7 research outputs found

    Time-dependent reduction of structural complexity of the buccal epithelial cell nuclei after treatment with silver nanoparticles

    Get PDF
    Recent studies have suggested that silver nanoparticles (AgNPs) may affect cell DNA structure in in vitro conditions. In this paper, we present the results indicating that AgNPs change nuclear complexity properties in isolated human epithelial buccal cells in a time-dependent manner. Epithelial buccal cells were plated in special tissue culture chamber / slides and were kept at 37°C in an RPMI 1640 cell culture medium supplemented with L-glutamine. The cells were treated with colloidal silver nanoparticles suspended in RPMI 1640 medium at the concentration 15 mg L−1. Digital micrographs of the cell nuclei in a sample of 30 cells were created at five different time steps: before the treatment (controls), immediately after the treatment, as well as 15 , 30 and 60 min after the treatment with AgNPs. For each nuclear structure, values of fractal dimension, lacunarity, circularity, as well as parameters of grey level co-occurrence matrix (GLCM) texture, were determined. The results indicate time-dependent reduction of structural complexity in the cell nuclei after the contact with AgNPs. These findings further suggest that AgNPs, at concentrations present in today's over-the-counter drug products, might have significant effects on the cell genetic material

    Stationarity Testing of Accumulated Ethernet Traffic

    Get PDF
    We investigate the stationarity property of the accumulated Ethernet traffic series. We applied several widely used stationarity and unit root tests, such as Dickey-Fuller test and its augmented version, Phillips-Perron test, as well as the Kwiatkowski-Phillips-Schmidt-Shin test and some of its generalizations, to the assessment of the stationarity of the traffic traces at the different time scales. The quantitative results in this research provide evidence that when the time scale increases, the accumulated traffic series are more stationary

    Solving nonlinear PDEs using the higher order Haar wavelet method on nonuniform and adaptive grids

    Get PDF
    The higher order Haar wavelet method (HOHWM) is used with a nonuniform grid to solve nonlinear partial differential equations numerically. The Burgers’ equation, the Korteweg–de Vries equation, the modified Korteweg–de Vries equation and the sine–Gordon equation are used as model equations. Adaptive as well as nonadaptive nonuniform grids are developed and used to solve the model equations numerically. The numerical results are compared to the known analytical solutions as well as to the numerical solutions obtained by application of the HOHWM on a uniform grid. The proposed methods of using nonuniform grid are shown to significantly increase the accuracy of the HOHWM at the same number of grid points

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...

    On the Existence of Wavelet Symmetries in Archaea DNA

    Get PDF
    This paper deals with the complex unit roots representation of archea DNA sequences and the analysis of symmetries in the wavelet coefficients of the digitalized sequence. It is shown that even for extremophile archaea, the distribution of nucleotides has to fulfill some (mathematical) constraints in such a way that the wavelet coefficients are symmetrically distributed, with respect to the nucleotides distribution
    corecore