331 4 S

HUJI [70, 71] IO H
Walk, Sit, Ride bus, Drive, Static, Stand, Cycle, Run, Go-upstairs, Ski,
Horseback ride, Sail, Box, Cook

D 82 122 NS S

LENA [89] IO H
Watch videos, Read, Browse internet, Walk, Run, Eat,
Go-upstairs/downstairs, Phone talk, Talk people, Write, Drink,
Housework

960p30 2 260 10 S

MMD [90] IO H
Walk, Ride elevator/escalator up/down, Sit, PC activities, Eat, Drink,
Phone text, Make phone calls, Run, Push-ups, Sit-ups, Cycle

720p30 1.50 200 NS IMU S

UEC Park [50] O H Different ego actions (29) in a park, e.g. Jog and Walk 480p60 0.50 2 1 S

FPSI [31] IO H
Individual activities (e.g. Walk) and social interactions
(e.g. Discussion)

720p30 42 113 8 S

ADL [69] I C Daily indoor activities (18), e.g. Brush teeth 960p30 10 20 20 F
UTE [53] IO H Lifelog of activities such as Eat, Attend lecture, Drive and Cook 320p15 17 10 4 F

CMU-MMAC [91] I H
Cook five different recipes: brownies, pizza, sandwich, salad and
scrambled eggs

600p30 17 185 39
Mic.,
IMU

F

GTEA [33] I H
Make hotdog sandwich, instant coffee, peanut butter sandwich, jam
sandwich, sweet tea, cheese sandwich and coffee with honey

720p30 0.50 28 4 F

GTEA Gaze [32] I E
Make American breakfast, Turkey sandwich, cheese burger, Greek
salad, pizza, pasta, salad and afternoon snack

480p30 1 17 14 ET F

GTEA Gaze+ [32] I E Similar to GTEA Gaze activities above but more complex 960p24 5 30 10 ET F

NUSFPID [65] I H
Human-human (e.g. Wave), human-object (e.g. Typing),
human-object-human interactions (e.g. Pass object)

720p30 0.25 260 NS TPV S

UTokyo [66] I E
Read book, Watch video, Copy text on screen, Write and Browse
internet

960p30 2 60 5 ET S

EGO-
SENSORS

[7] IO E Bike, Jog, Run, Stand up, Walk and Wander NSp30 2.78 NS NS IMU S
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Note that while some of these datasets might be originally designed for the validation of in-

teractive activities (e.g. social interactions [31] and cooking activities [91]); they can be utilised

for proprioceptive activity validation by applying appropriate reannotation, e.g. relabelling the

majority of Cook activities to Stand. This provides diverse representation of proprioceptive ac-

tivities in different settings. We also provide important characteristics of the datasets, such as

environment type, frame rate, resolution, number of subjects and duration. After the first-person

videos are collected, the video data are often resized and resampled into smaller values in order

to improve the processing speed [71, 105].

2.3 Feature extraction and fusion

This section discusses how apparent motion is estimated in first-person videos of proprioceptive

activities. The motion is often dominated by a global motion due to the user’s full- or upper-body

motion, and it can be encoded as optical flow or displacement of keypoints. Handcrafted features

that encode salient characteristics of the motion are extracted. Handcrafting refers to the manual

designing of the features tailored to solve a specific problem. We also describe the learning of

features from data using deep neural networks and the feature-level fusion of multiple feature

groups. The summary is given in Table 2.2.

2.3.1 Optical flow

Optical flow is the main source of motion features (see Fig. 2.4) for proprioceptive activity

recognition [70, 71, 104]. It can be derived using a direct motion estimation technique [45]

that achieves subpixel accuracy. A grid representation of the optical flow is often preferred to

a dense representation in order to avoid redundancy in the assumption of global motion domi-

nation [70, 104, 108]. According to the level of complexity employed, we can categorize op-

tical flow-based features into three groups: raw grid, direction and magnitude histogram, and

frequency-domain features.

Raw grid features are obtained from the optical flow data with minimum processing. This

includes average pooling (AP) [103, 104, 105, 106], which concatenates horizontal and vertical

grid components across frames. Poleg et al. [70] used the radial projection response of grid

optical flow vectors to discriminate moving from stationary. Similarly, hard-coded rules on grid

vector direction (θ ) were employed to classify activities, e.g. Left-turn satisfies 0◦ < θ < 90◦ or
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Table 2.2: Summary of the state-of-the-art feature extraction, motion filtering and feature-level
fusion of multiple feature groups. RANSAC: random sample consensus.

[81] [71] [70] [104] [103] [106] [50] [108] [64] [105] [109]

Features

Optical flow

Raw grid feature 3 3 3 3 3 3

Grid direction histogram 3 3

Grid magnitude histogram 3

Grid gradient histogram 3

Grid frequency feature 3

Keypoint displacement Direction histogram 3 3

Learned features
Pooled deep-appearance feature 3

Deep motion feature 3

Filtering

Thresholding 3 3 3

RANSAC-based filtering 3 3 3 3

Gaussian smoothing 3

Average pooling 3 3 3 3

Feature-level fusion 3 3 3 3

270◦ < θ < 360◦ in [64]. The discriminating capability of raw grid features is limited since

specific motion characteristics such as magnitude and direction are not exploited enough in order

to achieve a robust and compact motion feature representation.

Direction (see Fig. 2.4 (b)) and magnitude (see Fig. 2.4 (c)) histograms of the flow vector

provide more discriminant features [50]. Motion magnitude and direction components are gen-

erally exploited separately to increase the discrimination. For example, Sit-down and Stand-up

can be distinguished by exploiting their motion directions, whereas magnitude information helps

differentiate Walk and Sprint. The histogram provides a compact representation of the direction

and/or magnitude components of the grid flow data [50, 81]. The histogram might be applied

using joint spatial and direction bins [81], or joint magnitude, direction and magnitude variance

bins [50]. The inclusion of spatial bins [81] is comparatively less effective since multiple pro-

prioceptive activities can be performed in a similar environment. In addition, Ryoo et al. [81]

employed motion boundary histogram as one of the multiple motion features from optical flow

data that compensates the camera motion, and it is obtained by applying a spatial derivative on the

horizontal and vertical optical flow components separately, followed by a magnitude-weighted

histogram of motion direction [99].

Frequency-domain features encode temporal characteristics in the frequency-domain, and

they improve discrimination using frequency-domain analysis. The standard deviation of mag-

nitude and direction components in time-domain can only encode the high-level motion dynam-

ics. However, frequency-domain analysis exploits the low-level motion dynamics and helps dis-

tinguish similar activities, e.g. Sprint and Run (see Fig. 2.4 (c)) as Run involves less frequent

changes in motion dynamics [4]. Kitani et al. [50] extracted frequency-domain features from the

horizontal and vertical grid components independently. The frequency-domain features can be

represented by selecting the low-frequency coefficients that are robust to noise, but the represen-
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(a) Key frames

(b) Direction histogram

(c) Magnitude histogram

(d) Direction spectrogram

Figure 2.4: Examples of features derived from the optical flow to encode different motion char-
acteristics of Walk, Run and Sprint. (a) Key frames of the activity in the corresponding column;
(b) direction histogram representations; (c), (d) the activities can be easily discriminated using
the magnitude histogram and the frequency-domain analysis of the direction information, respec-
tively.

tation does not include the full spectrum characteristics. Similarly to the number of magnitude

and direction bins for the histogram representations, the numbers of frequency bands and low

frequency coefficients need to be carefully set to avoid under/over-quantization.

2.3.2 Keypoint displacement

Spatial change of keypoints across frames can also be used to infer apparent motion, which in-

volves detection, description and matching of interest points. The detection of the interest points

can be either blob-based or corner-based based on their spatial structure. Examples of blob-
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based detectors include scale-invariant feature transform [56], speeded-up robust features [12]

and center surround extremas [5]. Examples of corner-based detectors include features from ac-

celerated segment test [78], adaptive and generic corner detection based on the accelerated seg-

ment test [61] and binary robust invariant scalable keypoints [54]. After a keypoint is detected,

its neighbourhood is described fulfilling robust characteristics, such as invariant to rotation, us-

ing a binary or non-binary descriptor [36, 82, 95]. Using a binary descriptor makes matching

computationally easier since Euclidean distance can be replaced by a Hamming distance that can

be calculated using a bitwise XOR operation [6, 54, 79].

Zhang et al. [109] proposed a keypoint-based feature, inspired by the earlier work of Shi

and Tomasi [85]. The matching output of the descriptors was refined by uniqueness (one-to-

one correspondence) and epipolar constraints [39]. The frame motion was estimated as a set

of displacement vectors between matched descriptor pairs. The direction of each displacement

vector that satisfied a magnitude threshold was quantized using a histogram representation. The

work was later upgraded to achieve multi-resolution detection of interest points in [108]. Average

standard deviation [109] and combined standard deviation [108] of the histogram representation

were employed to encode the temporal characteristics that improved the classification accuracy.

Since Zhang et al. [108, 109] did not exploit the magnitude information and encode the dy-

namics in-detail, their recognition performance is inferior to more advanced features that exploit

those characteristics [50]. Generally, keypoint-based methods can handle large displacements.

However, they are less effective in poorly textured first-person videos, which are often blurred

due to high egomotion.

2.3.3 Learned features

Convolutional neural networks (CNNs) have been successfully applied to learn high-level fea-

tures from data [47, 71, 83]. Similarly, FPV features can also be learned from egocentric videos

using deep neural networks. Motion features can be directly learned [58, 71, 88, 107] or derived

from the temporal pooling of deep appearance features [81].

Poleg et al. [71] proposed a compact CNN taking a sparse grid volume as input and learned

motion features that are demonstrated to outperform the handcrafted features in their previous

work [70]. The network was derived from the temporal component of an existing two-stream

network [86], and it was designed with a 3D convolutional layer followed by a 3D pooling to

handle the 3D input data [96]. 2D convolution layers were applied afterwards, which suppress
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the long-term temporal dependency too early in the network. Though the deep motion features

are shown to be transferable across datasets of similar nature [71], the interpretation of the knowl-

edge learned at different layers requires further study.

On the other hand, motion can be inferred from the variation of per-frame appearance de-

scriptors, which are learned from data, using temporal pooling operations. Ryoo et al. [81]

proposed different pooling strategies that treat each descriptor element across frames as time-

series data. The summation and maximum pooling of the appearance features are not effective

to encode multi-resolution temporal variations. But time-series gradient pooling achieves en-

coding of short and long temporal variations by applying first-order temporal derivative on each

descriptor element [81]. The summation and histogram of positive and negative gradients pro-

vide two-stream variation encoding. Comparatively, the histogram representation describes the

short-term variation more effectively since its score depends only on the sign of the gradients.

This technique could also be applied to handcrafted appearance descriptors such as the histogram

of oriented gradients [81].

The discriminative capacity of the feature space can be further improved by encoding more

detailed temporal characteristics in the frequency domain. In addition to the temporal variation

of the appearance, static appearance information can also be useful when activities are correlated

with certain environmental settings, e.g. Going upstairs involves staircases [81, 99].

2.3.4 Filtering and feature-level fusion

A variety of filtering approaches are applied to discard noise in the apparent motion or falsely

matched descriptors [104, 106, 109, 108]. Common filtering techniques include threshold-

ing [70, 108, 109], random sample consensus (RANSAC) based filtering [35, 50, 105, 108, 109],

Gaussian smoothing [70] and temporal averaging [103, 104, 105, 106]. In thresholding, motion

vectors with magnitude values less than a threshold are removed [70, 108, 109]. RANSAC [35]

can be employed to discard outliers among optical flow vectors [50, 105] or falsely matched de-

scriptors [108, 109]. Gaussian smoothing can also be applied where there is a high variance of

motion data [70]. Average pooling of temporally adjacent grid vectors is also reported to improve

the recognition performance [103, 104, 105, 106]. Thresholding and average pooling are simple

filtering techniques; however, thresholding might completely remove useful motion information

whereas average pooling is less efficient to overcome local motion. Gaussian smoothing and

RANSAC-based filtering impose the egomotion domination for proprioceptive activity recogni-
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tion.

Egocentric proprioceptive activity recognition often involves multiple discriminative features

since it is difficult to discriminate the activities using a single feature type [50, 70, 108, 109].

Moreover, some methods employ additional modalities, e.g. inertial sensors, to complement vi-

sual features [64, 103, 104].

Feature-level fusion can be applied to integrate feature groups into a single feature vector

prior to the classification [50, 70, 81, 105]. Feature-level fusion needs to be carefully applied

on multiple feature groups with equivalent scales and dimensions. Otherwise the discriminative

characteristics of lower-dimensional and small-scale feature groups could be suppressed as the

result of the feature-level fusion, which often employs concatenation.

2.4 Classification and post-processing

In this section, we review different types of classifiers and post-processing techniques that in-

clude the exploitation of temporal context and the decision-level fusion of multi-modal/stream

information. We also present performance metrics and train-test decomposition strategies used

for validation (see Table 2.3). The modelling of an activity can be performed in either a one-

vs.-one (OVO) or one-vs.-all (OVA) approach in a multi-class classification problem. The OVO

approach employs a model for each possible class pairs, and during testing the winning class is

assumed to be dominant across the majority of the binary classifications. The OVA, also referred

as one-vs.-remaining, approach uses a single model for each class that differentiates it against all

the remaining classes. The OVA training strategy is often preferred due to the high number of

models required in the OVO modelling, particularly when the classification involves more than

three classes.

2.4.1 Classifiers

The classifiers employed for proprioceptive activity recognition can be discriminative or gener-

ative. Support vector machine (SVM) is the most commonly employed discriminative classifier

in the state of the art due to its high margin decision boundary. The majority of existing works in

Table 2.3 employed SVM in their pipelines. Polynomial and Gaussian kernels are often preferred

to map the original feature space into a high-dimensional space [103, 104]. In addition, multi-

channel Chi-square kernels are also used to integrate multiple visual features [81]. K-nearest
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Table 2.3: Summary of the state-of-the-art classifiers and post-processing techniques for propri-
oceptive activity recognition. OVO: one-vs.-one; OVA: one-vs.-all; -: not applicable.

[81] [71] [70] [104] [103] [106] [50] [108] [64] [105] [109]

Modelling
OVO 3 3 3 -
OVA 3 -

Classifiers

Support vector machine 3 3 3 3 3 3 3 3 3

K-nearest neighbor 3 3 3

Logitboost 3 3 3 3

Naive Bayes 3 3

Hidden Markov model 3 3 3 3

Dirichlet mixture model 3

Conditional random field 3 3

Convolutional neural network 3

Supervision
Supervised 3 3 3 3 3 3 3 3 3

Unsupervised 3

Temporal encoding
Model-level 3 3 3 3 3

Decision-level 3

Decision-level fusion 3 3 3

neighbour (KNN) is often used as a reference to evaluate the performance of a main classifier

(e.g. SVM) [4, 50, 106, 108]. Logitboost is an advanced version of adaboost [37] that exploits

weak classifiers via cascading [103, 104, 105, 106]. Naive Bayes classifiers are simple proba-

bilistic classifiers that can be employed for proprioceptive activity classification [50, 92, 108].

Hidden Markov models (HMM) are basic sequential generative models [15, 72, 92] that

are often applied to smooth the decision outputs of main classifiers [104, 105, 106]. Another

generative model, the Dirichlet mixture model [16], is used for unsupervised segmentation of

sport actions [50]. Conditional random field is a discriminative classifier, and it also offers

graphical modelling characteristics [92] that enable structure learning across multiple temporal

scales [103, 104].

Generative models are generally outperformed by discriminative ones due to the bigger data

requirements of generative models to encode the relationships among feature elements. However,

they might be preferred in the following cases: i) when the observation values are missing, ii)

when the observation model has a useful smoothing effect on the label prediction or iii) when

there is a need to predict both the observation and the label [15, 48, 92, 98].

In summary, while SVM-based classification has been successful to date, the use of deep

networks is growing in proprioceptive activity recognition [58, 71, 81, 88, 107] and it is facili-

tated by the transferability of deeply learned features across different activity sets [71] or motion

sources [107]. In addition to spatial and temporal streams [58, 107], deep frameworks can be

extended to have an egocentric stream that encodes FPV characteristics [88]. Poleg et al. [71]

proposed a CNN that is trained end-to-end to learn motion features from a volume of grid optical

flow data using 3D convolutions. However, the complexity increases significantly with respect

to image-based (2D) networks [47, 83]. Apart from [50], existing classifiers employ the ground
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Figure 2.5: Temporal relationships among basic proprioceptive activities. The arrows indicate
higher subsequent-occurrence likelihood between the corresponding activities. Activities inside
the dashed boxes also possess high subsequent-occurrence likelihood. Color codes – Red and
Magenta: activities involving the full- and upper-body motions, respectively; Green: the user
may be stationary; Blue: transition activities.

truth data for supervision.

2.4.2 Temporal context exploitation

The proprioceptive activity classification is generally performed on a clip that lasts for two [50,

81], three [103, 104] or four [71] seconds. The duration of the clip can increase (e.g. up to 17

seconds) for long-term activities [70]. The clips are commonly 50% overlapped [71, 103, 104].

Zhang et al. [108] adopted different temporal durations for different activities, e.g. five seconds

for Sit-up and Sit, six seconds for Bow, eight seconds for Crouch and twelve seconds for Waist-

turn.

Temporal context exploitation (TCE) refers to the encoding of long-term temporal relation-

ships (see Fig. 2.5) among subsequent clips [50, 71, 103, 104, 106]. TCE aims at utilising contin-

uous occurrence of an activity and subsequent occurrences of activities. Continuous-occurrence

exploitation assumes that the activity is more likely to continue if it has been performed for some

time. Subsequent-occurrence encoding involves the exploitation of different transition likelihood
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of activities from one to the other, e.g. Sit is more likely to transit from Stand than from Run.

TCE can be performed at model-level or at decision-level.

Model-level temporal context encoding (MTCE) involves iteratively modelling of the tempo-

ral information encoded between previous and current samples. Examples include: multi-scale

conditional random fields, where each node represents a different time index [103, 104]; Dirichlet

mixture models, designed to maximize the posterior distribution of a current sample given the la-

belling of the previous samples [50]; and modelling of the SVM outputs using HMM [105, 106].

Model-level encoding has a high degree of flexibility to exploit complex temporal relationships

among activities.

Decision-level temporal context encoding (DTCE) refines the final classification output of the

current sample towards the outputs of the previous samples without an iterative modelling. This

can be implemented using a simple smoothing such as accumulative weighting [71]. Decision-

level encoding might result in a rough smoothing of current information with limited capability

to exploit subsequent-occurrence likelihoods.

Generally, temporal relationships need to be encoded at different temporal scales to effec-

tively recognize proprioceptive activities. Recurrent neural networks (RNNs) are specific classes

of deep neural networks designed to achieve MTCE [29, 59, 87]. Particularly, long short-term

memory (LSTM) networks are specific types of RNNs that are effective to learn long-term tem-

poral dependency using input, output and forget gates that act as switches to solve the vanishing

and exploding gradient problems in the vanilla RNN.

2.4.3 Decision-level fusion

Decision-level fusion utilises different feature groups by post-processing their classification out-

puts, e.g. averaging. Decision-level fusion resembles DTCE discussed above. The difference

is that DTCE works across samples at different temporal indices whereas the decision-level fu-

sion does across samples from different feature groups at a given temporal index [64, 103, 104].

Though feature-level fusion is easier to combine multiple visual features, decision-level fusion

is preferred for multi-modal features since independent local classification is often performed

primarily for each modality [64, 104]. The local classification outputs are later exploited for the

final decision (e.g. majority vote) [64]. In addition, decision-level fusion is preferred when the

feature groups involve different dimensions and scales.

A hybrid of feature-level and decision-level fusions could be more effective in some cases,
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Table 2.4: Summary of train-test decomposition strategies used for the validation of propriocep-
tive activity recognition.

[81] [71] [70] [104] [103] [106] [108] [64] [105] [109]
Decomposition per subject data 3 3

Decomposition per activity data 3 3 3 3 3

Leave-one-subject-out 3 3 3

Leave-one-data-group-out 3 3 3 3

Fixed train samples per activity 3 3

e.g. when multiple features are extracted from each modality in a multi-modal sensing. As a

result, a feature-level fusion is applied on the same modality features, and a decision-level fusion

is applied on the separate classification outputs of different modalities. Another situation is

when multiple features are extracted from different feature sources in a single-modal sensing.

Examples of these feature sources include optical flow, keypoint displacement and variation of

intra-frame appearance in FPV. Therefore, features from similar source are first combined at

feature-level, and then classification outputs of different sources are integrated at decision-level.

2.4.4 Performance measures and decomposition strategies

In addition to computational complexity [108], precision (P) and recall (R) are the commonly

employed performance metrics, which quantify true positive (TP) with respect to false positive

(FP) and to false negative (FN), respectively [50, 71, 103, 104]. F-score is the harmonic mean of

precision and recall as 2∗P ∗R/(P+R), and it performs well in highly-biased datasets since it

is independent of the class distribution. However, specificity, which evaluates true negative (TN)

to false positive (FP), is not very informative of the recognition performance in the commonly

employed OVA modelling strategy. This is because the OVA results in a highly disproportional

TN compared to TP. As a result, all activities tend to achieve high specificity, which does not

reflect the TP.

A supervised proprioceptive activity recognition can employ different strategies for decom-

posing a dataset into train and test sets (see Table 2.4). The strategies may vary according

to the type and ratio of the decomposition. The type of decomposition is often either per-

subject [103, 104] or per-activity [108, 81, 106, 64, 109]. Decomposition per-subject data in-

volves grouping the data collected by each subject into train and test sets [103, 104]. On the other

hand, per-activity decomposition uses a subset of videos collected by all subjects for each activ-

ity as the train set, and the remaining videos are included in the test set [64, 81, 106, 108, 109].

Different ratios of train to test data are reported in the state of the art [71, 104].

Decomposition per-subject and per-activity in a multi-subject dataset might result in having
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data from a single subject both in train and test sets, which increases the resemblance of the two

sets. Leave-one-subject-out validation avoids the resemblance by using the data from a single

subject for testing, while the data from all the remaining subjects is used for training [104]. Data

from more subjects can be left out rather than just one subject. In addition, the available data can

be categorized into plausible groups, and leave-one-data-group-out validation can be applied to

test the transferability of knowledge across different groups. An example can be the grouping of

patients’ data according to their disabilities [104].

Generally, train-test decomposition strategy should aim at making the test on future obser-

vations that are unseen during the training stage. As a result, when there are multiple subjects

in a dataset, one-subject-out and subject-based leave-one-data-group-out validations reduce the

resemblance between the train and test sets. On the other hand, similar videos from a single

subject might appear in both sets during per-activity train-test decomposition. The majority of

the train-test decomposition schemes mentioned above can also be affected by the class imbal-

ance problem existing in many datasets, which represents unbalanced amount of data among

activities and/or subjects. Using a fixed amount of training data for all activities can address this

problem [70, 71].

2.5 Summary

We reviewed proprioceptive activity recognition in FPV and critically discussed its key compo-

nents. In order to discriminate different proprioceptive activities, the features are designed to ex-

ploit available motion peculiarities, such as magnitude, direction and dynamics. Comparatively,

optical flow-based techniques are robust as they are able to estimate motion in the presence of

challenges, such as weak texture and motion blur. We propose virtual-inertial features extracted

from first-person videos in order to complement optical flow features without using the actual

inertial sensor (see Chapter 3) [4]. In addition to multiple motion feature groups, we propose

to exploit hierarchical relationships among activities and temporal contexts at modelling and

decision stages of the recognition pipeline (see Chapter 4).

With the growing size of publicly available datasets and the success of deep networks across

different application domains, high-level learned features are expected to outperform handcrafted

features. The learning can be implemented to provide: i) frame-level appearance and motion

descriptors using 2D convolutions followed by temporal pooling operations or ii) spatio-temporal
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features using 3D convolutions. As a result, the direct learning of motion features involves

high computational complexity. We propose a stacked spectrogram representation of the global

motion in FPV (see Chapter 5), which enables learning of motion features using 2D convolutions

and hence reduces the complexity [3]. It also provides transfer learning capability from large

image datasets. Existing methods do not encode temporal information beyond a few seconds.

Hence, we employ long short-term memory (LSTM) recurrent neural networks (RNNs) to exploit

the long-term temporal dependency among activities [2, 3].

Existing FPV-based proprioceptive activity datasets are separately collected for different re-

search problems, with limited cross-dataset validations. To facilitate the progression in the field,

it is necessary to have an all-inclusive and challenging dataset similarly to ActivityNet [19] - a

large-scale benchmark dataset for human activity understanding in third-person vision.

Wearable camera systems may contain additional built-in sensors (e.g. microphones and ac-

celerometers). As a result, it is necessary to have a seamless integration of the multi-modal

data without posing acquisition complexity and obtrusiveness. We also propose a cross-domain

knowledge transfer that can enhance performance while weighting different modalities or streams

of data accordingly to their merits [2]. This is particularly important when there is a scarcity of

data to train a dedicated deep network from scratch.
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Multiple motion features from first-person videos

3.1 Introduction

In this chapter, we propose a robust motion-feature (RMF) that combines grid optical flow-based

features and video-based inertial features (Fig. 3.1). The types of extracted features are moti-

vated by the nature of variations among activities (Fig. 3.2 and 3.3). Activities such as Sit-down

and Stand-up vary in their direction components (Fig. 3.2(c)) while they possess similar magni-

tude values (Fig. 3.2(a)). Activities such as Sprint and Walk have similar direction information

(Fig. 3.2(d)) but significantly different in their magnitude patterns (Fig. 3.2(b)). In addition to

this, spectrograms of motion direction in Fig. 3.3 show that discriminative features can also be

extracted in the frequency domain.

We develop RMF from the optical flow and virtual inertial data by exploiting direction, mag-

nitude and dynamics of motion in first-person videos (Fig. 3.4). We extract virtual inertial data

from the movement of intensity centroid across frames in a video without physically using in-

ertial sensors. Intensity centroid [77] is analogue to a center of mass in physics where a rigid

body experiences a zero-sum of weighted relative location of its distributed mass. The centroid

is computed from weighted averages of intensity values, i.e. image moments [26, 79].

The proposed RMF is generic and can be employed with any classifier. In particular, for

validation we use support vector machines (SVM) and k-nearest neighbours (KNN) to test the

proposed RMF and compare its performance with state-of-the-art motion features, experimented

across different datasets. In order to facilitate the research, we collect two datasets that are

24
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made publicly available. The first dataset is used to experiment indoor ambulatory recognition

(IAR) of eight activities and the second is related to basketball activity recognition (BAR) of

eleven activities recorded in an outdoor court. To the best of our knowledge, BAR dataset is the

first dataset that contains basketball activities in FPV 1. In addition to IAR and BAR, we also

validate the experiments on two publicly available datasets: JPL-interaction dataset [80] of seven

activities and DogCentric [46] dataset of ten activities.

Figure 3.1: The overview of the proposed proprioceptive activity recognition system in which
highlighted blocks show our contributions. IAR: indoor ambulatory recognition dataset; BAR:
basketball activity recognition dataset; GOFF: grid optical flow-based features; VIF: vision-
based inertial features; RMF: robust motion feature; SVM: support vector machine; KNN: k-
nearest neighbourhood.

The organisation of the Chapter is as follows. Section 3.2 presents features extracted from

optical flow. Section 3.3 describes features extracted from the movement of intensity centroid

in a video. Complexity analysis of the proposed framework is presented in Section 3.4. Section

3.5 presents the parameter setup and datasets used for validation. Section 3.6 describes the result

and discussion. Section 3.7 concludes the chapter.

1The datasets and the annotations are available at http://www.eecs.qmul.ac.uk/˜andrea/
FPV.html

http://www.eecs.qmul.ac.uk/~andrea/FPV.html
http://www.eecs.qmul.ac.uk/~andrea/FPV.html
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Figure 3.2: Box plots for average magnitude and direction values for activities in (a,c) IAR and
(b, d) BAR datasets. For each box, the bottom and top edges reflect the 25th and 75th percentiles,
respectively. The central line (‘–’) shows the median. The whiskers at the top and bottom indicate
farthest inliers in both sides. Outliers are represented with ‘+’. Comparatively, the box plots
show that average magnitude of BAR activities is higher and more variant (3.35± 1.16 pixels)
than that of IAR (1.42± 0.58 pixels). From direction point of view, IAR activities show higher
average variation (0.05±0.19 rad) while BAR directions are restricted in−0.01±0.03 rad. S-D:
Stair-down; S-Up: Stair-up; Def.: Defend; Dri.: Dribble; L-R: Left-right turn; Piv.: Pivot; Sho.:
Shoot; S-S: Sit-stand and Spr.: Sprint.
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Figure 3.3: Motion-direction spectrograms that reveal the discriminating characteristics of
frequency-based features. (a): low frequency activities (Bow, Pivot and Walk); (b): high fre-
quency components (Dribble, Jog and Defend).

3.2 Grid optical flow-based features

The proposed motion-features (Fig. 3.4) exploit optical flow data more effectively than existing

optical flow-based features [50, 64, 104, 106]. In order to encode the variation in motion mag-

nitude, direction and dynamics among activities, we extract a set of feature subgroups, namely

Motion magnitude histogram feature (MMHF), Motion direction histogram feature (MDHF),

Motion direction histogram standard-deviation feature (MDHSF), Fourier transform of motion

direction across frame (FMDF) and Fourier transform of grid motion per frame (FMPF).

Given a video sequence VVV = {Fk}Nv
k=1 where each frame [Fk]R×C has a height of R pixels and

a width of C pixels, we compute the Horn-Schunk optical flow [42] for each pair of successive

frames. We select the Horn-Schunk method, rather than the Lucas-Kanade approach [57], be-

cause of its global smoothness assumption which is preferred in our scenario where a global mo-

tion is assumed to be dominant and reflects the ego-motion of a user wearing the camera. Because

a dense optical flow representation of a frame [Ek]R×C contains redundancy of motion information

under the assumption of a dominant global motion, we apply a grid representation [Bk]G×G, where

G refers to the number of grids in each dimension (Sec. 3.5.1 for the analysis part). We build the

grid representation as Bk = Ek(rA,cA), where rA and cA are G-dimensional row and column vec-
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Figure 3.4: Detailed block diagram of the extraction of the proposed multi-dimension motion
features. GOFF: grid optical flow-based features; VIF: vision-based inertial features; FFT: fast
Fourier transform; MMHF: motion magnitude histogram feature; MDHF: motion direction his-
togram feature; MDHSF: motion direction histogram standard deviation feature; FMDF: Fourier
transform of motion direction across frames; FMPF: Fourier transform of grid motion per frame;
ZC: zero-crossing; 4MEKS: minimum, maximum, median, mean, energy, kurtosis and standard
deviation; FF: Frequency-based feature.

tors sampled as rA = (1,1+R/G,1+ 2R/G, ...,R) and cA = (1,1+C/G,1+ 2C/G, ...,C). The

sampling in rA and cA is conducted periodically after every R/G and C/G pixels, respectively, so

that Bk contains sample motions from all regions in a frame. A vectorised representation of grid-

optical flow of a frame includes horizontal and vertical components, i.e. Bk = (Bg
kx
+ jBg

ky
)G2

g=1

. We reduce the dimension of motion-vector from R×C in Ek to G2 in Bk by applying a grid

representation.

We consider the grid motion-vectors of a set of L-frames as an activity sample that is assumed

to contain adequate motion data to be classified as one of the activities in C. L represents the win-

dow length or temporal duration (in number of frames) to be found experimentally (Sec. 3.5.1).

The nth activity sample of a video sequence VVV is formulated as Vn = {Bkn}L
k=1. The number of

activity samples in V depends on its temporal duration, Nv, the window length, L, and overlap-

ping percentage, ν , between a pair of consecutive windows. For example, a video segment with

Nv = 160 frames, L = 100 frames and ν = 50% has approximately three activity samples. Indices
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Figure 3.5: A generic example to demonstrate the step-by-step computation of MMHF using
G = 40 grids and βm = 15 magnitude bins for a Stand-up activity.

of start and end frames become [1,100], [51,150] and [101,160], for the first, second and third

samples, respectively. In order to balance the window length for the third sample, frames from the

preceding sample are replicated and its modified indices become [61,160]. The order of frames

in Vn should be the same with Bk in order to keep the temporal relation across frames, which is

later used to extract frequency-based features. We describe below each element of GOFF for an

activity sample Vn. The discussion on the analysis of parameter values is given in Sec. 3.5.1.

MMHF is derived from the histogram representation of grid optical flow magnitude [In]G2×L.

A generic example of MMHF computation is shown in Fig. 3.5. The magnitude of each grid

motion vector Bg
k is

√
(Bg

kx
)2 +(Bg

ky
)2, and we apply histogram computation on In using βm mag-

nitude bins to obtain the histogram representation [On]βm×L. We apply non-uniform quantization

since the majority in In are less than a single-pixel motion for most of the activities considered.

We apply a Gaussian filter to smooth to In prior to the histogram computation. The histogram

motion representation reduces the motion dimension from G2× L of Vn to βm× L of On since

βm < G2. Finally, the MMHF vector [ fff 1
1n]βm×1 of an activity sample is computed from a normal-

ization per frame, f norm(·), in Eq. (3.1), followed by a temporal accumulation along each bin,

tsum(·), in Eq. (3.2) (similarly to [108]), ∀ j ∈ {1,2, ...,βm}:

Õn( j, i) = f norm(On) = On( j, i)/
βm

∑
b=1

On(b, i), (3.1)

fff 1
1n(b) = tsum(Õn) =

L

∑
i=1

Õn(b, i). (3.2)

The summation, tsum(·), accumulates the histogram representation of the motion magnitude

In. In case some of the L frames contain noise or experience false ego-motion (e.g. due to a

passer-by), their effect on the final feature vector is minimized by the accumulation with other

noise-free frames in tsum(·). f norm(·) helps to scale down the frame-level feature into [0,1] prior

to the accumulation. MMHF is particularly advantageous to discriminate activities which involve
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Figure 3.6: MMHF vectors built from using βm = 15 magnitude bins in the range of motion
magnitudes [0, 1] for Walk, Jog, Run and Sprint activities. The figure demonstrates that Sprint
and Run contain higher magnitude values in the 15th bin and few motion grids of lower magnitude
values, opposite to Walk, whereas Jog endures intermediate values as expected.

similar direction patterns but different motion magnitudes. Examples include Walk, Jog, Run and

Sprint for which the MMHF vectors are plotted in Fig. 3.6. MMHF values after normalization

confirm the actual variation of motion magnitudes for these activities. Numerically, Sprint, Run

and Jog video segments in BAR dataset (720×1280 resolution and 30 fps) are found to contain

87%, 81% and 62% of the frames with average magnitude greater than one pixel, respectively;

while only 45% of the frames have such magnitude value in a Walk segment.

MDHF represents the motion direction that is determined as arctan2(Bg,y
k ,Bg,x

k ) for a grid Bg
k

as a histogram. MDHF is computed similarly to the MMHF shown in Fig. 3.5, but using motion

direction instead of magnitude; hence, it is vital to distinguish activities that might have similar

motion magnitudes (Fig. 3.7). We develop the histogram representation [Pn]βd×L from motion-

direction of an activity sample [Jn]G2×L using βd direction bins, where each bin covers a range of

(2π/βd) degrees. The histogram representation reduces the motion dimension from (G2×L) of

Vn to (βd×L) of Pn since (βd < G2). Then the normalization in Eq. (3.1) and the summation in

Eq. (3.2) are applied on Pn in order to obtain the MDHF vector, fff 2
1n.

MDHSF represents the standard deviation of each direction bin in MDHF across Pn, formally,

[ fff 3
1n]βd×1 = σ([Pn]T ), where σ(·) represents the standard deviation function. Activities that

involve high ego-motion (e.g. Sprint and Run) tend to possess higher variations, whereas slower

activities (e.g. Walk) have minimal variations (Fig. 3.8). Different values of normalized score

deviations, Sprint (0.11), Run (0.09), Jog (0.08) and Walk (0.06), reflect the level of dynamics in

these activities. It is observed that Sprint and Walk relatively experience the highest and lowest

dynamics, respectively.

FMDF is a frequency-domain feature that contemplates the variation of direction bins in Pn;
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Figure 3.7: The MDHF representations of (a) Sit-down, (b) Stand-up, (c) Turn and (d) Walk using
βd = 8 direction bins. Note that the 4th bin, which contains 0 degree, is not shown to achieve
better visualization. It is clearly seen that MDHF vectors of Sit-down and Stand-up are mirror
images to each other, reflecting the opposite motion directions they possess. Sit-down contains
dominant motion direction of −1.35±0.39 rad while Stand-up mainly lie in 1.35±0.39 rad. On
the other hand, the high score of the 5th direction bin centred at 80.79 degrees in (c) shows the
Turning direction in this particular video segment.

and differently to MDHSF, it quantifies the detailed dynamics of motion direction. We compute

the fast Fourier transform (FFT) of each bin in Pn to obtain [Kn]βd×L, which is later decomposed

into N f frequency bands, [Tn]N f×βd . To do so, we consider only the half width (L/2) of Kn due

to the symmetry property of the Fourier transform. The nth
f band of the bth bin in [Tn]N f×βd is

obtained as

Tn(n f ,b) =
γ f

∑
l=γi

Kn(b, l), (3.3)

where each row of Kn is the FFT of the corresponding row in the direction histogram Pn, γi =

1+ (n f−1)L
2N f

and γ f =
n f L
2N f

. The FMDF vector fff 4
1n is derived from Tn using the normalization and
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Figure 3.8: MDHSF examples for Jog, Run, Sprint and Walk activities which are characterized
by similar average direction in Fig. 3.2; but here, they are shown to have different variation of
direction information (MDHSF) which reflects the different level of dynamics in the activities.
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Figure 3.9: FMDF shows the distribution of the frequency response of direction histogram Pn

across N f = 25 frequency bands. All activities in the BAR dataset are seen to store much of their
energy in the lowest frequency bands. The first band is not shown to visualize the distribution
across the 24 frequency bands in-detail. Jog, Run and Sprint have higher frequency characteris-
tics while Bow, Left-right turn and Sit-stand exhibit low frequency characteristics.

summation operations in Eq. (3.1) and Eq. (3.2), respectively. The majority of proprioceptive

activities show much of their energy in the low frequency bands though significant variations can

be depicted in Fig. 3.9. On the one hand, Jog and Run are found to have high values in the 10th

and 11th frequency bands while Sprint possesses even higher frequency components (12th−14th

bands). On the other hand, activities that have simple motion patterns (e.g. Bow, Left-right turn

and Sit-stand) are shown to contain significant energy in the 3rd frequency band. The range of

each band in the frequency response is defined in Eq. (4.2).

FMPF is another frequency-based feature and measures the variation of grid optical flow in

a frame. It is different from FMDF since the FFT is performed on each frame in Vn smoothed

by a Gaussian filter. FMPF helps to discriminate complex activities with high dynamics of ego-

motion (e.g. Dribble) from simple activities (e.g. Walk). The higher the ego-motion, the less
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Table 3.1: Summary of subgroups in GOFF and the motion characteristics each feature type
describes. Variation refers to a difference among classes that a feature subgroup exploits; βm:
magnitude bins; βd : direction bins; N f : number of frequency bands in FMDF; Ns: number of
low frequency coefficients in FMPF.

Subgroup Measures Variation Symbol Dimension
MMHF Motion magnitudes using histogram bins Average magnitude fff 1

1n βm

MDHF Motion direction using histogram bins Average direction fff 2
1n βd

MDHSF Standard deviation of direction bins Direction deviation fff 3
1n βd

FMDF Variation of each direction bin in-detail Periodicity (frequency) fff 4
1n N f

FMPF Variation of grid optical flow in a frame Ego-motion complexity fff 5
1n Ns

(a) (b) (c)

Figure 3.10: A step-by-step visualization of virtual-inertial data extraction from an exemplar
Walk video segment (≈ 4s) with 640×480 resolution at 30 fps. (a) The intensity centroid tracked
across frames; (b), (c) the velocity and acceleration vectors derived using consecutive temporal
derivatives, respectively.

likely the grid motion is to remain uniform. Since highly variant optical flow is not expected in

a frame with the assumption of a uniform global motion, we select only the first Ns coefficients

of the frequency response. The FMPF vector fff 5
1n is then calculated from [Ψn]Ns×L, which is the

low frequency part of [Un] , using Eq. (3.1) and (3.2).

Finally, we concatenate the grid-based feature subgroups to obtain the GOFF descriptor for

Vn as

[GOFFn]Ng×1 = concat( fff 1n), (3.4)

where concat(·) concatenates different feature subgroups in fff 1n to single vector, i.e. Ng = βm +

2∗βd +N f +Ns . The summary of GOFF is given in Table 3.1.

3.3 Vision-based inertial features

In addition to optical flow, features can be extracted from the apparent motion encoded as

virtual-inertial data, which contain velocity and acceleration vectors generated from the video

(Fig. 3.10). Virtual-inertial features are extracted from the virtual data similarly to the extrac-
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Data: video (VVV )
Result: intensity centroid (W ), velocity (Ẇ ), and acceleration (Ẅ )
% initialization
Nv← number of frames in V , R← row size, C← column size,
Mpq← image moment,
p,q ∈ {0,1} ← moment orders,
for k ← 1 to Nv do
Mk

pq ← ∑
R
r=1 ∑

C
c=1 rpcq fk(r,c) % image moments;

Wk ← (
Mk

O1
Mk

OO
,
Mk

1O
Mk

OO
) % intensity centroid

end
for k ← 1 to Nv−1 do

Ẇk ←Wk+1−Wk % velocity
end
for k ← 1 to Nv−2 do

Ẅk ← Ẇk+1 - Ẇk % acceleration
end

Algorithm 1: Algorithm used to derive inertial data (velocity and acceleration) from a
video in FPV.

tion of the state-of-the-art inertial features from accelerometer data [4]. Virtual-inertial features

provide inertial characteristics without using the actual inertial sensors, and thus avoid synchro-

nization issues.

The virtual inertial data generated from a video contain centroid velocity and acceleration

values, both are derived from varying intensity centroid across frames in the video. In order to

determine the centroid (Fig. 3.10(a)), we employ the procedure in Rublee et al. [79] that uses

the first four image moments, Mpq, where p,q ∈ {0,1}. Each image moment of order p+ q,

Mpq, is calculated as the weighted average of all intensity values in a frame (Algorithm 1). The

velocity (Fig. 3.10(b)) and acceleration (Fig. 3.10(c)) values are computed by applying the first

and second derivative, respectively, on the sequence of Gaussian-smoothed intensity centroids in

a video. A centroid location, W , is indexed by its horizontal, x, and vertical, y, components. The

velocity, Ẇ , and then acceleration, Ẅ , vectors along with their magnitude make the complete set

of the virtual-inertial data [4].

The velocity [Ẇk]2×1 and acceleration [Ẅk]2×1 vectors for each fame are concatenated as Zk =

[Ẇk,Ẅk]
T before we apply L-frames long window, similarly to GOFF, to build an activity sample

[ϒn]4×L = {Zkn}L
k=1. Later, velocity and acceleration magnitudes of each frame are included

[Γn]6×L = [ϒT
n , |Ẇk|T , |Ẅk|T ]T in order to extract the inertial features–VIF, which contain time-

and frequency-domain features adopted from the state of the art [18, 52, 68, 76, 103, 104].

Time-domain features are minimum, maximum, median, mean, energy, kurtosis, zero-crossing
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and standard deviation (4MEKS) of each inertial signal. Zero-crossing measures the oscillatory

behaviour of a vector in reference to zero magnitude value. Note that zero-crossing is not applied

on magnitude vectors; however, the same intuition can be extracted in a reference to a non-zero

threshold value. Kurtosis quantifies whether the distribution of an inertial vector is heavy-tailed

or light-tailed with respect to a Gaussian distribution. A high kurtosis represents a heavy tail in

the distribution, which signals a high probability of outliers [4]. Due to its high order definition,

kurtosis is sensitive to noise. However, the ensemble of multiple weak features improves the

discriminating potential [4, 104].

A frequency-domain feature [Θn]6Nl×1 is generated from the FFT response [Φn]6×L by se-

lecting the first Nl low-frequency coefficients similarly to FMPF in GOFF. VIF for an activ-

ity sample (V IFn) is then obtained from the combination of the three feature subgroups as

[V IFn]Ni×1 = fff 2n = [Ξn,Λn,Θn] where Ni = 4+42+6Nl .

Using virtual-inertial data in addition to optical flow improves performance, e.g. when there

is self-occlusion or local motion due to a random appearance of a hand as shown in Fig. 3.11.

In general, if the duration of a clutter is long, it is considered as a part of the background and

false motion is less likely to be detected. However, if the duration is short enough, the remaining

clutter-free frames in an activity sample help to reduce the error. Each pixel’s intensity value

is weighted by its location as shown in Algorithm 1 for intensity-centroid computation. Hence,

compared to optical flow, centroid-based virtual-inertial features could be affected more severely

by new objects appearing and disappearing at image boundaries. As a result, we apply a Gaussian

filtering across the virtual-inertial data extraction in order to reduce noise effects.

3.4 Complexity analysis

The wall-clock computation time elapsed to accomplish each sub-task in the proposed method

(Fig. 3.4) is given in Table 3.2, for an averaged video segment of approximately ≈ 150 frames.

The grid-optical-flow and intensity centroid computations from raw video data took Bt
n = 2.13 s

and W t
n = 3.38 s, respectively. Among the GOFF subgroups, the frequency-based features FMDF

and FMPF needed longer time, fff 4,t
1n = 6.80 ms and fff 5,t

1n = 18.37 ms, respectively. Overall, GOFF

extraction required 2.46 s in relative to 3.39 s of VIF; and hence, RMF is able to be computed

in less than six seconds. All experiments were conducted using Matlab2014b, i7-3770 CPU @

3.40GHz, Ubuntu 14.04 OS with 16GB RAM.
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Figure 3.11: The effect of a randomly appeared user’s hand (last row) during Walking on (a) the
intensity centroid and (b) the optical flow data, respectively. Note that the pixel values of x and y
in the intensity centroid are normalized by C and R, respectively.

Table 3.2: Summary of wall-clock computation time to process a video segment that contains 150
frames at 60 fps. Elapsed time is measured for each sub-process in Fig. 3.4 and latter summarized
for GOFF and VIF.

It
n = 0.32 ms Ot

n = 1.66 ms fff 1t
1n = 2.11 ms

Jt
n = 0.89 ms Pt

n = 1.37 ms fff 2t
1n = 2.41 ms

GOFF Bt
n = 2.13 s fff 3t

1n = 2.55 ms GOFF t
n = 2.16 s

T t
n = 5.69 ms fff 4t

1n = 6.80 ms
U t

n = 18.19 ms fff 5t
1n = 18.37 ms

Ξt
n = 0.08 ms

VIF W t
n = 3.38 s Zt

k = 0.21 ms Λt
n = 1.08 ms fff t

2n = 2.12 ms V IF t
n = 3.39 s

Θt
n = 0.96 ms

3.5 Experimental set-up

3.5.1 Parameter setting

GOFF and VIF extractions involve the appropriate setting of parameters, such as G, L, ν , βd , βm,

N f , Ns and Nl . The settings of the parameters is performed separately in a sequential optimisation

approach as discussed below.

An appropriate number of grids along each dimension of a motion frame is G = 20 as further

increments of G do not tend to include new discriminative motion characteristic as motion is

assumed to be dominantly global over the majority of pixels; so more grids are more likely to

cause redundancy of the motion data. We set L = 3 s similarly to the window length employed

for human activity recognition using inertial data [68] and FPV [103, 104, 106]. Higher values

of L do not cause significant improvements in the system performance whereas the motion data



Chapter 3: Multiple motion features from first-person videos 37

become redundant and the number of activity samples decreases. Similarly, the window overlap-

ping (ν) experimented between 10% and 90% does not significantly affect the performance but

reduces the number of activity samples, therefore We employed a ν = 50% overlapping between

a pair of successive samples following our experiment in the range of 10% and 90% overlapping.

Very high overlapping, e.g. one-frame shift, results in a higher number of total samples for the

classification, however, consecutive samples become highly identical, which does not improve

the recognition performance but consumes more computational resources.

We determine the number of bins for direction and magnitude histograms by experimentally

optimizing the following trade-off. Very small values of βd and βm might not adequately quantize

the direction and magnitude information of the optical flow data, whereas very high number of

bins results in over-quantization and unnecessarily long feature dimension. Experiments reveal

that βd = 36 and βm = 15 perform better. Similarly, we set N f = 25, Ns = 25 and Nl = 10. We

select fewer coefficients in VIF to minimize the length of the overall feature vector since the

Fourier transform is applied on each virtual inertial vector in Γn.

We validate the proposed motion-feature (RMF) using two geometrical classifiers [62] SVM

and KNN which are, respectively, the most frequently employed parametric and non-parametric

modeling techniques in the state of the art (Sec. 2). We select one-versus-all approach for the

SVM due to its smaller number of classifications with respect to one-versus-one approach. We

assume that a test video segment Vn belongs to only one of the activity classes A j ∈ C, and

we do not consider undefined class that represents none of the activities in C. Experimental

results reveal that polynomial kernel performs better than linear and Gaussian kernels in the

SVM (Table 3.3). We set the number of KNN neighbours to be one since the performance does

not significantly change for higher number of neighbours.

We set L = 180 frames for IAR and L = 95 frames for BAR with ν = 50% overlapping (for

the analysis see Sec. 3.5.1). The difference in window length comes from the different frame

rate used in the two datasets. We also set optimal values for the parameters in the state-of-the-

art methods. Zhang et al. [108, 109] proposed a multi-resolution good feature (MRGF) with

a magnitude threshold of three pixels and eight direction bins; however, higher performance is

achieved with seven pixels threshold and thirty-six bins in our datasets, particularly in IAR.

We apply a random decomposition in the IAR dataset to build train and test sets as 80%

train and 20% test. The final accuracy is computed from the mean of results obtained from
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100 iterations. In the BAR dataset, we employ a leave-one-subject-out approach and the final

accuracy is derived from the mean of results obtained after each subject is left-out iteratively.

Leave-one-out approach is not applied in the IAR dataset since the recordings (R1, R2 and R3)

do not consist of equivalent number of video segments per activity (Table 3.4).

Table 3.3: F-score measure (%) of different kernel types for the SVM classifier. IAR: indoor
activity recognition; BAR: basketball activity recognition; JPL: JPL-interaction dataset; DogC:
DogCentric dataset. Polynomial kernel achieves the highest accuracy for the majority of the
methods in all datasets.

Dataset Kernels Baseline AP MRGF MBH RMF
Linear 53 51 72 66 83

IAR Gaussian 57 55 89 67 87
Polynomial 58 63 84 65 88
Linear 24 14 25 60 75

BAR Gaussian 2 22 35 64 77
Polynomial 19 17 37 65 80
Linear 3 1 42 63 83

JPL Gaussian 4 2 44 65 85
Polynomial 2 12 62 63 86
Linear 34 41 30 40 55

DogC Gaussian 21 45 40 48 61
Polynomial 25 41 39 59 61

However, for the JPL and DogCentric datasets, we adopt the corresponding approaches em-

ployed in [80] and [46], respectively. Ryoo et al. [80] used a repeated random sub-sampling

validation to measure the classification accuracy. The video sets were split into train and test

randomly, each contained six video sets (42 segments). Experiments were repeated iteratively

100 times and the final accuracy was computed from the mean of the iterations. For DogCentric

dataset, video sequences of an activity were randomly decomposed into train and test sets, each

containing half the number of total video sequences of the activity [46]. The mean final result

was obtained from repeating the train-test splits 100 times and computing the mean as in the IAR

and JPL datasets.

We develop a baseline method that estimates motion in a video by adopting the approach

in Nagasaka et al. [63] (cited in Uehara et al. [97]) that utilises the correlation of intensity pro-

jection to approximate pixel-wise displacement between a pair of successive frames. The aim of

developing the baseline method is to make a comparison against the state-of-the-art and proposed

methods using a simple motion-feature extraction approach.

The overview of the baseline method is shown in Fig. 3.12, which is similar to the VIF part of

the proposed method in Fig. 3.4, but the centroid location in VIF is replaced by the projections of
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Figure 3.12: Overview of the baseline method. H-V Projection: horizontal and vertical projec-
tions (Ω j

k) j∈{x,y} of intensity values. Projection displacement is computed from the correlation of
intensity projections in each pair of successive frames. The final baseline feature vector consists
of kurtosis, Λn, magnitude histogram, f b1

1n , and frequency-domain features, Θn.

intensity values (Ω j
k) j∈{x,y} in the horizontal (x) and vertical (y) directions [63]. Given a current

frame [Fk]R×C, the horizontal [Ωx
k]C×1 and vertical [Ωy

k]R×1 projections were computed as

Ω
x
k(c) = (1/R)

R

∑
r=1

Fk(r,c), (3.5)

Ω
y
k(r) = (1/C)

C

∑
c=1

Fk(r,c),

∀c = 1, · · · ,C and ∀r = 1, · · · ,R. We derive the projection velocity Xb
k = [Xbx

k ,Xby
k ] of the current

frame Fk from the previous frame Fk−1 using the following equation:

Xbx
k = argmin

−ωx<δ<ωx

(|Ωx
k− (Ωx

k−1 < δ >)|), (3.6)

Xby
k = argmin

−ωy<δ<ωy

(|Ωy
k− (Ωy

k−1 < δ >)|),

where ωx and ωy are, respectively, the maximum projection displacements that are assumed to

exist between a pair of frames along the horizontal and vertical directions, and (Ω j
k−1 < δ >) is

the circular shift of the projection Ω
j
k−1 by δ pixels. Similarly to VIF, by applying a derivation

on projection velocity Xb
k across frames, we obtain the corresponding acceleration vector Y b

k . We

extract kurtosis and frequency-domain features as in VIF, and magnitude histogram as in GOFF.

We apply the same parameter settings as of the proposed method for the implementation, and set

ωx = ωy = 40 pixels assuming that a true global-motion of higher displacement is less likely.

3.5.2 Datasets

We evaluate the performance of the proposed method and compare it against three state-of-the-art

methods ([50],[104] and [108]) using four datasets. The first state-of-the-art method is an interest

point-based motion feature extraction approach presented in Zhang et al. [108, 109], and referred
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to as multi-resolution good-feature (MRGF) implemented with SURF , which outperformed Shi

and Tomasi features [85]. The other two existing methods are based on optical flow, which are

average pooling (AP) [103, 104, 106] and motion-based histograms (MBH) [50]. AP employs

pooling procedure to smooth the grid flow and MBH applies a concatenation of histograms to

encode direction, magnitude and frequency components.

We use the following measures to assess performance of the recognition system: precision,

P , sensitivity or recall, R, specificity, S , accuracy, A, and F-score, F . GOFF and VIF are

studied independently and the contributions of their feature elements to the overall performance

are analysed. In order to test the robustness of the methods, we introduce artificial Gaussian noise

of different signal-to-noise ratio (SNR) values on the motion data. In addition to this, we test the

proposed features for noisy data collected in previously unseen environment during training. We

also analyse the sensitivity of our method by varying parameter settings of the feature subgroups,

particularly βd , βm, N f , Ns and Nl .

Our datasets

We collected two datasets with the aim of providing different environmental conditions and vari-

ous activities: indoor ambulatory activity recognition (IAR) dataset and basketball activity recog-

nition (BAR) dataset (Fig. 3.13). The IAR dataset contains the most frequently studied activities

in the state of the art [64, 103, 104, 108, 109], namely Walk, Run, Sit-down, Stand-up, Going

upstairs, Going downstairs and Turn in addition to Jump. Recording was conducted in three

buildings with different light conditions and indoor architectures such as staircases, corridors

and wall textures. We assumed a separate occurrence of each activity, meaning that, activities

like Run while Going upstairs were not considered. However, we included scenarios such as Sit

or Jump on staircases. Note that even if the recordings were done in indoor locations, outdoor

scenes and lighting were sometimes present (Fig. 3.13(a)).

The BAR dataset is composed of three warming-up exercises (adopted from [103, 104, 108,

109]) and eight activities in a basketball game. To the best of our knowledge, BAR is the first

dataset that includes basketball activities in FPV. The activities are Bow, Sit-Stand, Left-right

turn, Walk, Jog, Run, Sprint, Pivot, Shoot, Dribble and Defend. Basketball activities were pri-

marily defined by experts interviewed before the data collection, which was performed in an

outdoor basketball court with four male subjects of different ages and playing experiences. Even

if only a camera wearer was engaged in playing basketball during the recording, the scenes often
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(a)

(b)

Figure 3.13: Key-frames from (a) IAR and (b) BAR datasets depict some of the challenges in
FPV. The challenges in the IAR dataset include the effect of outdoor lighting, the lack of adequate
indoor lighting and texture, and the mixing of outdoor scenes where the walls are made of glass.
The challenges in the BAR dataset include self-occlusion, local motions and shadows.

Figure 3.14: Temporal sequence of frames from a Pivot video. The top frames are from the
ground-truth video (external camera) while the bottom frames represent the corresponding in-
stances in the first-person video. Depending on the relative position of the wearable camera to
the external camera, similar or different external scene contents might appear in the two videos.

contained the other subjects and/or shadows (Fig. 3.14).

In general, activities in the BAR dataset are more challenging as compared to the IAR dataset

due to the following reasons. First, motion capture of sport activities usually involve motion

parallax, blur and shutter effect along with high ego-motion [50]. Second, there is less inter-

activity variation among few activities. Examples include Left-right turn and Pivot, Bow and

Sit-Stand, as well as Jog and Run. Third, the BAR dataset does also contain high intra-class

variations in some activities. Examples include Shoot, which can be a jump-shoot or layout-

shoot; Pivot, which can be performed in clockwise or counter clockwise directions; Defend,

which can be slide-defend or backward-defend. Other challenges result from different age and

playing experience of the subjects. An example is the similarity between Sprint and Run of older

and younger subjects, respectively. A chest mounted GoPro Hero3+ camera is used to record

all the activities. Chest mounting is selected in order to maximize the quality of the data with

respect to acquiring a full-body motion [69, 108, 109]. IAR was collected with a resolution of
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Table 3.4: Summary of our IAR and BAR datasets; the top sub-table describes the IAR dataset
and the number of video segments per activity in the three recordings (R1, R2 and R3). The
bottom sub-table presents the contribution of the four subjects (S1, S2, S3 and S4) in the BAR
dataset. Note that activities with shorter durations (e.g. Shoot) tend to have more video segments
in order to achieve data balance. Reco.: Recording; Sub.: Subject; L-R: Left-right turn; S-S:
Sit-Stand; Dur: Duration in minutes.

IAR Dur.
Reco. Walk Turn Stand Up-stair Down-stair Sit Run Jump Total (min)

R1 14 16 13 15 13 13 13 14 111 12
R2 21 21 24 18 17 23 22 20 166 11
R3 21 23 21 3 3 23 9 14 117 17

Total 56 60 58 36 33 59 44 48 394 40

BAR Dur.
Sub. Bow Defend Dribble Jog L-R Pivot Run Shoot S-S Sprint Walk Total (min)
S1 4 3 8 4 8 14 4 30 4 2 4 85 15
S2 4 6 8 4 4 6 4 30 4 4 4 78 15
S3 4 9 8 4 4 14 4 29 4 4 4 88 22
S4 4 6 6 4 5 12 4 26 5 4 4 80 20

Total 16 24 30 16 21 46 16 115 17 14 16 331 72

1080×1920 and 60 fps, while 720×1280 with 30 fps was set for the BAR dataset. A summary

of our datasets is shown in Table 3.4.

Public datasets

JPL-interaction [80] and DogCentric [46] are the other datasets used in this work. JPL-interaction

dataset was collected in five indoor locations of varied background conditions. A toy that emu-

lated a robot was placed on a chair, on which a GoPro camera with a resolution of 320×240 and

30 fps was mounted. The set of activities (Fig. 3.15) include four friendly, one neutral and two

hostile interactions between a participant and the toy. The friendly activities are Hug, Pet, Shake

and Wave. The neutral interaction is Point, where two persons often point towards the toy while

they are having a conversation. Punch and Throw are the hostile interactions. Eight participants

were involved and a total of twelve video sets were produced (two subjects did more than one

experiments). Most of the sets contain seven video segments, one per activity. Key-frames from

the dataset are shown in Fig. 3.15 and the summary of segment durations in the video sets is

presented in Table 3.5.

Figure 3.15: Key-frames from JPL-interaction dataset [80]. Activities from left to right are
Hug, Pet, Shake, Point, Punch, Throw and Wave. All videos were recorded indoors with the
participation of eight subjects.

Due to the lack of public motion-oriented human-centric datasets, we also experimented on
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Table 3.5: Summary of JPL-interaction dataset, where duration of video segments for each ac-
tivity is measured in seconds. The whole dataset is ≈ 10 min long in which activities Point and
Hug account more than half of the overall dataset duration whereas Wave is the shortest activity.

JPL dataset - video sets Total
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 (Sec.)

Hug 9 11 10 9 17 10 11 6 11 15 13 10 132
Pet 8 8 6 11 16 6 6 5 7 10 7 7 97
Point 14 6 10 13 18 22 35 13 17 34 25 30 237
Punch 2 3 1 2 1 2 2 3 1 2 2 1 22
Shake 6 7 5 5 5 4 3 3 8 7 3 5 61
Throw 4 5 3 4 4 4 5 4 3 3 4 2 45
Wave 1 1 1 1 2 2 1 1 2 2 2 2 18
Total 44 41 36 45 63 50 63 35 49 73 56 57 612

recently released DogCentric dataset [46]. Though the motion patterns of dogs are completely

different from human motions; IAR, BAR and DogCentric datasets share similar guideline as

the motion in an egocentric video infer the type of activity being performed by a human subject

in IAR and BAR datasets or by a dog in the DogCentric dataset. Four dogs were used while a

GoPro camera (320× 240 and 30 fps) was mounted on the back of each of the four dogs. The

dog-centric activities considered are Play with a ball, Car passing-by, Drink, Look-left, Look-

right, Pet, Shake, Sniff and Walk. Key-frames from the dataset are shown in Fig. 3.16 and the

number and duration of video segments collected from each dog and per activity type are shown

in Table 3.6.

(a)

(b)

Figure 3.16: Key-frames of the DogCentric dataset [46]. Activities from left to right are: (a)
Ball, Car, Drink, Feed, Look-left; (b) Look-right, Pet, Shake, Sniff and Walk. The dataset was
recorded in both indoor and outdoor environments that may contaion people.

3.6 Results and discussions

The results show that the proposed feature representation (RMF) performs consistently higher

than the state-of-the-art methods in the four datasets considered. This highlights RMF’s flexibil-

ity to work on a variety of activities and environmental conditions (Table 3.7). In IAR, MRGF
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Table 3.6: Details of DogCentric dataset. The number of video segments per activity is shown
for each dog participated in the experiment. The overall duration of video segments recorded
from each dog and for each activity is also presented. Dur.: duration in seconds (s).

DogCentric- video segments per activity Total Dur.
Ball Car Drink Feed Look-left Look-right Pet Shake Sniff Walk (#) (Sec.)

DogA 6 7 5 7 8 7 8 8 8 7 71 248
DogB 5 1 2 3 4 2 4 2 7 4 34 139
DogC 3 14 2 8 3 4 8 3 7 7 59 313
DogD 0 4 1 7 6 5 5 5 5 7 45 142
Total 14 26 10 25 21 18 25 18 27 25 209 842

and RMF achieve equivalent performance (F = 88%) followed by MBH (F = 65%), whereas

AP and Baseline were found to be the least performing motion features (F = 56%). MRGF per-

formed similarly to RMF (in IAR) and MBH (in JPL) because the scene is relatively closer to the

camera in the two datasets since they were recorded indoors; and hence it is less challenging for

MRGF to detect interest points. However, in the BAR and DogCentric datasets, which contain

complex ego-motions and activities with different motion magnitude patterns, both MRGF and

MBH are found to have restricted discriminating potential due to their lack of magnitude-based

features and less effective encoding of direction information, respectively.
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Table 3.7: Comparative performance (%) of the proposed (RMF) and state-of-the-art methods
with respect to the baseline. IAR: indoor activity recognition; BAR: basketball activity recogni-
tion; JPL: JPL-interaction dataset [80]; DogC: dogcentric dataset [46]; SVM performance mea-
sures include A: accuracy, P: precision, R: recall and F : F-score. KNN classification is
validated and its F-score is also given. In IAR dataset, MRGF and RMF achieve similar perfor-
mance and significantly higher than the other methods. However, all the methods, except RMF,
find it difficult to achieve robust performance across the datasets. DogCentric dataset is proved
to be more challenging for all the methods.

SVM KNN
Datasets Methods A P R S F F

Baseline 91 69 46 98 55 53
IAR AP 92 85 42 99 56 49

MRGF 97 90 87 98 88 79
MBH 91 62 68 94 65 67
RMF 97 91 85 99 88 78
Baseline 83 18 20 90 19 17

BAR AP 90 24 14 97 18 31
MRGF 89 35 39 93 37 48
MBH 95 63 67 97 64 71
RMF 98 81 79 99 80 78
Baseline 84 5 1 98 2 13

JPL AP 76 5 16 86 7 34
MRGF 85 55 72 87 62 55
MBH 87 66 53 92 59 61
RMF 96 87 85 97 86 82
Baseline 83 49 17 91 25 28

DogC AP 87 39 30 92 34 47
MRGF 88 39 39 94 39 42
MBH 86 38 27 92 32 51
RMF 92 62 59 96 61 58

In Fig. 3.17(b) and Table 3.8, we can see that MRGF has failed to discriminate Jog, Run

and Sprint activities, which have similar direction patterns but different motion magnitude and

frequency characteristics. The confusion between Left-right turn and Pivot (Fig. 3.17(b)) also

happened due to the same reason. MBH is also achieving lower accuracy in BAR dataset where

activities like Dribble, Run and Sprint are misclassified to each other due to the lack of effective

encoding of direction alternation (periodicity), which MDHSF and FMDF are proposed to exploit

in the RMF.

The performance of MBH to discriminate Hug is less than MRGF in the JPL dataset (Fig. 3.17(c))

and Table 3.8 ) due to their differences in the exploitation of the direction information. In the

JPL dataset, Pet is misclassified to Shake by MRGF, MBH and RMF because participants involve

shake-type actions while petting the toy (e.g. by holding the two hands of the toy and moving up

and down). The DogCentric dataset is found to be more challenging for all the methods since the

type of activities in the dataset (e.g. Drink, Feed and Sniff ) contain more discriminant local infor-

mation than the global motion. Look-left and Look-right are also hardly recognized (Table 3.8)
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as they are misclassified to Walk (Fig. 3.17(d)) because the dogs were walking most of the time

while they were performing these activities. In addition, the camera was mounted on the back of

the dogs (not on the head), hence, crucial activity information was not recorded.

(a)

(b)

(c)

(d)

Figure 3.17: Confusion matrices of MRGF, MBH and RMF in: (a) IAR, (b) BAR, (c) JPL and
(d) DogCentric datasets. Baseline and AP are found to be ineffective compared to other methods
(Table 3.7 and 3.8). Though RMF achieves the best performance in the majority of the datasets,
it is possible to notice the difficulty posed by inter-class similarity between Jog, Run and Sprint
in BAR dataset. In addition, weak recognition performances of RMF for Feed, Look-left and
Look-right activities in the DogCentric dataset signal the need of local descriptors, beside the
limitation imposed by the mounting position of the camera.
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Table 3.8: Per-class recognition performance (%) of RMF and the state-of-the-art methods. P:
precision; R: recall; F : F-score of the SVM output. Apart from IAR dataset, RMF is shown to
significantly outperform the state-of-the-art methods in the BAR, JPL and DogCentric datasets.
Baseline and AP are shown to be less discriminant motion features since they do not encode
magnitude and direction information effectively.

Baseline AP MRGF MBH RMF
Dataset Activity P R F P R F P R F P R F P R F

Jump 94 75 83 72 25 37 96 95 95 87 89 88 89 92 90
Run 96 86 91 82 22 35 92 89 90 72 75 73 97 86 91
Sit-down 38 25 30 94 41 57 91 91 91 46 52 49 91 85 88
Stair-down 81 39 53 82 31 45 83 68 75 42 60 49 88 82 85

IAR Stair-up 49 12 19 87 61 72 89 83 86 45 58 51 92 85 88
Stand-up 39 29 33 90 57 70 96 88 92 57 62 59 94 90 92
Turn 88 52 65 97 34 50 93 90 91 72 68 70 90 77 83
Walk 64 54 59 78 66 72 83 87 85 72 81 76 84 83 83
Bow 37 23 28 38 4 7 90 95 92 92 99 95 91 96 93
Defend 7 49 12 0 0 0 3 7 4 59 66 62 82 88 85
Dribble 10 40 16 0 0 0 11 12 11 8 16 11 87 85 86
Jog 0 0 0 0 0 0 1 2 1 51 44 47 68 26 38
Left-Right 6 10 8 52 12 20 67 30 41 89 91 90 90 86 88

BAR Pivot 25 6 10 23 34 27 49 83 62 68 92 78 89 97 93
Run 3 6 4 0 0 0 2 2 2 23 24 23 40 42 41
Shoot 97 16 27 75 3 6 37 45 41 75 51 61 99 97 98
Sit-stand 8 23 12 19 10 13 56 64 60 75 92 83 80 75 77
Sprint 2 25 4 0 0 0 13 31 18 56 62 59 76 76 76
Walk 4 18 7 51 91 65 59 54 56 91 95 93 91 96 93
Hug 0 0 0 0 0 0 75 96 84 76 16 26 77 90 83
Pet 0 0 0 7 1 2 57 68 62 64 32 43 80 68 74
Point 0 0 0 10 46 16 83 54 65 98 89 93 100 92 96

JPL Punch 0 0 0 0 0 0 36 62 46 70 59 64 98 98 98
Shake 0 0 0 2 1 1 50 84 63 41 77 54 72 92 81
Throw 34 8 13 0 0 0 26 65 37 43 51 47 93 70 80
Wave 0 0 0 15 62 24 54 77 63 68 50 58 92 88 90
Play-Ball 24 14 18 28 87 42 55 48 51 72 36 48 79 91 85
Car 75 22 34 16 64 26 75 71 73 32 47 38 88 66 75
Drink 39 16 23 76 19 30 43 76 55 11 32 16 58 56 57
Feed 29 33 31 1 0 0 33 40 36 34 38 36 21 21 21

DogC Look-Left 33 28 30 0 0 0 23 18 20 19 11 14 43 34 38
Look-Right 78 12 21 61 18 28 20 5 8 9 1 2 63 39 48
Pet 31 14 19 97 56 71 44 35 39 25 27 26 90 85 87
Shake 65 9 16 2 0 0 19 9 12 74 27 40 68 58 63
Sniff 60 6 11 38 33 35 43 40 41 54 39 45 53 66 59
Walk 52 13 21 68 21 32 39 51 44 53 17 26 60 72 65

Generally, MBH and MRGF complement each other, particularly in JPL and DogCentric

datasets, since MRGF is based on motion direction while MBH mainly exploits motion magni-

tude. Table 3.7 demonstrates that the comparative performance of the methods when validated

using KNN and SVM. Due to the one-versus-all approach of the SVM classifier, the normal

accuracy and specificity of all the methods are expectedly very high.

RMF is also shown to have the potential to discriminate interaction-based activities by achiev-

ing competitive results in Table 3.8 and Fig. 3.17 compared to Ryoo et al. [80] (86% vs. 90%) and

DogCentric [46] (61% vs. 60%) that utilised structural matching and combination of multiple
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local features in addition to global motion features.

Table 3.8 shows that RMF is superior to other methods in all datasets except IAR, which is

less challenging compared to other datasets (Sec. 3.5.2). The train-test splitting scheme also plays

a role since the cross-validation approach in IAR introduces correlation between train and test set

activities; in comparison to the leave-one-subject-out approach in BAR and equal decomposition

of train and test sets in JPL and DogCentric datasets. In BAR, RMF better recognises simple

activities that are characterized by dominant motion along a single dimension while the player

remains in a fixed position. Examples include Bow (F = 93%), Left-Right Turn (F = 88%), Pivot

(F = 93%), Shoot (F = 97%) and Sit-Stand (F = 77%). MBH follows RMF closely in BAR

more than any of the other state-of-the-art methods except for Dribble where frequent changes

of motion direction were not encoded effectively in the MBH.

Feature subgroups in GOFF are independently validated in all the datasets and compared

against VIF as shown in Fig. 3.18. The results verify that the feature subgroups are ranked dif-

ferently across the datasets, which reflects the existence of different nature of variations among

activities in the datasets. For example, due to directional variation of activities in the IAR dataset

(Fig. 3.2), direction-based feature subgroups (MDHF, MDHSF and FMDF) show superiority to

magnitude-based feature MMHF (Fig. 3.18(a)). On the other hand, in the BAR and JPL datasets,

which contain activities with different ego-motions and/or dynamics (e.g. Sprint, Dribble and De-

fend), MMHF and FMDF become significantly more important. In the DogCentric dataset, none

of the feature groups is found to dominantly surpass the others. The novel intensity centroid-

based virtual inertial feature (VIF) is shown to excel more than any of the GOFF subgroups in

the BAR, JPL and DogCentric datasets. As expected, FMPF is the least performing subgroup

of GOFF in the IAR and BAR datasets, where global motion is assumed to be dominant. Con-

trarily, FMPF becomes more discriminative in JPL and DogCentric datasets, where local motion

contains salient information as shown Fig. 3.18(c) and (d).

Table 3.9 presents how the combination of feature subgroups improves system performance

in the proposed framework. The concatenation of GOFF subgroups (S.No. 1-5), in accordance

with their ranking in Fig. 3.18, and later with VIF (S.No. 6) realizes the full implementation

of RMF where the highest recognition performance is achieved in each dataset. VIF is highly

discriminant as it improves performance from both SVM and KNN outputs in all the datasets.

In order to re-evaluate the significance of each subgroup, we remove, one-by-one, the previ-
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Figure 3.18: Independent performance of GOFF subgroups (sorted by the F-score of SVM out-
puts) and VIF of the proposed RMF in the (a) IAR and (b) BAR (c) JPL and (d) DogCentric
datasets. MDHF: motion direction histogram feature; MDHSF: motion direction histogram stan-
dard deviation feature; FMDF: Fourier transform of motion across frames; MMHF: motion mag-
nitude histogram feature; FMPF: Fourier transform of grid motion per frame; VIF: vision-based
inertial feature. According to the variation among activities (Fig. 3.2), direction-based features
top the ranking in the IAR dataset whereas magnitude and frequency-based features become more
discriminant in the BAR and JPL datasets. The different in the ranking of feature subgroups in
different datasets reveals the importance of all subgroups for efficient encoding of motion infor-
mation.

ously added GOFF subgroups (S.No. 7-11), where a gradual performance reduction is experi-

enced. The different ranking of the subgroups in different datasets (Fig. 3.18), the improvement

of recognition performance when we concatenate them (S.No. 1-6) and the gradual decline when

we remove features (S.No. 7-11) disclose the importance of all feature subgroups in order to

achieve the highest performance. Independent performance evaluation of VIF subgroups in an-

other experiment (Table 3.10) shows that the frequency-domain feature (FF) is expectedly the

best performing feature subgroup.
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Table 3.9: Evaluation of the combination of features in RMF. +: a feature subgroup is concate-
nated to the above set; -: a feature subgroup is removed from the above set; MDHF: motion
direction histogram feature; MDHSF: motion direction histogram standard deviation feature;
FMDF: Fourier transform of motion direction across frames; MMHF: motion magnitude his-
togram feature; FMPF: Fourier transform of grid motion per frame; VIF: vision-based inertial
feature; F-scores of SVM and KNN classifiers are given for comparison - F(%); Generally,
improved performance is achieved when we combine GOFF subgroups (S.No. 1-5) and VIF
(S.No. 6), and the performance starts to decline slowly when we remove features (S.No. 7-11).
This elucidates that all feature subgroups, which have different discriminative levels, are required
to achieve the best performance.

IAR BAR JPL DogC
S.No. Feature SVM KNN Feature SVM KNN Feature SVM KNN Feature SVM KNN
1 MDHF 82 72 FMDF 52 53 MMHF 62 63 FMDF 42 46
2 + MDHSF 85 74 + MDHF 66 66 +FMDF 67 65 +MDHSF 45 47
3 + FMDF 87 75 + MMHF 71 69 +MDHF 72 67 +MDHF 46 47
4 + MMHF 88 78 + MDHSF 71 72 +MDHSF 78 68 +FMPF 48 48
5 + FMPF 88 79 + FMPF 72 73 +FMPF 79 68 +MMHF 51 50
6 + VIF 88 79 + VIF 80 78 +VIF 86 82 +VIF 61 59
7 - FMPF 88 77 - FMPF 79 77 -FMPF 85 82 -MMHF 60 58
8 - MMHF 87 76 - MDHSF 79 74 -MDHSF 85 82 -FMPF 58 58
9 - FMDF 86 76 - MMHF 76 72 -MDHF 84 81 -MDHF 58 59
10 - MDHSF 84 72 - MDHF 72 66 -FMDF 81 80 -MDHSF 57 57
11 - MDHF 57 48 - FMDF 62 60 -MMHF 80 78 -FMDF 48 47

In order to measure the robustness of the methods, we artificially introduce white Gaussian

noise with different signal-to-noise ratio (SNR) values in the motion data. The motion implies the

grid optical flow in both RMF and AP, whereas it refers to the pixel-wise displacement of matched

interest points in MRGF. We apply the noise on MBH once the motion-based histograms were

computed. Figure 3.19 illustrates that RMF uniquely achieves consistent stability for a range of

SNR values in the four datasets.

We experiment further the robustness of RMF by testing on a new noisy dataset (Sitges)

collected in busy streets (Fig. 3.20). A subject performs all the BAR activities except for Dribble

and the replacement of Shoot with Jump. Some of the challenges introduced in this new dataset

include highly dynamic occlusions by pedestrians, which might be both in similar and opposite

directions to the user motion and a lack of illumination since the recording was performed around

sunset opposite to the BAR dataset, which was collected in the morning just after a sunrise. We

train activity models using the BAR dataset and test them on the Sitges dataset. RMF achieved

a performance of F = 56% validated on SVM, higher than any of the other methods considered

(Table 3.11). The SVM-based confusion matrix of the proposed method is shown in Fig. 3.21.

Similarly to Fig. 3.17(b), Run and Jog are misclassified to each other. However, misclassification

of erratic samples, mainly, to Left-right turn and Pivot happens because of rotation-like motions

introduced due to a large field-of-view of the camera and closer appearance of buildings in this
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Table 3.10: Report on the independent performance (%) of VIF subgroups. IAR: indoor activity
recognition; BAR: basketball activity recognition; JPL: JPL-interaction dataset; DogC: DogCen-
tric dataset; Min.: minimum; Max.: maximum; Med.: median; En.: energy; Kur.: kurtosis; Z-c.:
zero-crossing; Std.: standard deviation; FF: frequency-domain feature; All: concatenation of
all feature subgroups in VIF. F-scores of SVM and KNN classifiers are given for comparison -
F(%);

Dataset Measure Min. Max. Med. En. Kur. Z-c. Mean Std. FF All
SVM 32 31 40 24 19 16 29 38 53 57

IAR KNN 34 31 42 30 23 27 32 40 44 48
SVM 26 22 36 20 20 23 34 35 65 62

BAR KNN 32 30 43 27 20 23 31 40 56 60
SVM 38 34 34 31 29 32 36 36 77 80

JPL KNN 40 33 39 22 41 41 39 44 66 78
SVM 17 17 22 16 18 23 26 21 45 48

DogC KNN 27 23 36 18 29 30 32 23 45 47

Table 3.11: Comparative performance (%) of the methods when they are trained on the BAR
dataset and tested on the Sitges data recorded in streets with pedestrians. F : F-scores of SVM
and KNN classification outputs are given. The proposed method surpasses the state-of-the-art
motion features, and MBH follows closely.

Methods
Baseline AP MRGF MBH RMF

SVM 15 11 34 51 56
KNN 14 22 36 53 51

dataset. In general, the results show that RMF has a strong potential to discriminate activities

even in crowded environments in FPV.

In addition, we also test the sensitivity of our proposed method for manual variation of pa-

rameter settings described in Sec. 3.5.1. In particular, we vary the parameters in GOFF and

VIF: βd , βm, N f , Ns and Nl . We also measured mean and standard deviation for the variation

of parameter settings and recognition performances. Table 3.12 depicts the stability of RMF for

the manual variations of the parameter settings in the four datasets. SVM classifier results more

stable outputs with F-score variation ranging from σ = 0.9 in DogCentric to σ = 2.2 in JPL, in

comparison with KNN that varies from σ = 0.8 in DogCentric to σ = 3.9 in the BAR dataset.

3.7 Summary

We designed a set of multiple motion features from optical flow and virtual inertial data generated

from video in first-person vision (FPV). Discriminant features were extracted that exploited mo-

tion magnitude, direction and periodic characteristics. The proposed RMF was validated for the

classification of proprioceptive activities using our two datasets, which are publicly available to

the research community, and further two public interaction-based datasets. Results showed that
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Figure 3.19: Robustness analysis of the methods when a Gaussian noise with SNR values ranging
from 1dB to 25dB, is introduced in the motion data. Our proposed RMF demonstrates consistent
robustness across the datasets.

RMF outperformed state-of-the-art features, especially in classifying activities that contain com-

plex ego-motions. The robustness to noise and stability under different parameter settings were

also demonstrated by the proposed RMF, which also outscored existing methods in more chal-

lenging environments. Motion analysis techniques, proposed for proprioceptive activity recog-

nition in this chapter, can be applied to different applications, e.g. virtual-inertial data can be

generated from the tracking of a hand or an object to recognize hand- or object-driven activities.

In the next chapter, we extend the low-level features, e.g. by including the pooling of frame-

level appearance features and optical flow-based virtual-inertial features. We also apply efficient

encoding of temporal and hierarchical relationships among activities.
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(a)

(b)

Figure 3.20: Key-frames from the Sitges dataset collected to validate the flexibility of our
method; (a) activities viewed from an external camera, (b) frames from first-person videos ac-
quired by a chest-mounted wearable camera while a user performs the corresponding activity in
(a). The activities from left to right are Walk, Left-right turn, Jog and Jump.

Figure 3.21: Confusion matrix of the SVM output using RMF in the Sitges dataset recorded in
streets with pedestrians. Erratic samples are mainly classified as either Left-right turn or Pivot,
because the high field-of-view of the wearable camera and closer appearance of the buildings
introduce a sense of rotational motion in FPV.

Table 3.12: Sensitivity analysis of the proposed method for variations of parameter settings in the
IAR, BAR, JPL and DogCentric datasets; βd : direction histogram bins in MDHF and MDHSF;
βm: magnitude histogram bins in MMHF; N f : frequency bands in FMDF; Ns in FMPF and Nl in
VIF: low frequency coefficients; F : F-scores of SVM and KNN classification outputs are given
(%); µ: mean; σ : standard deviation.

Parameters IAR BAR JPL DogC
βd βm N f Ns Nl SVM KNN SVM KNN SVM KNN SVM KNN
36 15 25 25 10 88 78 80 78 86 82 61 58
24 10 20 20 15 84 77 76 75 85 81 61 58
16 5 15 15 20 83 75 75 70 86 83 62 57
10 20 10 20 25 83 72 75 69 85 81 61 56
18 25 30 10 5 85 76 77 78 82 79 60 58
48 30 5 30 18 86 78 78 70 80 78 61 58
30 5 35 5 8 85 76 77 76 84 80 59 58

µ 26.0 15.7 20.0 17.8 14.4 84.8 76.0 76.8 73.7 84.0 80.5 60.7 57.5
σ 13.1 9.7 10.8 8.5 7.1 1.7 2.1 1.7 3.9 2.2 1.7 0.9 0.8



Chapter 4

Hierarchical modelling and temporal continutiy

exploitation

4.1 Introduction

In this chapter, we propose a hierarchical proprioceptive activity recognition framework (Fig. 4.1)

using low-level features from optical flow, virtual inertial data and variations of intra-frame ap-

pearance descriptors and applying multi-level temporal context exploitation. Our main contri-

butions are: (i) the exploitation of temporal continuity both during modelling and decision by

applying temporal weighting on previous information; (ii) a high-level feature that encodes hier-

archical and temporal relationships among activities; (iii) a confidence-based output smoothing

approach that exploits the decisions of previous samples only when the current decision does not

achieve a minimum confidence threshold; and (iv) low-level features from optical flow and ap-

pearance descriptors that improve the discrimination capability of motion features in Chapter 3.

We also employ frequency-domain pooling operations to encode the variation of intra-frame ap-

pearance descriptors but with shorter dimension of the feature space compared with time-series

gradient pooling [81].

The chapter is organized as follows. Section 4.2 presents the overview of the proposed frame-

work that contains the hierarchical modelling of activities. Section 4.3 describes the extraction

of discriminative low-level features, and Section 4.4 presents the exploitation of temporal con-

tinuity during modelling and decision. The complexity analysis and the experimental set-up are

described in Sections 4.5 and 4.6. Section 4.7 presents the results in comparison with the state

54
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of the art. Finally, Section 4.8 summarises the chapter.

Figure 4.1: Details of the proposed multi-layer modelling framework used for learning a set of
hierarchical model parameters, Φ, and high-level activity model parameters, Θ. Given a set of
training videos, Vtrain, the low-level feature groups, fι , ι ∈ Z[1,3], are extracted and used to find
the corresponding hierarchical model parameters, Φι . These parameters are then used to extract
a high-level activity feature, s, that utilises hierarchical outputs and their temporal relationships.
One-vs-all activity modelling is performed on s to obtain Θ.

4.2 Hierarchical modelling

The proposed hand-designed hierarchical modelling is a modification of [70]. Each node in

the hierarchy, Me, e ∈ Z[1,5], represents a binary classification (Fig. 4.1): M1: Stationary vs.

Locomotive; M2: Go upstairs vs. Move along flat-space; M3: Static vs. Semi-static; M4: Run vs.

Walk; M5: Sit vs. Stand. Semi-static states involve moderate head and leg movements, e.g. Sit and

Stand. The activities at each Me are defined in Table 4.1. We model the hierarchy by employing

a binary SVM classifier at each node, Me. Let fι , ι ∈ Z[1,3], be a low-level feature group (Section

4.3). We use each fι separately to find the corresponding hierarchical model parameters, Φι =

{φιe}5
e=1. Then we employ a logistic regression (LR) on a high-level feature, s, that encodes the
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Table 4.1: Definitions of activities per node, Me, in the proposed hierarchy. Corresponding
exemplar frames per activity set are shown vertically in order of increasing temporal indices.
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hierarchical and temporal relationships among activities (Section 4.4). One-vs-all strategy is

applied for the high-level activity modelling since it requires fewer classifiers compared to one-

vs-one, i.e. Nc < binom(Nc,2) for Nc > 3, where binom(·) computes the binomial coefficient of

the first argument to the second.

4.3 Low-level features

We extend the sets of motion features to improve the discrimination of activities and group them

as grid, virtual-inertial and pooled-appearance features.

Grid features (GF) for the nth activity sample, f1n, mainly include the features that encode

magnitude, direction and dynamics (frequency) of optical flow data as presented in Chapter 3.

Motivated by the effectiveness of the direction-based frequency-domain feature, FMDF, in Chap-

ter 3, we propose a new subgroup, the Fourier transform of motion magnitude feature (FMMF),

f5
1n, exploiting the variation of motion magnitude across frames (Fig. 4.2) that replaces the least

effective FMPF, which encodes the frame-level variation. The remaining feature subgroups of
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(a) Run (b) Sit (c) Go upstairs

(d) Stand (e) Static (f) Walk

Figure 4.2: The proposed FMMF exploits the frequency response of motion magnitude and
groups it into different bands. The figures demonstrate that FMMF can easily classify Stationary
and Locomotive activities. Stationary states do not have significant motion patterns except the
high-frequency noise due to head-motion. Going upstairs involves high motion dynamics due to
the closer scene appearance in indoor environments.

f1 (the subscript n is removed for clarity) are MMHF (f1
1), MDHF (f2

1), MDHSF (f3
1) and FMDF

(f4
1), which are defined in Chapter 3. MDHF, MDHSF and FMDF exploit the motion direction.

MDHF represents the average direction information, whereas MDHSF and FMDF evaluate the

variation of direction in time and frequency domains, respectively. MMHF and FMMF describe

the average and the frequency-response of motion magnitude, respectively. The importance of

each feature subgroup depends on the type of variation among activities. For example, MMHF

and FMMF are more useful to distinguish Walk and Run, whereas MDHF, MDHSF and FMDF

are more useful to discriminate activities containing different direction patterns (Fig. 2.4).

Similarly to the remaining subgroups of f1, the FMMF for the nth activity sample of L consec-

utive frames is derived from the grid optical flow data, Hn = {Bk}L
k=1. Bk is the set that contains

G×G grid vectors of a frame, Bk = {Bg
k}G2

g=1, where each Bg
k has horizontal, Bgx

k , and vertical,

Bgy
k , components. We obtain the histogram representation for motion magnitude, On, as

On = hist({|Bg
k | : ∀B

g
k ∈ Bk};βm), (4.1)

where hist(·) is the operator that computes the histogram of its first argument, and βm is the

numbers of magnitude bins. We apply frame-level normalization (Eq. 3.1) and then temporal

accumulation (Eq. 3.2) to On to obtain MMHF. The normalization and accumulation help to

minimize the effect of short-term occlusion, illumination change and local motion in the segment.
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FMMF represents the frequency domain analysis on On, which involves grouping of its

Fourier response into Nm bands. Let Ōn be the frequency response of On, the grouping of Ōn

into Nm bands, Ôn, is performed as

Ôn(nm,b) =
γ f

∑
j=γi

log |Ōn(b, j)|, (4.2)

where nm ∈Z[1,Nm] and its elements for the summation are γi = 1+ (nm−1)L
2Nm

and γ f =
nmL
2Nm

rounded

to the nearest integer. We apply Eq. 3.1 and then Eq. 3.2 operations on Ô to obtain FMMF, f5
1n.

The final set of grid-based features is f1n = concat(f j
1n), ∀J = 1, · · · ,5.

Virtual-inertial features (VF), f2n, are extracted from the virtual-inertial data generated from

video without employing the actual inertial sensor (Fig. 4.3). We extend the centroid-based

virtual-inertial feature extraction in Chapter 3 by extracting additional inertial features from the

grid optical flow that improves the discrimination capacity of VF. We employ the average of the

grid flow per frame, Ḃk =
1

G2 ∑
G2

g=1 Bg
k in addition to the instantaneous velocity of the intensity

centroid, Ẇk =Wk−Wk−1.

Once we obtain the two virtual velocities from grid optical flow and intensity centroid, each

with horizontal and vertical components, we cascade them as χk = {Ẇk, Ḃk}, and apply a pre-

extraction processing that derives acceleration, χ̇k, and magnitude components for both χk and

χ̇k. The acceleration component is derived from the temporal derivation of the corresponding

velocity component. The complete virtual inertial data of the nth activity sample, Z̄n, contains

twelve vectors, i.e. six velocity and six acceleration vectors. Finally, f2n is obtained from a

cascade combination of the state-of-the-art time- and frequency-domain inertial features that

are extracted for each vector of Zn in time and frequency domains as described in Chapter 3.

The majority of the features in f2n are low-dimensional and susceptible to noise, however, they

become significantly discriminative and robust when they are combined.

Pooled appearance features (AF), f3n, exploit intra-frame descriptors to obtain additional

discriminative motion information besides the grid features and virtual inertial features. Pooling

operations are applied to extract the temporal variation of intra-frame descriptors. We employ two

intra-frame descriptors of different abstractions utilised in [81], i.e. HOG [81] and Overfeat [83].

HOG is selected due to its simplicity, and Overfeat is a deep appearance feature extracted from

the last hidden layer of the corresponding CNN framework [83]. Overfeat has been applied

successfully across different vision-based recognition tasks [81, 84].
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Figure 4.3: The proposed pipeline for virtual-inertial features extraction from video. Given a
sequence of video frames, average grid flow and instantaneous centroid velocity are computed
separately for each pair of consecutive frames (Fk−1 and Fk) and cascaded later. Then we generate
the corresponding acceleration values using a simple difference operation. We derive and append
magnitude components for the velocity and acceleration vectors. Finally, we extract a set of the
state-of-the-art inertial features, f2n, in time and frequency domains for a windowed sample of L
frames.

Our proposed intra-frame appearance pooling consisting of one time-domain, υ1(·), and two

frequency-domain, υ2(·) and υ3(·), pooling operations to encode short and long temporal char-

acteristics of the intra-frame appearance descriptors. The time-series gradient (TSG) [81] only

considers time-domain summation and histogram of the gradient. υ1(·) encodes the standard

deviation of intra-frame descriptors across frames in a video, similarly to MDHS of grid-based

features. υ2(·) groups the frequency response of each time series data into bands as FMMF and

FMDF. υ3(·) encodes the power of each feature element in the frequency domain. Finally, f3n

is obtained from the concatenation of υ1(·), υ2(·) and υ3(·) outputs of the HOG and Overfeat

descriptors.

4.4 Temporal continuity exploitation

We exploit the temporal relationships among activities during both modelling and decision stages

to improve recognition performance in case of short-term occlusions, blurred motion or large

head-motion (Fig. 4.4).

4.4.1 Model-level temporal continuity exploitation

Model-level temporal continuity exploitation (MTCE) encodes the temporal context from the

hierarchical outputs of all the feature groups during activity modelling. MTCE provides the

temporal component of the high-level feature using a temporally weighted accumulation of past

outputs of the hierarchy.

Given the feature-based hierarchical model parameters, Φ1,Φ2 and Φ3, the hierarchical de-
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Figure 4.4: Overview of the proposed FPV activity recognition for a video sample, Vn, that uses
three low-level feature groups, {fιn}3

ι=1. A high-level feature vector that encodes hierarchical and
temporal relationships among activities is then extracted from the hierarchical outputs of the low-
level features, followed by consecutive temporal and cross-feature groups concatenations. The
activity decision vector, an, is filtered using the proposed confidence-based smoothing approach.
The hierarchical model parameters, Φι , and high-level model parameters, Θ, are obtained during
modelling (Fig. 4.1)

.

coding of the nth activity sample results in a ten unit long output per feature group, hιn = {he
ιn},

∀e ∈ Z[1,5], where he
ιn contains the classification scores for both classes (c1 and c2) at each bi-

nary node Me, i.e. he
ιn = [hc1

eιn,hc2
eιn]. The outputs of both classes, rather than the winner only, are

used to exploit the level of confidence in the binary classification from their relative scores. It

also reduces the likelihood of bias in the activity modelling by increasing the high-level feature

dimension. Since the hιn values from the SVM are not bounded, we apply a sigmoid (logistic)

function, S(·), that maps any real value λ to a value inside the bounded region (0,1) as

S(λ ) =
1

1+ exp(−λ )
. (4.3)

MTCE provides wιn that represents the accumulation of hierarchical outputs of D previous

samples, weighted according to their temporal distance to the current index n as

wιn =
D

∑
d=1

W (d)hιn−d , (4.4)

where W (·) is the weighting function applied to give more importance to recent samples and less

importance to earlier samples as

W (d) =
exp(−d/D)

∑
D
d=1 exp(−d/D)

. (4.5)

The current, hιn, and weighted, wιn, hierarchical outputs are concatenated to extract feature-

specific temporal vectors, tιn = [hιn,wιn]. The high-level feature vector for the activity mod-
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elling is obtained from the cross-feature groups concatenation as sn = concat(t1n, t2n, t3n). The

high discrimination characteristic of sn is derived from the temporal and hierarchical information

extracted from the three low-level feature groups.

4.4.2 Decision-level temporal continuity exploitation

In addition to the activity modelling, we exploit previous temporal information during the ac-

tivity vector decoding (Fig. 4.4). Decision-level temporal continuity exploitation (DTCE) is ap-

plied to smooth the decision when the confidence of the classification fails to achieve a minimum

threshold, which is performed by exploiting the temporal continuity, similarly to MTCE, using

the decisions of the previous samples. We define confidence as the relative weight of the win-

ning class probabilistic score (maximum of the activity vector) with the second maximum score.

Rather than using a ‘blind’ accumulation with previous samples’ outputs as in [71], we propose

a confidence-based smoothing strategy (Algorithm 2).

We argue that smoothing may not improve the recognition performance (if it does not de-

grade) when the confidence level is high. On the other hand, if the confidence of a decision does

not satisfy the threshold value, additional decision knowledge from previous samples is more

likely to improve performance. DTCE gives more weight to the recent decisions; whereas [71]

applied equal weights to all previous decisions, which undermines the significance of the current

output and its closely related temporal samples.

Let the decoding of the nth sample, with a feature vector, sn, using a set of model parameters,

Θ, be [an]Nc×1. We measure the confidence level, rn, from the ratio of the maximum probabilistic

value (winning class score), a1
n, to the second maximum value, a2

n. We compare rn to an exper-

imentally found threshold value, rt . If the threshold is satisfied, the final prediction vector ãn

becomes an. Otherwise we update an to a′
n by including temporal information obtained using

a weighted accumulation of the previous D activity prediction vectors, ân, similarly to Eq. 4.4

and Eq. 4.5, and the confidence is then re-evaluated, r
′
n. If r

′
n satisfies the threshold, ãn becomes

a′
n. Otherwise we check the confidence, r̂n, of ân and if r̂n > rt , then ãn = ân. If none of rn, r

′
n

and r̂n satisfies the threshold, ãn becomes one of an,a
′
n and ân that corresponds to the maximum

confidence score.

Both MTCE and DTCE exploit the previous knowledge in order to improve the recognition

of the current sample. However, they might undermine the recognition of a short activity segment

(e.g. Stand) that appears abruptly in the middle of an other activity (e.g. Walk). Comparatively,
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Require: Decision vectors, {an,an−1, · · ·an−d , · · ·an−D},
Weighting function, W (·)
Vector selection with the highest confidence, I(·)
Confidence threshold, rt

Ensure: Final prediction vector, ãn

a1
n←max(an),

a2
n←max(an \a1

n)

rn← a1
n

a2
n

if rn > rt then
ãn← an

else
ân← ∑

D
d=1W (d)an−d

a′
n← an · ân

a′1
n ←max(a′

n)
a′2

n ←max(a′
n \a′1

n )

r
′
n←

a
′1
n

a′2
n

if r
′
n > rt then
ãn← a′

n
else

â1
n←max(ân)

â2
n←max(ân \ â1

n)

r̂n← â1
n

â2
n

if r̂n > rt then
ãn← ân

else
ãn← I(an,a

′
n, ân)

end if
end if

end if
Algorithm 2: Algorithm for confidence-based smoothing

MTCE provides a framework to learn from temporal relationships since the previous knowledge

is incorporated in the modelling stage, whereas DTCE adopts a slightly rough smoothing, limited

to exploit additional discriminative characteristics from the current and previous decisions.

4.5 Complexity Analysis

Let R be the height and C be the width of each frame in pixels. The complexity of the optical

flow computation isO(n2
wRC) per frame pair, with nw being the number of warp parameters [11].

The computation of the intensity centroid requires O(RC) and the computation of the average

grid flow with G×G grids requires O(G2) per frame. The cost of generating Overfeat descrip-

tor is approximately O((RC(ϕ + 1))RC+κ) per frame, where ϕ is the number of layers and κ is

the number of hidden neurons per layer [14]. As for grid-based features, most of the interme-
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diate steps in extracting feature subgroups exhibit linearly growing complexity. For example,

MDHF and MMHF cost O(G2 +βd) and O(G2 +βm), respectively, for βd direction bins and βm

magnitude bins, after the corresponding grid direction and magnitude are computed.

FMDF and FMMF cost O(βdL logL) and O(βmL logL), respectively, for a video segment of

L frames. Furthermore, each Fourier transform cost is increased by O(L3Nb) due to the mag-

nitude computation of the frequency response, logarithmic scale change and the grouping into

Nb ∈ {Nd ,Nm} frequency bands. Nd and Nm represent the number of direction and magnitude

bins for FMDF and FMMF, respectively. Similarly to f1, it is only the frequency feature that

has a significant complexity among subgroups in f2, which is equivalent to O(L3 logL) for each

virtual inertial vector. The proposed pooling operations, υ1(·), υ2(·) and υ3(·), applied on βq di-

mensional intra-frame descriptor cost O(βq), O(βqL4Nq logL) and O(βqL2 logL), respectively.

An SVM training costs O(max(Nt ,Nι),min(Nt ,Nι)
2) on a data of Nt train samples, where each

sample is represented with Nι -dimensional fι [24]. The logistic regression cost increases linearly

with the data size asO(Nt). The temporal continuity constraints introduce a complexity ofO(D)

per feature group, fι .

Table 4.2 shows the summary of the wall-clock computation time elapsed for the extraction

of the proposed features for a randomly selected ≈ 3 s long segment at 30 fps. The computation

bottleneck lays on the initial motion estimation (grid optical flow and intensity centroid) or ap-

pearance description (HOG and Overfeat) than the proposed features extraction. Particularly, it

takes about 140 s to derive Overfeat [83], which is partly because we use the pre-compiled bina-

ries. The experiments were conducted using Matlab2014b, i7-4770 CPU @ 3.40GHZ, Ubuntu

14.04 OS and 16GB RAM.

4.6 Experimental set-up

4.6.1 Parameter setting

To extract GF and VF, we adopt the parameter values in Chapter 3. We employed the settings

in [81] for HOG and Overfeat extraction, but we change the grid dimension for HOG from 5×5

to 7× 7 as the frame resolution changes from 320× 240 to 640× 480, respectively. We use

the same number of bands for υ2(·) similarly to the FMDF and FMMF. The number of previous

samples used for extracting the temporal knowledge is found experimentally by iteratively testing

different temporal duration (previous samples) on each feature group and their combination for
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Table 4.2: Summary of wall-clock time elapsed for the computation of proposed features exper-
imented on a randomly selected ≈ 3s long video segment at 30 fps. MDHF: motion direction
histogram; MDHS: motion direction histogram standard deviation; FMDF: Fourier transform of
motion direction feature; MMHF: motion magnitude histogram feature; FMMF: Fourier trans-
form of motion magnitude feature; HOG: histogram of oriented gradient; υ1: standard deviation
pooling; υ2 and υ3 are frequency domain pooling operations. υ2 decomposes the frequency
response into bands whereas υ3 computes the power in frequency domain.

Feature source Feature subgroups Feature groups
MDHF = 3.92 ms
MDHS = 3.97 ms

Grid optical flow = 3.83 s FMDF = 4.34 ms
MMHF = 2.80 ms
FMMF = 1.95 ms GF = 3.84 s

Intensity centroid = 6.69 s time-domain = 1.58 ms
Average grid flow =3.84 s frequency-domain = 3.28 ms VF = 10.54 s

HOG-υ1 = 0.15 ms
HOG [81] = 13.16 s HOG-υ2 = 1.36 ms

HOG-υ3 = 0.21 ms
Overfeat-υ1 = 2.73 ms

Overfeat [83] = 140.07 s Overfeat-υ2 = 48.13 ms
Overfeat-υ3 = 4.30 ms AF = 153.39 s

a fixed set of train and test data (Fig. 4.5(a)). Finally, we set D = 13 samples (≈ 20 s) and it

is shown that more previous knowledge does not significantly improve the performance. We set

the confidence threshold, rt , for the DTCE after similar experiment is performed iteratively as

shown in Fig. 4.5(b). It is observed that all the separate feature groups (GF, VF and AF) achieve

performance improvement up to rt = 6, which we set for our experiments. The performance

becomes stable for higher values of rt because the DTCE follows hard-coded rules (Algorithm

2). Hence, as the threshold becomes too large to satisfy (for a fixed D), the Algorithm follows

the last option and the final prediction vector becomes one of an, a′
n and ãn that has the highest

confidence score. It is also observed that the DTCE is more effective on the separate feature

groups than their combination, which can satisfy the threshold easily as the combination provides

higher discriminative capacity.

4.6.2 Datasets

We compare state-of-the-art approaches on multiple datasets. We use a proprioceptive subset

(15 hours) of the largest public FPV dataset (HUJI 1). The video sequences were collected in

unconstrained settings (Table 4.3). All video segments are preprocessed to have a 640× 480

1http://www.vision.huji.ac.il/egoseg/videos/dataset.html

http://www.vision.huji.ac.il/egoseg/videos/dataset.html


Chapter 4: Hierarchical modelling and temporal continutiy exploitation 65

(a) (b)

Figure 4.5: Experimental setting of parameters using fixed set of train and test sets; (a) different
numbers of previous samples, D, are experimented; (b) different threshold values are experi-
mented for confidence-based temporal encoding. Results show that the temporal context encod-
ing improves the performance of separate feature groups more significantly than that of their
combination.

Table 4.3: Number of video segments and their total duration per activity in the considered
dataset [71]. The percentage that each activity covers of the whole dataset is also given. The
class imbalance problem can be easily depicted as Run activity alone amounts for 47% of the
whole dataset whereas Stand covers only 5%.

Classes
Run Sit Go upstairs Stand Static Walk Total

Number of segments 13 11 13 15 14 19 85
Duration (mins) 409 96 151 47 104 62 869
Percentage (%) 47 11 17 5 12 7 100

Table 4.4: Summary of the number of video segments collected by each of the four subjects (S1,
S2, S3 and S4) in the BAR dataset. Sub.: Subject; L-R: Left-right turn; S-S: Sit-Stand.

Sub. Bow Defend Dribble Jog L-R Pivot Run Shoot S-S Sprint Walk Total
S1 4 3 8 4 8 14 4 30 4 2 4 85
S2 4 6 8 4 4 6 4 30 4 4 4 78
S3 4 9 8 4 4 14 4 29 4 4 4 88
S4 4 6 6 4 5 12 4 26 5 4 4 80

Total 16 24 30 16 21 46 16 115 17 14 16 331

resolution and a 30 fps frame rate.

We also validate the proposed framework on another public dataset of basketball activity

recognition, BAR2, which is smaller (1.2 hrs) than the HUJI subset, but contains more dynamic

basketball activities such as Sprint, Dribble, and Shoot (Table 4.4).

We employ equal decomposition of the available per-class video sequences into train and test

sets (50% each) on the HUJI dataset [71]; whereas we employ a one-subject-out cross validation

on the BAR dataset as the four subjects contribute equivalent amount of data. Different train

2http://www.eecs.qmul.ac.uk/˜andrea/FPV.html

http://www.eecs.qmul.ac.uk/~andrea/FPV.html
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and test set splits enable us to experiment the proposed framework under different validation

strategies. Each experiment is repeated 100 times and the average performance is reported.

4.7 Results and discussion

We evaluate the proposed hierarchical and temporal encoding approach using ten main experi-

ments. First, we compare its recognition accuracy with the state-of-the-art methods. We com-

pare our framework with cumulative displacement curves (CDC) [70], robust motion features

(RMF) [4], average pooling (AP) [104, 108] and multi-resolution good features (MRGF) [108,

109] in the state of the art. CDC [70] is selected due to its hierarchy-based decomposition of

activities similar to the proposed framework, whereas RMF [4] is chosen as it involves similar

magnitude, direction and dynamics encoding strategies. AP [104, 108] is a baseline as it con-

tains raw grid features with no explicit extraction of specific motion characteristics. We also

evaluate MRGF [108, 109], which is a keypoint-based approach that exploits the direction of the

displacement vector between matched descriptors.

Second, we evaluate the performance of each feature group on the hierarchical classification.

Third, we evaluate the subgroups of each feature group separately. Fourth, we show how the pro-

posed temporal context exploitation (TCE) strategy improves the recognition performance. The

fifth experiment validates the proposed TCE when it is applied on the state-of-the-art features.

Sixth, following the misclassification analysis, we show how the TCE becomes more effective

when the activities are distinctively defined, first, by merging Sit and Stand to Sit/Stand, followed

by a merging of Static and Sit/Stand to Stationary. Seventh, we compare our proposed pooling

of the intra-frame descriptors with time-series gradient pooling [81]. Eighth, we validate the

discriminative characteristics of the proposed feature groups across different classifiers, in com-

parison with the state of the art. The ninth experiment provides the results of three weighting

strategies applied to solve the class imbalance problem. Finally, we also validate the proposed

TCE on another public dataset and compare it with the state-of-the-art-methods.

4.7.1 Comparison with alternative methods

Table 4.5 shows that CDC [70], MRGF [108, 109] and AP [104, 106] achieve at least 22%

lower in P and R with respect to the Proposed. The superiority of the proposed method is due

to the higher discriminative capability of its feature groups and the use of past information via



Chapter 4: Hierarchical modelling and temporal continutiy exploitation 67

Table 4.5: Per-class recall performance of the state-of-the-art features validated using SVM and
compared with the proposed framework. P: Precision (%);R: Recall (%).

Classes Overall
Feature Run Sit Up-stair Stand Static Walk P R
CDC [70] 74 42 63 12 87 48 56 56
RMF [4] 91 53 90 15 88 80 69 71
MRGF [108, 109] 61 19 66 14 69 40 45 47
AP [104, 106] 44 48 81 10 95 43 52 57
Proposed 99 87 100 3 96 88 78 79

MTCE and DTCE. Compared to RMF [4], our proposed low-level features, FMMF and grid-

based virtual-inertial features, improve P andR by 13% and 11%, respectively. The results also

show keypoint-based methods struggle in such a challenging dataset compared to optical flow-

based methods. Since CDC [70] was proposed for the recognition of long-term activity segments

(≈ 17 s), it is shown to be less effective for short activity segments (≈ 3 s). Generally, the results

demonstrate the higher capability of our method to deal with the FPV challenges.

Among the classes, Sit has been improved significantly from 53% using RMF to 87% using

Proposed. However, due to the following reasons, the same improvement cannot be achieved

to Stand though both Sit and Stand are stationary states with head-driven motion in their first-

person videos. First, the amount of data available for each of the two states is not equivalent

as Sit (11%) contains twice the amount of data than Stand (5%) as shown in Table 4.3. Hence,

the lack of more training information for Stand results in the underfitting of its model, i.e. lower

performance. Second, the same temporal smoothing process in the proposed framework affects

Sit and Stand differently due to their different frequencies and durations in the dataset. Compared

to Sit, Stand video segments are often observed in between other activities with a shorter duration.

Specifically, there are 15 Stand and 11 Sit video segments in the dataset as shown in Table 4.3.

However, the average duration of a Stand segment is 3.15 mins (σ = 7.34 mins) compared to 9.35

mins (σ = 9.15 mins) of a Sit segment, where σ represents the standard deviation of segment

durations. As the result, a Stand sample is more likely to be smoothed towards its pre-occurring

activity in the sequence. Third, per the definitions of the activities in Table 4.1, Stand may contain

a few walking steps that results in misclassification of Stand samples to Walk as shown in Fig. 4.7

and Fig. 4.8.
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Table 4.6: Performance of existing and proposed feature groups at each node, Me, of the hierarchy
in terms of the binary classification accuracy, A (%). GF: grid features; VF: virtual-inertial
features; AF: pooled appearance features.

Nodes
Features M1 M2 M3 M4 M5

Existing

CDC [70] 90 85 83 79 54
RMF [4] 96 98 83 90 58
MRGF [108, 109] 78 79 72 80 56
AP [104, 106] 86 93 88 62 56

Proposed

GF 96 99 88 92 64
VF 96 95 85 94 59
AF 93 100 93 74 62
GF+VF 96 98 88 94 62
GF+AF 95 99 96 79 58
VF+AF 94 99 95 76 63
GF+VF+AF 96 100 96 86 66

4.7.2 Evaluation of the feature groups

We evaluate the independent performance of each feature group (and their combinations) at each

node, Me, of the hierarchy in the proposed framework, and we also compare with the state-of-

the-art features as shown in Table 4.6. Note that we use the acronyms for the proposed feature

groups (GF, VF and AF) for clarity, rather than the variables (f1, f2 and f3), in the following

discussion. Almost all features are shown to achieve more than 85% accuracy at M1 (Stationary

vs. Locomotive). MRGF [108, 109] achieves the lowest accuracy (78%) at M1 expectedly since it

does not utilise magnitude information that could have easily discriminated the two activity sets.

Note that A is affected by the class imbalance problem.

For all nodes, M1 - M5, at least one of the proposed feature groups achieves the highest

accuracy. VF achieves higher accuracy in classifying activities with well-defined motion patterns,

e.g. Run vs. Walk at M4, whereas GF is more effective when the motion patterns are less distinct,

e.g. Sit vs. Stand at M5. AF achieves higher accuracy at M2 (Move along flat-space vs. Go

upstairs) and M3 (Static vs. Semi-static) as there are unique appearance descriptors of staircases

at M2, whereas Static videos at M3 contain a typical case of a person sitting while watching a

movie or reading on the computer screen in the dataset.

Generally, superior performances of GF at M1 and M5, VF at M1 and M4, and AF at M2

and M3 validate our proposal of utilising different features groups according to their importance

across the nodes in the hierarchy. Though the feature groups are used separately in the hier-

archy, the combination of GF, VF and AF achieves the highest performance almost at all the

nodes except at M4. M4 refers to the binary classification between Run and Walk activities. Since
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(a) GF (b) VF

(c) AF

Figure 4.6: Performance of feature subgroups in each of the proposed GF, VF and AF. The
pooling operations include υ1: standard deviation, υ2: grouping into frequency bands and υ3:
power in frequency domain.

the two activities experience different motion dynamics, they can be easily differentiated with

motion-driven features (92% with GF and 94% with VF) as shown in Table 4.6. However, these

activities do not involve differences in their occurring environments, i.e. both contain similar ap-

pearance information. Hence, appearance-driven features (74% with AF) are not as discriminant

as motion-driven features. Thus, the concatenation of the high dimensional AF with GF and VF

introduces the less discriminative characteristics between Run and Walk, though it improves the

performance at all other nodes (M1, M2, M3 and M5).

We evaluate the significance of the subgroups within each feature group: MDHF, MDHS,

MMHF, FMDF and FMMF in GF; centroid-based and optical flow-based virtual inertial fea-

tures in VF; and intra-frame appearance descriptors pooled with υ1(·), υ2(·) and υ3(·) opera-

tions. Figure 4.6 shows that GF, VF and AF achieve improved performance by including all their

corresponding feature subgroups. Figure 4.6(a) illustrates that motion direction contains more

dynamic information than the magnitude as depicted from their corresponding Fourier domain
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analysis. Figure 4.6(b) shows that the proposed optical flow-based virtual inertial feature outper-

forms the centroid-based inertial feature because optical flow represents more direct estimation

of motion than the displacement of intensity centroid. Fig. 4.6(c) shows that υ2(·) pooling is

less effective compared to υ1(·) and υ3(·) since υ2(·) reduces the original dimension of the intra-

frame descriptor into few bands resulting under-fitting, whereas υ1(·) and υ3(·) keep the original

feature dimension.

4.7.3 Temporal context

The temporal context exploitation, achieved using MTCE and DTCE, is the main reason for the

superior performance of the proposed framework to the state of the art. Figure 4.7 shows the

improvement of the recognition performance for almost all classes due to MTCE and DTCE. A

significant improvement is observed as the misclassification of Sit to Stand reduces from 20%

in Fig. 4.7(a) to 12% in Fig. 4.7(b) due to MTCE and to 9% in Fig. 4.7(c) due to DTCE. The

same analogy can be applied to the 14% misclassification of Run to Walk. MTCE and DTCE are

shown to improve the performance equivalently though MTCE is supposed to be more influential.

However, the confidence-based smoothing and the weighted accumulation of previous outputs in

DTCE plays a more crucial role than initially anticipated.

The combination of both MTCE and DTCE reduces the misclassification of Walk to Run from

15% in Fig. 4.7(a), 4.7(b), 4.7(c) to 10% in Fig. 4.7(d). The less effectiveness of the TCE for

Walk and Stand, in comparison with Run and Sit, is due to the skewness problem in the dataset.

Activities occurring for long temporal duration, e.g. Run and Sit, are more likely to dominate the

less represented short duration activities, e.g. Stand and Walk.

Furthermore, we validate the significance of our proposed temporal continuity exploitation

by applying it on the state-of-the-art features during modelling and decision. Figure 4.8 shows

the following average per-class recognition improvements: 17% on CDC [70], 8% on RMF [4],

26% on MRGF [108, 109] and 22% on AP [104, 106]. This highlights the potential of our

temporal context approach to advance the discriminative characteristics of any feature type.

Across the confusion matrices in Fig. 4.7 and 4.8, two misclassification errors have occurred

consistently. First, Sit and Stand states are often classified with inferior performance with a sig-

nificant misclassification between them. This can also be understood from the least performance

at M5 of the hierarchy in Table 4.6. The main reasons are, first, neither Sit nor Stand has dis-

tinctive characteristics (motion and/or appearance) that can be utilised during feature extraction.
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(a) No MTCE, No DTCE (b) MTCE, No DTCE

(c) No MTCE, DTCE (d) MTCE, DTCE

Figure 4.7: Comparative performance of the proposed framework at different stages; 4.7(a): the
hierarchical output without the use of any previous knowledge; 4.7(b): only previous samples
knowledge is encoded during modelling (MTCE); 4.7(c): only confidence-based smoothing is
applied (DTCE); 4.7(d): both MTCE and DTCE are applied.

Second, the lack of enough data for these activities in the dataset (Table 4.3) worsens the prob-

lem and results in underfitting. Misclassification of Walk segments to Run is often evident in the

confusion matrices due to the significant resemblance of some Run segments to Walk segments in

the dataset. In addition, the significant percentage of Stand activity is also misclassified as Walk

because considerable Stand videos in the dataset include short walking segments as defined in

Table 4.1, e.g. a subject standing and waiting for a bus while making a few walking steps at the

bus stop.

We also validate the proposed framework by merging activities with no distinctive FPV char-

acteristics between them. The merging also eases the class imbalance problem in the dataset. We

start by merging Sit and Stand to Sit/Stand as they both involve random head movement while the

subject is stationary. The result is shown in Fig. 4.9(a). We further merge Static and Sit/Stand to

Stationary and the result is shown in Fig. 4.9(b). In comparison with Fig. 4.7(d), we accomplish

higher performance improvement in Fig. 4.9 that confirms the effectiveness of our framework for

well defined activities, and further validates the resemblance of Sit and Stand segments.
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(a) CDC [70] (b) CDC-TCE

(c) RMF [4] (d) RMF-TCE

(e) MRGF [108, 109] (f) MRGF-TCE

(g) AP [104, 106] (h) AP-TCE

Figure 4.8: The validation of the proposed temporal continuity exploitation (TCE) on the state-
of-the-art features. Figures 4.8(a), 4.8(c), 4.8(e) and 4.8(g) represent the original performances
without TCE, and Figures 4.8(b), 4.8(d), 4.8(f) and 4.8(h) show their respective improved per-
formances after TCE.
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(a) (b)

Figure 4.9: Performance is improved when similar classes are merged to a single activity; (a) Sit
and Stand are merged to be a Sit/Stand activity; (b) Sit/Stand and Static are further merged to be
a Stationary activity. Results show the improvement of the recognition performance when less
clearly distinctive activities are merged.

Table 4.7: Comparison of the proposed pooling of intra-frame appearance descriptors with the
time-series gradient (TSG) pooling [81]. Per-class recall (R) values are given followed by the
overall averaged precision (P) and recall values (%). Dim.: dimension of the feature vector
obtained after the pooling; raw refers the summation pooling of the raw feature elements across
frames.

Per-class Overall
Feature Run Sit Up-stair Stand Static Walk P R Dim.
HOG-raw [46] 77 21 75 1 71 62 51 51 392
HOG-TSG [81] 81 29 93 3 85 73 59 61 2352
HOG-proposed 77 32 90 3 81 65 57 58 809
Overfeat-raw [83] 78 43 99 0 92 74 62 64 4096
Overfeat-TSG [81] 83 57 99 2 98 77 68 69 24576
Overfeat-proposed 78 59 100 0 97 72 64 68 8217

4.7.4 Pooling

We also experiment the proposed pooling for intra-frame descriptors (HOG and Overfeat [83])

with the time-series gradient (TSG) pooling [81] as shown in Table 4.7. The results show that the

proposed and TSG pooling improve the discrimination among activities in comparison with raw

appearance features for both HOG and Overfeat. Among the two intra-frame descriptors, Over-

feat expectedly outperforms HOG. Our pooling that contains υ1(·),υ2(·) and υ3(·) often per-

forms equivalently to TSG, while we manage to reduce the feature dimension almost three times.

A specific reason for slight superiority of [81] is due to its preservation of the raw appearance in-

formation through maximum and summation pooling operations whereas our proposed approach

solely focuses on motion information derived from the raw description. Generally, appearance-

driven features are shown to discriminate environment-specific activities (Go upstairs and Static)

near-perfectly in comparison with motion-specific activities (Run and Walk) expectedly.
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Table 4.8: Accuracy, A (%), comparison of proposed features in the proposed framework when
they are validated on different classifiers. SVM: support vector machine, KNN: k-nearest neigh-
bours, LR: logistic regression, DT: decision tree and HMM: hidden Markov model. GF: grid
features; VF: virtual-inertial features; AF: pooled appearance features.

Node
Feature Classifier M1 M2 M3 M4 M5

GF

HMM 66 64 62 82 46
DT 94 97 80 86 55

KNN 95 99 81 88 59
LR 69 98 60 91 52

SVM 96 99 88 92 64

VF

HMM 56 81 61 43 57
DT 93 93 81 91 56

KNN 94 94 83 93 60
LR 63 79 84 87 54

SVM 96 95 85 94 59

AF

HMM 66 77 56 71 63
DT 88 98 86 68 58

KNN 92 96 89 76 52
LR 93 100 91 72 62

SVM 93 100 93 74 62

4.7.5 Classifiers

In addition to using SVM and LR, we test the proposed feature groups on different classifiers,

namely KNN, decision tree (DT) and HMM. DT follows the hierarchical topology of distin-

guishing activities similar to the proposed framework. Table 4.8 shows the accuracy achieved

by each proposed feature group at each node of the hierarchy using different classifiers. Expect-

edly, SVM achieves superior performance consistently across different feature groups and nodes

in the hierarchy due to its discriminative and high-margin classification properties. The results

validate our selection of the SVM as the principal classifier in the proposed framework. DT fol-

lows SVM closely and performs equivalently to KNN, which reflects the advantage of tree-based

activity classification, i.e. the hierarchical structure in the proposed framework. HMM is shown

to perform significantly inferior to the other discriminative classifiers due to its dependency on

the input data model as of any generative models. LR also lags behind the SVM, DT and KNN

but it provides equivalent performance to SVM on high dimensional pooled appearance features.

Moreover, it is due to its simplicity that we select LR for the activity modelling using the high-

level feature.



Chapter 4: Hierarchical modelling and temporal continutiy exploitation 75

(a) Undersampled (b) Oversampled

(c) Under-oversampled

Figure 4.10: Comparison of different weighting strategies: undersampling, oversampling and
under-oversampling, applied on the dataset followed by the proposed framework. These strate-
gies aim to achieve equal amount of data among activities. Under-oversampling provides more
accurate recognition performance than the remaining two approaches as it optimizes the bias
(underfitting) due to undersampling and the variance (overfitting) due to the oversampling.

4.7.6 Weighted performance

Because data size variations among activities (class imbalance) affect the recognition perfor-

mance as data-scarce activities (e.g. Stand) do not help the model generalize. Moreover, the

dominance of data-rich activities (e.g. Run) results in their over-smoothing during temporal en-

coding.

To address the class imbalance problem, we apply three weighting strategies, namely under-

sampling, oversampling and under-over sampling. Undersampling reduces all activities to the

minimum number of samples per activity in the dataset. Oversampling interpolates all activities

to the maximum number of samples per activity in the dataset. Figure 4.10(a) shows that under-

sampling introduces the reduction of recall performance for the majority of the activities except

Stand (40%) since training is performed on less amount of data per class (i.e. a smaller dataset).

Oversampling hardly achieves real data equivalence among activities as the interpolated samples

are just replicas that do not introduce new information.
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Table 4.9: Per-class recall (%) performance of the state-of-the-art features on the basketball activ-
ity recognition (BAR) dataset, which contains highly dynamic basketball activities. Results show
that the proposed framework applied on GF and VF features result in the highest performance
for the majority of the classes.

Classes
Feature Bow Defend Dribble Jog L-R Pivot Run Shoot S-S Sprint Walk
CDC [70] 59 40 13 42 28 63 15 50 14 22 86
RMF [4] 98 86 82 32 90 98 54 97 68 67 96
MRGF [108, 109] 95 18 12 0 24 76 0 31 68 20 38
AP [104, 106] 4 0 0 0 12 34 0 3 10 0 91
Proposed 90 89 95 54 89 99 45 100 71 52 100

As trade-off between the two approaches, we under-oversample the dataset. This approach

undersamples data-rich activities and oversamples data-scarce activities to the mean number of

samples per class in the dataset. Figure 4.10(c) shows that equivalent overall performance is

achieved with the original approach, but under-oversampling reduces the deviation among per

class recall values from σ = 37.55 (Fig. 4.7(d)) to σ = 32.98 (Fig. 4.10(c)).

4.7.7 Validation on multiple datasets

In addition to HUJI [71], we validate the proposed temporal context exploitation approach on

BAR [4]. We also apply different train and test sets split strategy (one-subject-out) during vali-

dation.

Table 4.9 shows that the proposed multi-layer temporal context encoding helps improve per-

formance. GF and VF are used to classify the basketball activities separately using SVM in one-

vs.-all approach. The proposed MTCE is applied on their outputs followed by the confidence-

based DTCE. The recognition performance is improved for the majority of the classes. The

accuracy for Bow, Run and Sprint is slightly reduced due to temporal smoothing. The misclassi-

fications between Bow and Sit-stand as well as among Jog, Run and Sprint (Fig. 4.11) result due

to similar motion patterns of the corresponding sequential activities in the dataset. Hence, tem-

poral modelling would further smooth the distinction between similar and sequential activities.

4.8 Summary

We proposed a framework that exploits hierarchical and temporal information using optical flow,

virtual inertial data and intra-frame appearance descriptors to classify proprioceptive activities

from FPV. We extended the motion features in Chapter 3 that exploit salient characteristics of

magnitude, direction and dynamics both in time and frequency domains and utilised frame-level
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Figure 4.11: Confusion matrix of the proposed temporal context exploitation approach applied
on the basketball activity recognition (BAR) dataset [4]. Misclassification among Jog, Run and
Sprint samples due to the similar motion patterns of these activities.

appearance information using pooling operations. Each low-level motion and appearance fea-

ture group was separately used in the hierarchy in order to exploit its advantages across different

nodes. We extracted a high-level feature, which contains both hierarchical and temporal informa-

tion in order to model each activity. The temporal component was encoded using a temporally

weighted accumulation of the hierarchical outputs of the previous samples. The classification

output was further refined using a confidence-based smoothing strategy. We validated the pro-

posed framework on multiple datasets. Results demonstrated that the proposed feature groups

are more discriminative than the state-of-the-art features. We showed that appearance features

can be effectively integrated to enhance performance using well-designed pooling operations.

The proposed temporal continuity exploitation strategies improve the recognition performance

significantly. However, an activity with shorter duration and random occurrences inside a long

temporal activity might be unnecessarily smoothed.

In the next chapter, we employ deep neural frameworks to extract high-dimensional global

motion features. Particularly, we aim to exploit convolutional neural networks to extract short-

term motion features, and to utilise long short-term memory recurrent neural networks to encode

long-term temporal dependency among activities.



Chapter 5

Multi-layer temporal encoding using deep frameworks

5.1 Introduction

The current technology offers a variety of sensors that make data collection easier than ever

before. In addition to smart and small sensors, new data collection techniques, e.g. Amazon me-

chanical turk, help build large datasets in a short span of time. In addition to data, the availability

of improved computational facility, e.g. GPU, reinstates neural network research, particularly,

deep neural networks. Compared to the traditional (shallow) neural networks, deep networks

have the capacity to learn features from data that avoids feature engineering. Inspired by the

success of deep networks for image-based problems such as object recognition [27] and the

availability of large datasets, deep frameworks have also been proposed for video-based activity

recognition [49, 96, 101]. However, the recognition performance is not satisfactory yet due to

the difficulty associated with the effective learning of spatiotemporal features [3].

Due to the success of deep networks in computer vision [27], convolutional and recursive

networks have also been proposed for time-series inertial data [38, 67, 73, 74]. Particularly, re-

cursive networks are shown to be effective in encoding the temporal information [67]. However,

deep features learned from inertial data did not achieve significant superiority compared to hand-

crafted (shallow) features [67, 73]. In addition to the lack of ImageNet [27]-equivalent large

public datasets, existing deep frameworks for activity recognition from inertial data use separate

convolutions on each motion axis thus limiting the encoding of intrinsic relationships among

axial components [73, 74]. In addition, the research is relatively at an early stage and the concep-

78
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tual adaptation of deep learning into the inertial domain, i.e. interpretations of learned feature, is

missing along with architectural and parametric settings [38]. Furthermore, an IMU may con-

tain multiple sensors, such as accelerometer and gyroscope, and current approaches often apply

feature-level fusion using concatenation [75]. It is also desirable to effectively integrate different

feature streams and/or modalities. Though IMU and FPV modalities are complementary [104],

the integration of their deep features in a multi-modal setting has not been addressed yet [2].

In this chapter, first, we present a long short-term memory (LSTM) convolutional neural net-

work (CNN) for the continuous recognition of proprioceptive activities in FPV (Fig. 5.1). We

propose a novel global motion representation for intra-sample encoding, which employs a stack-

ing of frequency-time motion representations, i.e. spectrograms. Intra-sample encoding refers to

the exploitation of the motion dynamics inside a sample segment which lasts for a few seconds.

The proposed representation enables us to use 2D convolutions to learn global motion of a video

segment. The spectrogram representation of global motion benefits 2D convolutional networks

to have reduced network parameters and less complexity compared to 3D networks. Moreover, it

leads to transfer learning capabilities from models that are trained on images, e.g. ImageNet [27].

We employ an LSTM network for inter-sample temporal encoding that exploits long-term tempo-

ral dependency among activities. We validate the proposed framework against the state-of-the-art

video-based temporal encoding frameworks on the largest FPV public dataset of proprioceptive

activities.

Secondly, we present cross-domain knowledge transfer between inertial data and first-person

video in a multi-modal setting (see Fig. 5.4). We employ the proposed CNN-LSTM framework

that exploits the discriminative characteristics of multi-modal feature groups. The stacked spec-

trogram representation is also applied to encode the intrinsic relationships among axial motion

components. We propose Hoyer-based sparsity measure [43] to integrate information from dif-

ferent streams and/or modalities based on their discriminative characteristics using a logistic

regression (LR). This reduces the LSTM network complexity and the amount of data for train-

ing. To the best our knowledge, this work is the first that integrates deep features extracted from

inertial and visual data for the recognition of proprioceptive activities in FPV. The framework is

validated on multiple inertial and FPV datasets.

The chapter is organized as follows. Section 5.2 presents spectrogram-based intra-sample

encoding. Section 5.3 describes the use of existing convolutional neural networks to extract
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Figure 5.1: The proposed method for the recognition of proprioceptive activities using a CNN-
LSTM framework employed for intra-sample and inter-sample temporal encoding in FPV.

high-level features. Section 5.4 presents the use of long short-term memory recurrent neural net-

work to encode long temporal dependency among activities. Section 5.5 describes cross-domain

knowledge transfer in a multi-modal setting that contains egocentric inertial and vision data. Sec-

tion 5.6 presents a sparsity weighted combination of information from multiple streams and/or

modalities. Section 5.7 evaluates the complexity of the proposed framework and compares with

the state of the art, and the setting of parameters and the datasets used for validation are described

in Section 5.8. Section 5.9 discusses the experimental results, and Section 5.10 summarises the

chapter.

5.2 Intra-sample temporal encoding

Intra-sample encoding exploits the global motion dynamics in a sample Vn using a CNN with 2D

convolutions only. We encode the global motion in Vn using two complementary motion sources:

mean grid optical flow, Ḃn = {Ḃk}L−1
k=1 , and intensity centroid velocity, Ẇn = {Ẇk}L−1

k=1 , similarly

as in Chapter 4.

We propose to encode the dynamics of the optical flow-based and centroid-based global mo-

tion data using frequency-domain analysis. Particularly, we derive frequency-time (spectrogram)

representation of each axial component and later stack them together (Fig. 5.2). A given time-

domain signal is segmented into different overlapping windows, and a fast Fourier transform

(FFT), F(·), is applied on each axis, which provides a corresponding set of spectrograms. The

spectrogram contains the frequency response magnitude of all the chunks at different frequency

bins. Let Ḃx
n and Ḃy

n be the horizontal and vertical axial components of the grid-based global mo-

tion, Ḃn. The FFT applied on Ḃx
n and Ḃy

n provides the spectrograms B̄x
n =F(Ḃx

n) and B̄y
n =F(Ḃy

n),

respectively. Inspired by the success of direction-based motion features in Chapter 3 and 4, we

propose to include the spectrogram of the direction component, B̄θ
n = F(Ḃθ

n ) in addition to B̄x
n
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Figure 5.2: Stacking of the spectrograms from global motion representations encoded from the
mean grid optical flow, Ḃn, and centroid velocity, Ẇn. The fast Fourier transform is first applied
on each axial component to obtain frequency-time representation followed by scaling, translation
and normalization operations that bound the spectrogram values to [0,255]. The stacking of the
spectrograms provides 3-channel representation that enables us to apply transfer learning from
image-based models.

and B̄y
n, where Ḃθ

n = arctan2(Ḃy
n, Ḃx

n).

Following the FFT, we scale each spectrogram component of B̄n by α , translate it by τ

and apply normalization operations similarly to [29] in order bound the spectrogram values to

[0,255]. For example, the scaling, translation and normalization are applied on the horizontal

spectrogram component, B̄x
n, as

J̄x
n = α ∗ B̄x

n + τ (5.1)

J̃x
n = max(J̄x

n,0) (5.2)

Ĵx
n = min(J̃x

n,255). (5.3)

Similarly, Ĵy
n and Ĵθ

n components are derived from B̄y
n and B̄θ

n , respectively. In order to encode

the high-level CNN features from the spectrograms with 2D convolutions, we stack the spectro-

grams of x,y and θ components into 3-channel motion representation as Ln = (Ĵx
n, Ĵ

y
n, Ĵz

n). The

stacking helps to encode the intrinsic relationship among multiple motion components during

the convolution. The direction spectrogram is included to exploit its discriminating character-

istics, unlike Ng et al. [102] that filled the third channel with zero values. The normalization

enables us to visualize the stacked spectrograms as RGB images and we store the stacked spec-

trograms in JPEG format, which facilitates the effectiveness of applying transfer learning from

image datasets, e.g. using ImageNet pre-trained CNN models.

We also employ the same stacking procedure on the centroid velocity, Ẇn. Let the horizontal

and vertical centroid velocity be Ẇ x
n and Ẇ y

n , respectively, and their corresponding direction com-

ponent be, Ẇ θ
n = arctan2(Ẇ y

n ,Ẇ x
n ). Similarly to the grid-component of the pipeline in Fig. 5.2,

we employ the FFT on each component that provides W̄n, i.e. W̄ x
n = F(Ẇ x

n ), W̄ y
n = F(Ẇ y

n ) and

W̄ θ
n = F(Ẇ θ

n ). The scaling, translation and normalization operations applied on each of W̄ x
n ,

W̄ y
n and W̄ θ

n provides K̂x
n , K̂y

n and K̂θ
n , respectively. Finally, we obtain the corresponding stacked
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spectrogram from the centroid velocity as Mn = (K̂x
n , K̂

y
n , K̂θ

n ) and store it in JPEG format.

5.3 CNN-based high-level motion feature extraction

We propose to employ pre-trained CNN models to extract high-level features of the global mo-

tion from the low-level stacked spectrogram representation, which improves the generalizing

capability of the features. Once the global motion streams of Vn are represented as stacked and

normalized spectrograms, Ln and Mn, it is possible to employ a sequence of 2D convolution

filters to extract the high-level intra-sample global motion features. In addition to the benefit of

transfer learning, our 2D CNN-based approach reduces the number of network parameters, and

hence, the amount of data required for training. This is useful in first-person vision, where the

datasets are not as large as the traditional vision datasets, such as Sports-1M [49].

We use GoogleNet [93] to extract high-dimensional inception features, pn and qn ∈RD, from

Ln and Mn, respectively. The final feature vector is the concatenation of the inception features,

xn = (pn,qn)
T , where (·)T represents the transpose operation. The feature xn ∈ R2D encodes the

temporal evolution of motion magnitude and direction inside a segment, which later becomes the

input to long-term temporal dependency encoding using recurrent neural networks.

5.4 Inter-sample temporal encoding

We exploit the temporal relationships among consecutive samples or different activities to im-

prove the recognition performance. To this end we employ a recurrent neural network (RNN)

that learns temporal dynamics using previous information, hn−1 ∈ Rκ , in order to estimate the

current hidden information, hn ∈ Rκ , where κ is the number of neurons in the hidden layer.

The limitations of basic RNN models make learning of long temporal dependency impossi-

ble: the vanishing and exploding gradient problems, which occur during training, particularly,

during error propagation. Vanishing of the gradient happens when the gradient becomes zero

due to consecutive multiplications of small gradients values across the T temporal indices. This

phenomenon incorrectly suggests optimal learning of the network parameters. The exploding of

the gradient happens due to the consecutive multiplication of the gradient with large numbers. As

the result the gradient becomes too large to minimize. This might result in the saturation of the

weights gradient at the very high level that would give the incorrect impression of high discrimi-

native capability. Comparatively, exploding gradient is easier to address, e.g. using truncating.
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Figure 5.3: The LSTM framework used for long-term temporal dependency (inter-sample) en-
coding in the framework. Wxg ∈ {Wx f ,Wxi,Wxc,Wxo}; Whg ∈ {Wh f ,Whh,Whi,Whc,Who}; φ and σ

are tanh and sigmoid activation functions, respectively; � is an element wise multiplication.

As a result we employ a long short-term memory (LSTM) network that overcomes vanishing

and exploding gradient problems using three additional gates: forget, input and output, that act as

switches for monitoring information flow from the current input, xn, and previous hidden state,

hn−1, to the current hidden state, hn, via the memory cell state cn.

The forget gate, fn, helps to discard less useful information from the previous cell state, cn−1,

as

fn = σ(Wx f xn +Wh f hn−1 +b f ), (5.4)

where σ(·) represents the sigmoid activation function and b f is the bias in the forget gate.

The input gate, in, weights the candidate cell information, c̄n, to be the current state of the

cell, cn, as

in = σ(Wxixn +Whihn−1 +bi), (5.5)

c̄n = φ(Wxcxn +Whchn−1 +bc), (5.6)

cn = fn� cn−1 + in� c̄n, (5.7)

where φ(·) represents the tanh activation function, � is an element-wise product and bi and bc

represent the input gate and memory cell biases, respectively.

The output gate, on, evaluates the cell information, cn, to predict hn.

on = σ(Wxoxn +Whohn−1 +bo) (5.8)

hn = on�φ(cn) (5.9)
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The weight parameters {Wh f ,Whh,Whi,Whc,Who}∈Rκ×κ correspond to the states {fn,hn, in,cn,on}∈

Rκ , respectively. The parameters {Wx f ,Wxi,Wxc,Wxo}∈Rκ×2D correspond to the input, xn ∈R2D.

Finally, output projection wrapper is applied using the softmax normalization that provides

the activity prediction vector, an ∈ RNc , for Vn as

ac
n =

eW c
hahn

∑
Nc
c=1 eW c

hahn
, (5.10)

where ac
n is the prediction score for the cth class and Nc is the number of activity classes, and

Wha ∈ RNc×κ is the wrapping matrix.

5.5 Cross-domain knowledge transfer in a multi-modal setting

We extend the proposed FPV-based CNN-LSTM framework to integrate motion information

from multi-modal data, i.e. IMU and FPV, using sparsity weighted combination that encodes the

discriminative capacity of each modality as shown in Fig. 5.4.

Deep frameworks for human activity recognition (HAR) applications from time-series sen-

sory data are often built from scratch with limited amount of data [67, 73, 74]. In addition, they

do not exploit cross-domain knowledge transfer, i.e. the use of knowledge extracted from vision

problems of similar applications. This includes the use of successful image models that are pre-

trained on large image datasets such as ImageNet [27]. Transferring cross-domain knowledge

from successful models, e.g. from vision research, could help reduce the amount of training data

required and ease the training stage.

In inertial-vision multi-modal setting (Fig. 5.4), the nth activity sample contains inertial, Ĩn,

and first-person video, Vn, data. Ĩn contains triaxial accelerometer, Ĩan and/or gyroscope, Ĩgn,

streams. Multi-stream global motion is also extracted from Vn as in Section 5.2 that resembles

inertial motion representation. The stacked spectrograms for grid optical flow and centroid ve-

locity of Vn is performed similarly as before using horizontal, vertical and direction components.

But the stacked spectrograms from the gyroscope and accelerometer components of Ĩn is arranged

slightly different from the stacking in FPV. As accelerometer or gyroscope sample often has three

dimensions, i.e. Ĩan = (Ĩx
an, Ĩ

y
an, Ĩz

an) and Ĩgn = (Ĩx
gn, Ĩ

y
gn, Ĩz

gn), respectively, thus, the third channel of

the stack contains a normalized spectrogram of the z-component of the inertial data rather than

the direction.
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Figure 5.4: The proposed method for proprioceptive activity recognition from multi-modal ego-
centric data that may contain inertial and/or first-person vision data. Global motion is encoded
from the mean of grid optical flow and the derivative of the intensity centroid in the video.
A spectrogram representation is derived from each stream in the video and inertial data. The
spectrogram values are scaled, translated, normalised and stacked to enable the extraction of
CNN features that become input to a logistic classifier. The classification outputs of different
streams are weighted by their sparseness and combined as input to the LSTM, which encodes the
temporal dependency among activities. Finally, an output wrapper with softmax normalisation
produces the activity prediction vector.

High-dimensional short-term motion features are extracted using a pre-trained CNN frame-

work from each motion stream of inertial, J̃n, and visual, K̃n, stacked spectrograms resulting l̃n

and m̃n, respectively. For inertial component of the pipeline, the stacked spectrogram represen-

tation enables us to achieve cross-domain knowledge transfer using pre-trained image models.

This avoids the need of training a dedicated deep network from scratch, i.e. it reduces system

complexity.

5.6 Sparsity weighted combination

We employ sparsity measure to evaluate the decision confidence of each motion stream. The

logistic regression is proposed to obtain independent classification outputs of different streams.

The outputs are then weighted by their corresponding discriminative characteristics and fused as

input to the LSTM. The logistic classification also transforms high-dimensional input features,

l̃n and m̃n, respectively, to p̃n and q̃n, i.e. p̃n, q̃n ∈ RNc , where Nc is the number of activities.

This further reduces the complexity of the LSTM network proposed to encode the long-term

temporal dependency among activities and hence, the amount of data required to train it. We

apply a sigmoid function, σ(·), to transform the logistic outputs, p̃n and q̃n, to r̃n and s̃n, that are

bounded to (0,1) as

σ(ξ ) =
1

1+ exp(−ξ )
, (5.11)

where ξ ∈ {p̃n, q̃n}. In order to compute the sparseness of the logistic classification output, we

apply the Hoyer measure [43], ψ(·), which is an effective approach for Nc dimensional vector

[44]. It is defined as
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ψ(η) =

√
Nc− ||η||1||η||2√

Nc−1
, (5.12)

where η ∈ {r̃n, s̃n} and || · ||1 and || · ||2 are `1 and `2 norms, respectively. The final feature input

to the LSTM network, x̃n ∈ RNc , is the accumulation of the logistic classification vectors of the

existing streams weighted by their corresponding sparseness measure as

x̃n = ∑
η∈{r̃n,s̃n}

ηψ(η). (5.13)

We employ an LSTM framework on the sparsity-weighted output to encode the long-term

temporal relationships among activities. Finally, we apply an output projection wrapper on the

estimated multi-modal hidden state, h̃n. This provides an activity prediction vector, an ∈ RNc

using the softmax normalization as in Eq. (5.10).

5.7 Complexity analysis

The grid optical flow and intensity centroid computation posses similar computational complex-

ity as presented in Chapter 4. The lower computational cost of 2D convolutions compared to 3D

convolutions arise from a fewer dimension of operations. Note that 3D convolution practically

involves convolutions in four dimensions, x,y, t,m, and 2D convolution is applied in three dimen-

sions, x,y,m, where x: horizontal; y: vertical; t: temporal; and m: filter maps. 3D convolution

networks result in complex networks that further require larger datasets to train [96].

The proposed deep framework for inertial data provides less computational complexity com-

pared to the state-of-the-art deep frameworks. Dedicated convolutional networks are often pro-

posed to learn features for each modality in the existing frameworks. This requires exhaustive

hyper-parameter setting and training of the network in addition to large data requirement and

architectural design choices. The proposed framework avoids the computationally expensive

CNN training stages via cross-domain knowledge transfer using existing CNN models that are

trained on large image datasets. In addition to its merit-based effective integration, the sparsity

weighted fusion of multi-modal features provides significant reduction of the dimension of the

feature space input to the LSTM from RλD to RNc , where λ is the number of modalities, D is

the dimension of the CNN feature extracted from each modality, and Nc is the number of activity

classes. This reduces the complexity of the LSTM network.
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5.8 Experimental set-up

In this section we describe the state-of-the-art methods used for comparison for both visual and

inertial components of the proposed pipeline, setting of parameters used in the intra-sample and

inter-sample encoding stages. We also discuss the datasets used for validation.

5.8.1 Parameter setting for the visual component

We compare the vision-based pipeline of the proposed approach against four state-of-the-art

video representation methods, namely C3D: 3D convolutional descriptors [96]; TDD: trajectory-

pooled deep descriptors [101]; VD: VideoDarwin [34]; and TGP, time-series gradient pooling

[81];.

C3D represents methods that employ 3D convolutions to learn spatiotemporal features, which

result in complex networks and require large datasets for training. TDD is highly discriminative

video representation that contains both spatial and temporal streams encoding using 2D convolu-

tions. TDD also exploits the effectiveness of improved trajectory representation [100] that takes

into account the camera motion, compared to the dense representation [99]. Thirdly, VD has a

representation of the video data using ranking functions. It is recently extended to handle any of

handcrafted or CNN features [34]. TGP is used as a baseline method, which employs histogram

and sum pooling of each feature element, which is treated as a time-series data.

We set the length of an activity sample to 3 seconds, i.e, L= 90 and number of grids, G= 100,

similarly to Chapter 4. We use a chunk of 15 frames with an overlap of 14 frames in the FFT

to generate smooth spectrograms of the global motion vectors. The scaling factor, α = 16, and

translation of τ = 128 are used, similarly to [29], which are then normalized to (0,255).

We use inception-v3, which is pre-trained on the ImageNet [27], to extract the CNN features

on the spectrogram images. The inception-v3 reaches the top-5 error rate of 3.46% on ImageNet.

We extracted the features from the next-to-last layer of the CNN, i.e. ′pool 3 : 0′, which provides

D = 2,048 dimensional high-level global motion feature. For the LSTM network, we focus on

its simplicity due to the limited dataset size and high dimensional feature input. Thus we employ

only a single hidden layer, which contains κ = 128 neurons trained with a batch size of 100 and

with 80 epochs. We set the recursive duration to contain Tv = 20 samples and the learning rate to

be 0.01. We also resize the videos to a resolution of 320×240.

For VD, we use concatenated histograms of motion magnitude and direction, with 15 and
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36 bins, respectively, similarly to [4], as input for the ranking functions, which results D = 102

feature vector. We use the C3D models pre-trained on the Sports-1M dataset [49] for feature

extraction. For an activity sample of L = 90 frames, D = 4,096 long C3D feature is extracted

from the sixth layer (′ f c6− 1′) for each chunk of 16 frames. Average pooling of these C3D

features is performed for the final C3D representation of the activity sample.

We use the TDD model pre-trained on the UCF101 dataset. Features from conv4 and conv5

layers are extracted from the spatial stream, and from conv3 and conv4 layers are extracted from

the temporal stream, each provides D = 512 long feature vector. We also apply both spatiotem-

poral and channel normalizations. The final TDD feature for an activity sample is D = 4,096

feature vector.

TGP is derived by applying sum and histogram pooling on the gradient of inception features

extracted from flow images. TGP provides D = 12,288 dimension from input of D = 2,048

inception feature. One-vs.-all Support vector machine (SVM) classifier is used to validate the

state-of-the-art methods and the intra-sample encoding evaluation of the proposed framework.

Our performance metrics to evaluate the recognition performance are precision, P , recall,R,

and f-score, F . We first evaluate the performance metrics per each class and finally report their

average as the overall system performance. All experiments are conducted with 100 iterations

and the average performance of the iterations is reported as a final recognition result.

5.8.2 Parameter setting for the inertial component

We compare six inertial-based approaches with the proposed inertial-based deep framework:

Handcrafted-1 [73], Handcrafted-2 [9], Catal et al. [23], Alsheikh et al. [8], Ravi et al. [74] and

Ravi et al. [73].

Handcrafted-1 [73] and Catal et al. [23] are based on low-dimensional shallow features ex-

tracted in time-domain, whereas Handcrafted-2 [9] additionally include frequency-domain fea-

tures. On the other hand, Alsheikh et al. [8] and Ravi et al. [74] employed learned deep features

using dedicated networks. Ravi et. al. [73] integrated the deep features in [74] with Handcrafted-

1 features.

We set the parameters of the inertial component similarly to the state-of-the-art methods [9,

73, 74]. As the result, we set the window length for the inertial component to be 10 s, with no

overlapping. The dimension of the shallow features Alsheikh et al. [8], Handcrafted-1 [73] and

Handcrafted-2 [9] become 43, 102 and 394, respectively.
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We employ the same setting as the visual component (Section 5.8.2) to extract CNN features

using inception-v3. In order to compare the inception features with the state-of-the-art inertial

methods in tenfold validation as in [73, 74], we employ a support-vector machine (SVM) clas-

sifier with a polynomial kernel implemented on MATLAB 2014b. We use the results of the

state-of-the-art-methods reported in [73] for the comparison.

The full pipeline that contains the logistic regression, the sparsity weighted combination and

the LSTM is implemented in Python 3.5. Equal amount of data is preserved for both training and

test sets (50% each) in ActiveMiles and WISDM-v2.0. We use fixed train and test sets to reduce

the number of iterations that linearly increases with the number of epochs in the LSTM. Each

experiment is repeated ten times and the average performance is reported.

We use one-vs.-all (OVA) validation for the logistic regression. For the LSTM network,

we apply similar setting as the visual component except the recursive duration for the inertial

component Ti = 10 samples as the window length is bigger in the inertial component. For the

BAR multi-modal datasets that contains both inertial and visual data, Tv = Ti = 5 since the dataset

is small and there is no longer temporal dependency among samples. We use precision, P , recall,

R, and accuracy, A, to evaluate the recognition performance. We first evaluate the performance

metrics per each class and finally report their average as the overall system performance.

5.8.3 Datasets

We use multiple inertial and visual datasets for validation. ActiveMiles [74] and WISDM-

v2.0 [55] are the inertial datasets, whereas HUJI [71] and BAR [4] are the FPV datasets. The

summary of the datasets is shown in Table 5.1.

ActiveMiles [74] is one of the largest datasets released to the public with 30 hours (h) labelled

raw data (4,390,726 samples) collected with smartphones. It contains accelerometer and gyro-

scope data of seven activities: Casual Movement, Cycling, No Activity (Idle), Public Transport,

Running, Standing and Walking. Ten subjects participated during the unconstrained collection.

ActiveMiles includes the different sampling rates of the smartphones (50-200 Hz).

WISDM-v2.0 [55] was collected in an uncontrolled environment with 563 subjects using

similar sensing configuration for six activities: Walking, Jogging, Stairs, Sitting, Standing and

Lying Down. The dataset contains 2,980,765 samples with 20 Hz rate, which covers approxi-

mately 41.4 h. WISDM-v2.0 contains only accelerometer data.

HUJI [71] is the largest public dataset for FPV activity recognition, which is collected using
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Table 5.1: Summary of the datasets used for validation. Acc. is accelerometer; Gyro. is gy-
roscope; FPV: first-person vision; 3: shows the existence of a specific motion data; NS: not
specified; #: number; h: hour.

Modalities
Inertial Visual

Dataset Acc. Gyro. FPV Activities (#) Subjects (#) Duration (h)
ActiveMiles[73] 3 3 7 10 30
WISDM-v2.0[51] 3 6 530 41.4
HUJI[71] 3 5 NS 15
BAR[4] 3 3 11 3 1.2

a head-mounted camera. We utilise a subset (15 hrs) of the dataset that contains Go upstairs, Run,

Walk, Sit/Stand and Static. Since we are interested in full- or upper-body motion driven activities,

we discard videos in the original dataset that involve the subject travels by car or bus or rides

a bicycle. We merge Sit and Stand states as one Sit/Stand state since they both involve large

head motion though the subject is often stationary. The Static state is included as a a reference,

which involves neither body nor head motion of significant magnitude. Approximately 50% of

the subset dataset or 17 out of 44 video sequences in the dataset are collected from publicly

available YouTube videos. We applied equal decomposition of the video sequences to train and

test sets as in Chapter 4.

BAR [4] dataset is composed of three warming-up exercises and eight basketball activities.

This is the first dataset that includes basketball activities in FPV. The activities are Bow, Sit-

Stand, Left-right turn, Walk, Jog, Run, Sprint, Pivot, Shoot, Dribble and Defend. Four subjects

participated and a chest-mounted camera with 30 fps was used. Accelerometer data was also

collected for the three subjects using a back-mounted inertial unit with 200 Hz.

5.9 Results and discussion

First, we describe the results achieved by the proposed intra-sample and inter-sample tempo-

ral encoding approaches and their performance comparison with existing video representations

(Section 5.9.1). Second, we present the evaluation of inertial-vision cross domain knowledge

transfer and sparsity weighted combination of multiple motion streams in a multi-modal setting

(Section 5.9.2).

5.9.1 Intra-sample and inter-sample temporal encoding

Figure 5.5 shows the confusion matrices that validate the combination of motion features from

grid optical flow data and the movement of intensity centroid. Grid inception (GI) and centroid
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Table 5.2: Average per-class recall, R, precision, P , and f-score, F , of various methods with
the proposed intra-sample encoding framework in FPV. An SVM classifier is used for all the
methods. Proposed*: the SVM output after intra-sample encoding, i.e. no inter-sample encoding.

Methods P(%) R(%) F(%)

TGP [81] 57 61 59
VD [34] 59 62 61
C3D [96] 64 65 65
TDD [101] 63 73 68
Proposed* 70 74 72

(a) Intra-sample temporal encoding: inception features + SVM

(b) Inter-sample temporal encoding: inception features + LSTM

Figure 5.5: Grid-based (GI) and centroid-based (CI) motion features in FPV improve perfor-
mance in both (a) intra-sample and (b) inter-sample temporal encoding

inception (CI) are complementary and lead to improved performance when these two features are

concatenated in both intra-sample and then inter-sample encoding components of the proposed

framework. Particularly, an average of 6% f-score performance improvement is achieved in

intra-sample encoding. Note that there are misclassification of Go upstairs activity to Sit/Stand,

because people commonly Stand to take a rest during Going upstairs in the dataset, particularly

when the the number of stairs becomes higher. Moreover, due to the similarity of their motion

dynamics, Run and Walk activities are also sometimes misclassified to each other. The stationary

nature of the subject involving Sit/Stand and Static also causes misclassification.

Table 5.2 compares the performance of the state-of-the-art methods with only the CNN-

based intra-sample encoding part of the proposed framework. The features from all methods are

validated on an SVM classifier. The concatenation of inception-features extracted from the grid-
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Table 5.3: The proposed LSTM-based inter-sample encoding in FPV is also evaluated for existing
methods beyond the proposed inception features. Per-class recall performance (%) with and
without the proposed inter-sample encoding.

Without LSTM With LSTM
Methods Go upstairs Run Walk Sit/Stand Static Go upstairs Run Walk Sit/Stand Static
TGP [81] 52 34 82 57 81 52 34 83 60 84
VD [34] 54 67 46 73 70 55 71 55 89 89
C3D [96] 67 74 73 57 53 63 68 74 47 94
TDD [101] 68 76 95 52 72 70 71 86 83 39
Proposed 54 79 83 87 68 59 81 91 97 66

based and centroid-based normalized spectrograms (Proposed*) outperforms existing methods

with at least 4% improvement in F-score. VD [34] has the smallest feature dimension (D = 102),

but achieves slightly higher performance than the baseline method, which employs the histogram

and sum pooling of the time-series gradient of the inception features, TGP [81]. TDD [101]

achieves second to the proposed framework and outperforms the state-of-the-art methods since it

utilises multi-stream handcrafted as well as deep learned features.

Table 5.3 shows the results for the validation of the inter-sample encoding of the proposed

framework. The effectiveness of the LSTM-based long-term temporal dependency encoding is

tested not only for the proposed video representation, but for state-of-the-art methods. The pro-

posed framework achieves the best performance in the majority of the activities, i.e. Run (81%),

Walk (91%) and Sit/Stand (97%). On the other hand, the proposed is inferior to TDD [101]

and C3D [96] in recognizing Go upstairs and Static activities, respectively, because our pro-

posed framework is built-on the global motion characteristics only, while TDD and C3D also

include spatial (appearance) information. Indeed Go upstairs can be better distinguished using

appearance features that detects the staircases. Similarly video sequences Static in the dataset are

mainly collected in similar indoor environments.

We also experiment the discriminative characteristics of the spectrograms derived from the

horizontal, vertical and direction components of the grid-based and centroid-based global motion

by avoiding the CNN-based feature extraction in the proposed framework. The SVM classifica-

tion output of the pooled spectrogram in Fig. 5.6 (a) is equivalent to the SVM outputs of the

inception features in Fig. 5.5 (a) as the histogram and sum gradient pooling [81] are applied that

encode the temporal variation extensively. However, the pooling operations increase the feature

dimension significantly as the result the LSTM-based inter-sample temporal encoding performs

worse than Fig. 5.5 (b).
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(a) Pooled spectrogram + SVM (b) Pooled spectrogram + LSTM

Figure 5.6: The horizontal, vertical and direction spectrograms for each of the grid and centroid
streams are independently pooled across time and all concatenated together. (a) SVM and (b)
LSTM classification outputs of the concatenated pooled spectrogram features are given.

5.9.2 Cross-domain knowledge transfer in a multi-modal setting

Next, we describe results of the multi-modal framework that employs sparsity weighted combi-

nation of multiple motion streams. Table 5.4 and 5.5 show the competitive performance of the

inception features with the state-of-the-art methods on the inertial datasets, without even employ-

ing the sparsity weighting and LSTM-based temporal encoding. Table 5.6 and 5.7 show signif-

icance of different fusion strategies of multi-stream information in inertial and visual datasets,

respectively. The importance of the LSTM-based temporal encoding can be seen in Fig. 5.7.

Finally, Table 5.8 shows the effect of different weighting strategies.

Table 5.4 shows that the overall accuracy,A(%), of the proposed inception features extracted

from the inertial datasets outperform the existing deep frameworks [8, 73, 74]. Unlike [73],

the inception features provide improved performance without the concatenation of the shallow

features. In addition, the results show that Handcrafted-2 [9] outperforms Handcrafted-1 [73]

since the former includes frequency-domain features.

Table 5.5 provides a detailed comparison in per-class recall values, R(%), between a deep

framework baseline [73] and the proposed CNN features. Though the CNN features are extracted

from a pre-trained image model, GoogleNet [93], they achieve equivalent performance with the

baseline [73] that integrated deep learned and handcrafted features. Particularly, the concatena-

tion of the inception features from accelerometer and gyroscope data in ActiveMiles provides

improved performance for all activities. The equivalent performance between the proposed and

the baseline features in Table 5.5 suggest that it is possible to avoid the extensive training of ded-

icated deep networks by using effective cross-domain knowledge transfer from vision research.

The significant superiority of the proposed features in their overall accuracy (Table 5.4) than the



Chapter 5: Multi-layer temporal encoding using deep frameworks 94

Table 5.4: Accuracy, A(%), comparison of the state-of-the-art approaches with the proposed
inception features in the inertial datasets. SVM is employed with one-vs.-all strategy in ten fold
validation, similarly to [73, 74]. Prop. Inception refers to the concatenation of inception features
from the accelerometer and gyroscope data in ActiveMiles, where it is only the inception features
from the accelerometer in WISDM-v2.0.

A(%)
Approach ActiveMiles [73] WISDM-v2.0 [51]
Handcrafted-1 [73] 95.0 92.5
Handcrafted-2 [9] 98.1 97.6
Catal et al. [23] 91.7 89.8
Alsheikh et al. [8] 84.5 82.5
Ravi et al. [74] 95.1 88.5
Ravi et al. [73] 95.7 92.7
Prop. Inception 98.8 97.3
Prop. Inception+Handcrafted-2 98.4 97.9

Table 5.5: Recall, R(%), comparison of the CNN features with a baseline approach [73]. Ac-
tiveMiles contains both accelerometer and gyroscope data, whereas WISDM-v2.0 contains only
accelerometer data. Prop. Acc. refers to the inception features from accelerometer data, Prop.
Gyro. refers to the inception features from gyroscope data, Prop. Acc.+Gyro. refers to the
concatenation of the inception features from the accelerometer and the gyroscope data.

ActiveMiles[73]
Casual Cycling Idle Transport Running Standing Walking

Ravi et al. [73] 96.1 96.6 96.5 95.2 98.8 73.0 96.5
Prop. Acc. 88.7 94.4 96.7 94.7 98.8 46.7 94. 8
Prop. Gyro. 92.3 90.7 80.6 89.8 97.5 15.8 91.9
Prop. Acc.+Gyro. 98.2 94.5 97.1 96.8 99.4 54.2 95.8

WISDM-v2.0 [51]
Walking Jogging Stairs Sitting Standing Lying

Ravi et al. [73] 97.2 97.7 77.0 89.3 82.1 85.8
Prop. Acc. 96.4 97.3 65.7 89.2 78.8 88.4

recall values (Table 5.5) is partly due to the OVA strategy adopted, in which the rate of true

negative is expectedly higher.

The first (Individual) part of Table 5.6 shows the individual classification outputs of feature

groups from the ActiveMiles and the WISDM-v2.0 datasets using a logistic regression (LR).

The second (Fusion) part of Table 5.6 shows the performance improvements when feature-level

and decision-level fusion strategies are applied on information from different modalities and/or

streams. C-LR-LSTM and C-LSTM employ feature-level fusion by concatenating the feature

groups, which gives equal weight to all the feature groups. As a result, the performance improve-

ments are not significant. LR-C-LSTM and LR-S-LSTM employ decision-level fusion using

sparsity weighted concatenation and accumulation of the LR outputs, respectively. As a result

significant performance improvements are achieved compared to individual feature groups. LR-

S-LSTM has additional advantage as its accumulation reduces the input dimension of the LSTM,
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Table 5.6: The performance of the full proposed framework implemented on the inertial datasets.
First, individual performance of each feature group is given validated using logistic regression
(LR). Then the performance improvement due to the fusion of multi-stream information using
LSTM is given. C: concatenation; S: accumulation.

ActiveMiles[73] WISDM-v2.0[51]
Approach P(%) R(%) P(%) R(%)

Inception-Acc. 41.6 33.0 65.6 58.0
Individual Inception-Gyro. 40.2 29.9 - -

Handcraft-Acc. [9] 42.1 35.9 65.3 56.0
Handcraft-Gyro. [9] 44.5 37.2 - -
C-LSTM 54.0 43.6 64.3 56.2

Fusion C-LR-LSTM 52.5 33.4 61.5 56.2
LR-C-LSTM 61.4 53.5 66.2 57.8
LR-S-LSTM 61.6 55.2 72.7 58.4

Table 5.7: The performance of the full proposed framework implemented on the FPV datasets.
The different fusion strategies of the features groups and the use of LSTM to encode the temporal
relationships improved performance.

HUJI[71] BAR[4]
Approach P(%) R(%) P(%) R(%)

Inception-Grid 57.4 55.4 45.5 48.6
Individual Inception-Centroid 62.1 67.0 37.4 39.0

Inception-Inertial - - 79.0 71.1
Handcrafted-2 [9] - - 76.1 76.3
C-LSTM 72.1 78.1 75.6 74.9

Fusion C-LR-LSTM 70.7 74.6 47.2 49.0
LR-C-LSTM 71.6 73.6 83.7 75.0
LR-S-LSTM 72.3 75.4 83.1 76.3

and hence, reduces the size of the weight parameters, Wxo,Wxi,Wx f and Wxc. Generally, the tempo-

ral encoding using the LSTM improved the precision and recall by at least 15% in ActiveMiles.

The improvement in WISDM-v2.0 is not significant since it does not contain gyroscope data,

i.e. it contains fewer feature groups, compared to ActiveMiles.

The trend is similar in Table 5.7, where fusion of different feature groups showed perfor-

mance improvement in the FPV datasets. Due to the larger size of HUJI dataset, C-LSTM

achieves the highest performance, while proposed LR-S-LSTM provides 10% and 8% precision

and recall improvements, respectively, compared to the best individual performance, i.e. Inception-

Centroid. Since the BAR dataset is very small, the performance improvement due to the LSTM-

based temporal encoding is not significant. But it is shown that the CNN features extracted

from the stacked spectrograms of the accelerometer data perform equivalent to the hand-crafted

inertial features, and higher than the CNN features from grid optical flow and centroid displace-

ment, which demonstrates the advantage of cross-domain knowledge transfer for human activity

recognition when there are multi-modal information sources.
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Table 5.8: Results of different sparsity weighting strategies. NSW: only the accumulation of LR
outputs without a sparsity weighting; SWNS: sparsity weighted but without a sigmoid smoothing;
LR-S-LSTM: sigmoid applied on the LR outputs followed by accumulation (Proposed).

ActiveMiles[73] WISDM-v2.0[51] HUJI[71] BAR[4]
Approach P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)

NSW 62.5 65.8 70.4 58.4 71.4 74.4 77.6 72.5
SWNS 60.5 60.9 68.6 58.5 71.9 75.5 73.9 70.4
LR-S-LSTM 61.6 55.2 72.7 58.4 72.3 75.4 83.1 76.3

Fig. 5.7 shows the significance of the LSTM-based long-term temporal encoding by com-

paring with C-LR outputs. C-LR employs concatenation of the features followed by the lo-

gistic regression. The results show that the LSTM improves the performance across all the

datasets consistently. Particularly, the inertial components undergo significant improvements

(Fig. 5.7(a) and 5.7(b)), since the inertial pipeline takes advantages of both hand-crafted and

CNN-driven features. Generally, the LSTM reduces the false positives, i.e. increases the preci-

sion by utilising the long-term temporal dependency.

Table 5.8 shows the results of different weighting strategies and the importance of the sig-

moid activation prior to sparsity computation. Generally, the performance improves using the

proposed weighting strategy (LR-S-LSTM). Comparatively, LR-S-LSTM becomes significantly

useful in the multi-modal dataset, BAR, where the inertial and visual features have different dis-

criminative characteristics, i.e. 5.6% and 3.8% improvements of P and R, respectively. The

weighting however tends to suppress discriminative characteristics in ActiveMiles [73], which

contains equivalent discriminative characteristics among its streams. Moreover, the importance

of the sigmoid smoothing is shown across all the datasets as the performance of SWNS (sparsity

weighted without sigmoid smoothing) is inferior to that of LR-S-LSTM.

5.10 Summary

We proposed long short-term memory convolutional neural network in order to continuously rec-

ognize human activities from first-person videos. The activities are characterized by dominant

full- or upper-body motion. Hence, we proposed a novel global motion representation that en-

ables us to encode the temporal information using a CNN with only 2D convolutions. In addition

to its simplicity, the novel representation provides the benefit of transferring knowledge from

large image datasets, and hence reduces the need of large datasets to learn global motion. On

top of the CNN-based intra-sample temporal encoding, we proposed LSTM-based encoding of



Chapter 5: Multi-layer temporal encoding using deep frameworks 97

(a) ActiveMiles [73] (b) WISDM-v2.0 [51]

(c) HUJI [71] (d) BAR [4]

Figure 5.7: The performance improvement due to the LSTM-based long-term temporal encod-
ing in the proposed framework (LR-S-LSTM), compared with a concatenation of the features
followed by the logistic regression (C-LR).

long-term temporal dependencies among samples (inter-sample) or sequential occurrence like-

lihood of activities. We validated the proposed framework on the largest first-person activities

dataset and compared against the state-of-the-art video-based temporal encoding methods. Re-

sults showed that the proposed framework outperformed the existing methods. It is benefited by

the combination of complimentary grid-based and centroid-based motion features as well as the

intra-sample and the inter-sample temporal encoding strategies.

For our multi-modal framework, we integrated first-person vision with ego-centric inertial

data based on their discriminative characteristics evaluated using a logistic regression. The net-

work achieves cross-domain knowledge transfer between the two modalities. The global motion

representation in first-person vision is simplified as the inertial data, whereas the stacking of the

spectrograms of different inertial motion components enables us to use successful CNN-based

image models to extract high-dimensional motion features. We proposed sparsity weighted ac-

cumulation of information from different motion streams and/or modalities using logistic regres-

sion. This also helps to reduce the input dimension to the LSTM network, and hence, it reduces

the network complexity. LSTM network is used to encode long temporal dependency among
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activities. The proposed framework is validated on multiple inertial and visual datasets. Par-

ticularly, state-of-the-art performance is achieved on inertial datasets using only CNN features

without explicit training of a dedicated network nor with the fusion of hand-crafted features.

The performance of the proposed framework can be further improved by re-training the last

layers of the existing CNN frameworks with spectrograms by applying domain-specific data

augmentation techniques.



Chapter 6

Conclusions

6.1 Summary of achievements

In this thesis, we addressed four main problems regarding human activity recognition from first-

person videos.

The first problem focuses on the designing of multiple robust motion features. We showed

that effective encoding of magnitude, direction and dynamics of optical flow-based motion data

outperforms the state of the art. We also proposed novel virtual-inertial features from a video,

without using the actual inertial sensors. Hence, it avoids the synchronisation issues associated

with multi-modal sensing. The virtual-inertial features compliment optical flow features, and

common time- and frequency-domain inertial features can be extracted from velocity and accel-

eration data of the intensity centroid displacement. Though each subgroup of the inertial features

are susceptible to noise, their combination provides significant discrimination among activities.

The high discriminative nature of the proposed set of motion features was demonstrated with

multiple classifiers on multiple datasets. We also collected two novel datasets that are made

publicly available.

The second problem involves encoding the hierarchical and temporal relationships among

activities. To this end, we manually designed the hierarchy of activities where each node in the

hierarchy represents a binary classification of activities with similar characteristics, e.g. Stand

and Sit share a similar Stationary characteristics. We proposed to encode the long-term temporal

dependency at two stages of the recognition pipeline, i.e. activity modelling and decision, which

99
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exploits the likelihood of subsequent occurrence of activities, e.g. Walk followed by Run. Hier-

archical outputs were weighted by their temporal distance from the current sample, accumulated

and provided as input to the activity modelling. During testing, confidence-based smoothing

of the decision output was applied. When the decision could not achieve the minimum thresh-

old set a priori experimentally, the previous decision outputs were exploited. In addition to the

optical flow and virtual-inertial features, pooled appearance features were also used to improve

the discriminative characteristics of the feature space. We validated the proposed framework on

multiple datasets that include the largest FPV dataset (HUJI). Different class-balancing strate-

gies, such as under-over sampling, were applied to alleviate the class-imbalance problem in the

HUJI dataset.

The third problem involves the use of learned features for FPV activity recognition. Rather

than handcrafted features that are problem specific, features learned from data using deep neu-

ral networks have better generalising capability. We employed convolutional neural networks

(CNNs) to encode temporal information in a windowed segment (intra-sample dynamics). We

also utilised long short-term memory (LSTM) recurrent neural network (RNN) to encode the

long-term temporal dependency, i.e. inter-sample encoding. We proposed novel global motion

representation using stacked spectrograms, which contain the frequency-time characteristics of

the intra-sample dynamics. The mean of grid optical flow and the velocity of the intensity cen-

troid were used to compute the global motion. The spectrograms of horizontal and vertical mo-

tion components along with their corresponding direction component were stacked, which en-

ables the CNN to learn intrinsic relationships among different motion components. In addition,

the spectrograms are scaled, translated and normalised into a 3-channel representation and stored

in JPEG formats. This approach helps to learn high-dimensional intra-sample motion features

using 2D convolutions rather than the 3D convolutions often applied in the state of the art. This

also gives the benefit of exploiting existing 2D CNNs that were trained on large image datasets.

The results showed that the proposed approach achieves competitive performance with existing

methods but with lower computational complexity.

The fourth problem involves the cross-domain knowledge transfer between inertial-based and

vision-based approaches (Chapter 5). Research to deep learning is awakened by the computer

vision community, which is facilitated by the availability of large validation datasets. Motivated

by its success in vision research, deep learning has also been applied on other domains, such
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as inertial-based activity recognition that aims to learn features from time-series inertial data.

However, this involves the designing and training of dedicated convolutional neural networks

that require large training datasets. In addition the features learned from such networks are not

as interpretable as vision features. Hence, we proposed to exploit vision-based models as fea-

ture extractors from the inertial data. For the inertial data, we employed a 3-channel stacked

spectrogram corresponding to the three axes in accelerometer or gyroscope data, followed by the

scaling, translation and normalisation operations. We proposed merit-based fusion of features

derived from multiple motion modalities and/or streams. The merit of a particular feature stream

was measured by the sparsity of its classification outputs using a logistic regression, i.e. a highly

sparse output reflects higher discriminative characteristic. The sparsity weighted and accumu-

lated output from multiple modalities/streams was used as input to the LSTM framework that

encodes long-term temporal dependency. Results showed that the proposed framework achieved

equivalent to the state of the art, and it is validated on multiple inertial and visual datasets.

In addition to using existing deep frameworks, pre-trained with ImageNet, to extract features

from the stacked spectrogram representations, we also experimented automatic learning of fea-

tures using an autoencoder. The spectrogram representation enables us to increase the amount

of training data by using both vision- and inertial-based spectrograms together. However, the

recognition performance of autoencoded features is found to be still inferior to the inception fea-

tures. This suggests highly discriminant characteristics of features extracted using existing deep

frameworks, and more data and deeper autoencoder are necessary to improve the discrimination

capability of autoencoded features.

6.2 Future directions

The multi-dimensional robust features are designed to encode the global motion in FPV, as the

activities of interest are characterised by full- or upper-body motion. Future work can expand

to include activities, such as person-to-person and person-to-object interactions, which require

an effective integration of local and global motion features in addition to appearance descriptors

[101].

In addition to the inference of the activity performed by the camera wearer, indirect inference

of the other people in the scene can be performed, e.g. group activity recognition. Furthermore,

the integration of FPV and the traditional (third-person vision) can be exploited for improved
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understanding of the scene.

In Chapter 5, we showed that cross-domain knowledge transfer can be achieved between vi-

sion and inertial pipelines, and competitive performance is obtained across multiple datasets [2].

Another future direction can include more modalities, e.g. audio, and apply cross-modal adap-

tation [17]. The weight of each modality can also be learned during training in the end-to-end

framework with domain-adaptation functionality. Data augmentation techniques are shown to

be effective to increase the size of image datasets required for training deep networks. How-

ever, common augmentation techniques, such as flipping, might not be effective on FPV data for

ego-centric activities. Hence, domain-specific new augmentation techniques can be proposed for

FPV.

The state-of-the-art recognition of egocentric activities can be facilitated by a collection

of a large activity dataset, which is equivalent with ImageNet [27] of object classification and

Sports1M [49] of video-based activity recognition in third-person vision. Challenges similar to

ActivityNet [19] can be organized for ego-centric activities. This further facilitates the improve-

ment of the state of the art.

With the emergence of wearable sensors, privacy issues are also drawing attention to the re-

search community. Further research could be performed to ensure multi-level privacy protection.

Sensitive ego-centric content can be filtered during acquisition, or modelling can be performed on

encrypted data [110]. Finally, online implementation of the proposed framework can be achieved

in the near future using better designed wearable technologies with improved functionalities and

computation power.
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[34] Basura Fernando, Efstratios Gavves, José Oramas, Amir Ghodrati, and Tinne Tuytelaars.

Rank pooling for action recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 39(4):773–787, 2017.

[35] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Communications

of the ACM, 24(6):381–395, June 1981.

[36] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast semi-direct monocu-

lar visual odometry. In Proc. of IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 15–22, Hong Kong, China, May 2014.

[37] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In

Proc. of International Conference on Machine Learning (ICML), volume 96, pages 148–

156, Bari, Italy, July 1996.

[38] Nils Y Hammerla, Shane Halloran, and Thomas Ploetz. Deep, convolutional, and recurrent

models for human activity recognition using wearables. arXiv preprint arXiv:1604.08880,

2016.



107

[39] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cam-

bridge university press, 2003.

[40] Steve Hodges, Emma Berry, and Ken Wood. SenseCam: A wearable camera that stimu-

lates and rehabilitates autobiographical memory. Memory, 19(7):685–696, October 2011.

[41] Steve Hodges, Lyndsay Williams, Emma Berry, Shahram Izadi, James Srinivasan, Alex

Butler, Gavin Smyth, Narinder Kapur, and Ken Wood. SenseCam: A retrospective mem-

ory aid. In Proc. of International Conference on Ubiquitous Computing (UbiComp), pages

177–193, California, USA, September 2006.

[42] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. Artificial Intelli-

gence, 17(1-3):185 – 203, 1981.

[43] Patrik O Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of

machine learning research, 5:1457–1469, 2004.

[44] Niall Hurley and Scott Rickard. Comparing measures of sparsity. IEEE Transactions on

Information Theory, 55(10):4723–4741, 2009.

[45] Michal Irani and P Anandan. About direct methods. In Proc. of International Workshop

on Vision Algorithms: Theory and Practice, pages 267–277, Corfu, Greece, September

1999.

[46] Yumi Iwashita, Asamichi Takamine, Ryo Kurazume, and MS Ryoo. First-person ani-

mal activity recognition from egocentric videos. In Proc. of International Conference on

Pattern Recognition (ICPR), pages 4310–4315, Stockholm, Sweden, August 2014.

[47] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-

shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast

feature embedding. In Proc. of ACM International Conference on Multimedia, pages 675–

678, Florida, USA, November 2014.

[48] A Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression

and naive Bayes. Advances in neural information processing systems, 14:841, 2002.

[49] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar,

and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In

Proc. of IEEE conference on Computer Vision and Pattern Recognition (CVPR), pages

1725–1732, Ohio, USA, June 2014.



108

[50] Kris Makoto Kitani, Takahiro Okabe, Yoichi Sato, and Akihiro Sugimoto. Fast unsuper-

vised ego-action learning for first-person sports videos. In Proc. of IEEE Computer Vision

and Pattern Recognition (CVPR), pages 3241–3248, Colorado, USA, June 2011.

[51] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using cell

phone accelerometers. ACM SigKDD Explorations Newsletter, 12(2):74–82, 2011.

[52] Oscar D. Lara and Miguel A. Labrador. A survey on human activity recognition using

wearable sensors. IEEE Communications Surveys & Tutorials, 15(3):1192–1209, Novem-

ber 2013.

[53] Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman. Discovering important people and

objects for egocentric video summarization. In Proc. of IEEE Computer Vision and Pattern

Recognition (CVPR), pages 1346–1353, Providence, USA, June 2012.

[54] Stefan Leutenegger, Margarita Chli, and Roland Yves Siegwart. BRISK: Binary robust

invariant scalable keypoints. In Proc. of IEEE International Conference on Computer

Vision (ICCV), pages 2548–2555, Barcelona, Spain, November 2011.

[55] Jeffrey W Lockhart, Gary M Weiss, Jack C Xue, Shaun T Gallagher, Andrew B Grosner,

and Tony T Pulickal. Design considerations for the wisdm smart phone-based sensor

mining architecture. In Proc. of ACM International Workshop on Knowledge Discovery

from Sensor Data, pages 25–33, San Diego, USA, August 2011.

[56] David G Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(12):91–110, 2004.

[57] Bruce D Lucas and Takeo Kanade. An iterative image registration technique with an appli-

cation to stereo vision. In Proc. of International Joint Conference on Artificial Intelligence

(IJCAI), pages 674–679, Vancouver, Canada, 1981.

[58] Minghuang Ma, Haoqi Fan, and Kris M. Kitani. Going deeper into first-person activity

recognition. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1894–1903, Las Vegas, USA, June 2016.

[59] Shugao Ma, Leonid Sigal, and Stan Sclaroff. Learning activity progression in LSTMs for

activity detection and early detection. In Proc. of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1942–1950, Las Vegas, USA, June 2016.

[60] Takuya Maekawa, Yasue Kishino, Yutaka Yanagisawa, and Yasushi Sakurai. WristSense:



109

Wrist-worn sensor device with camera for daily activity recognition. In Proc. of IEEE In-

ternational Conference on Pervasive Computing and Communications Workshops (PER-

COM Workshops), pages 510–512, Lugano, Switzerland, March 2012.

[61] Elmar Mair, Gregory D Hager, Darius Burschka, Michael Suppa, and Gerhard Hirzinger.

Adaptive and generic corner detection based on the accelerated segment test. In Proc.

of European Conference on Computer Vision (ECCV), pages 183–196, Crete, Greece,

September 2010.

[62] Andrea Mannini and Angelo Maria Sabatini. Machine learning methods for classifying

human physical activity from on-body accelerometers. Sensors, 10(2):1154–1175, Febru-

ary 2010.

[63] Akio Nagasaka and Takafumi Miyatake. Real-time video mosaics using luminance-

projection correlation. Trans. IEICE, pages 1572–1580, 1999.

[64] Yunyoung Nam, Seungmin Rho, and Chulung Lee. Physical activity recognition using

multiple sensors embedded in a wearable device. ACM Transactions on Embedded Com-

puting Systems, 12(2):26:1–26:14, February 2013.

[65] Sanath Narayan, Mohan S Kankanhalli, and Kalpathi R Ramakrishnan. Action and inter-

action recognition in first-person videos. In Proc. of IEEE Computer Vision and Pattern

Recognition Workshops (CVPRW), pages 526 – 532, Columbus, USA, June 2014.

[66] K. Ogaki, K. M. Kitani, Y. Sugano, and Y. Sato. Coupling eye-motion and ego-motion fea-

tures for first-person activity recognition. In Proc. of IEEE Computer Vision and Pattern

Recognition Workshops (CVPRW), pages 1 – 7, Providence, USA, June 2012.
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