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We investigate the stationarity property of the accumulated Ethernet traffic series. We applied several widely used stationarity and
unit root tests, such as Dickey-Fuller test and its augmented version, Phillips-Perron test, as well as the Kwiatkowski-Phillips-
Schmidt-Shin test and some of its generalizations, to the assessment of the stationarity of the traffic traces at the different time
scales. The quantitative results in this research provide evidence that when the time scale increases, the accumulated traffic series
are more stationary.

1. Introduction

Stationarity testing is essential for time series. According to
the meaning of nonstationarity discussed in [1, 2], inves-
tigating time-varying spectra turns to be a natural way of
testing nonstationarity of time series [3–7]. However, one
may encounter difficulties in nonstationarity testing of long-
range dependent (LRD) network traffic (traffic for short)
because the LRD property implies 1/𝑓 noise, which is
divergent at the zero frequency [8]. In addition to time-
frequency distributions, there are many approaches in this
regard, such as bootstrap testing [9] and so on [10–12].
However, conventional approaches may not be properly used
for testing the nonstationarity of LRD traffic as can be seen
from Abry and Veitch [13], Grossglauser and Bolot [14].
That difficulty may also refer to a paper by Mandelbrot in
1976 [15]. Abry and Veitch [13] proposed a test method
for LRD traffic by investigating the time invariability of
the Hurst parameter, 𝐻. However, in terms of engineering,
time-varying 𝐻 may not always imply nonstationarity but
multifractal in general, see [16, 17] for details. Therefore,
further research of nonstationarity of LRD traffic is desired.

The paper aims at providing the following contributions.

(i) Different scales are taken into account for investigat-
ing the stationarity of the accumulated traffic data
through unit root tests.

(ii) The quantitative description of the large scales for the
Ethernet traffic to be stationary is given.

The remainder of this paper is organized as follows. In
Section 2, the dataset is described. In Section 3, several widely
used unit root tests and stationarity tests are presented. In
Section 4, the numerical results of the statistical tests are
included and the discussion is followed. Finally, Section 5
presents some concluding remarks.

2. Datasets

This research utilizes four real Ethernet traffic traces, listed in
Table 1, which were measured on an Ethernet at the Bellcore
Morristown Research and Engineering facility [18] in 1989.
We may refer to [19] for more details about the datasets.

Denote by 𝑥(𝑡(𝑖)) a traffic time series, where 𝑡(𝑖) (𝑖 =
0, 1, . . .) is the time-stamp series, which indicates the time
stamp of the 𝑖th packet. Note that𝑥(𝑡(𝑖)) represents the packet
size of the 𝑖th packet at time 𝑡(𝑖). This research uses 𝑥(𝑖)
to represent the packet size of the 𝑖th packet on a packet-
by-packet basis. Further, on an interval-by-interval basis, we
consider the accumulated traffic, denoted by 𝑦(𝑛). It is given
by

𝑦 (𝑛) =

(𝑛+1)𝑇

∑

𝑖=𝑛𝑇

𝑥 (𝑖) , (1)
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Table 1: Four Ethernet traffic traces.

Series name Starting time Duration Series length
pAug.TL 11:25AM, 29 Aug 89 52 minutes 1 million
pOct.TL 11:00AM, 05 Oct 89 29 minutes 1 million
OctExt.TL 11:46 PM, 03 Oct 89 34.111 h 1 million
OctExt4.TL 2:37 PM, 10 Oct 89 21.095 h 1 million

where 𝑇 is the interval width. It is in fact the accumulation
scale. Without causing confusion, we still call it time scale (or
scale for short) throughout the paper. Thus, 𝑦(𝑛) stands for
the accumulated bytes of arrival traffic in the 𝑛th interval with
the time scale 𝑇. We shall exhibit an interesting phenomenon
that the stationarity of 𝑦(𝑛) of the Ethernet traffic traces
considerably relies on the time scale 𝑇. More precisely,
qualitatively speaking, 𝑦(𝑛) is nonstationary if 𝑇 is small
while it is stationary when 𝑇 is large. The key point of this
research is to exhibit the quantitative descriptions of 𝑇 at
which 𝑦(𝑛) changes from the non-stationary case to the
stationary one.

3. Statistical Tools

Computer scientists concern about the stationarity property
of traffic, see for example, [13]. Nevertheless, the consensus of
that property of traffic may not be achieved due to different
attributes of traffic. For instance, our research investigates the
stationarity property of traffic at different time scales using
the attribute of accumulation scale, which is rarely reported,
to the best of our knowledge. For that reason, we explain our
results in what follows.

On one hand, from Figures 1, 2, 3, and 4, we could
observe the trajectories of the accumulated 𝑦(𝑛) under
different time scales. Visually, it seems that there exists some
nonstationarity in all the four series, especially under the
large time scales. However, we need some more objective
methods to verify the reliability of this opinion. On the other
hand, we present in Figures 5, 6, 7, and 8 the spectrum of the
accumulated 𝑦(𝑛) under different time scales, which clearly
indicates the existence of long range dependence in the series.

It is important to learn about the statistical property of
the data before quantitatively using the accurate models. In
statistics, one of the most investigated branches is that of
unit root and stationarity testing. Suppose a discrete time
stochastic process can bewritten as an autoregressive process.
If 1 is a root of the characteristic equation, the stochastic
process is said to have a unit root or, alternatively, is integrated
of order one, denoted 𝐼(1) and is non-stationary. If the
other roots of the characteristic equation lie inside the unit
circle—that is, have a modulus (absolute value) less than
one—then the first difference of the process will be stationary.
This is the original idea of the unit root testing proposed
in 1979, and hereafter many extensions and modifications
have been developed. In the following we concentrate on the
existing stationarity testing as well as some of their variants
and generalizations to identify the existence of unit root in
the series.

The standard Dickey-Fuller test (DF) [20] is based on
i.i.d. errors and has as the null hypothesis the unit root. The
DF test is valid if the time series is well characterized by
an Auto-Regressive (AR(1)) process with white noise errors.
Many time series, however, have amore complicated dynamic
structure than is captured by a simple AR(1) model. Said
and Dickey (1984) [21] augment the basic autoregressive
unit root test to accommodate Auto-Regressive and Moving-
Average (ARMA(𝑝, 𝑞)) models with unknown orders and
their test is referred to as the augmented Dickey-Fuller
(ADF) test. On the other hand, the Phillips-Perron test (PP)
[22] is non-parametric and allows for some heterogeneity
and serial correlation in the innovations, which is different
from the ADF tests. Some class of so-called efficient unit
root tests was proposed by Elliott et al. (1996) (hereafter
ERS) [23] whose test statistics come very close to the power
envelope for a wide range of alternatives, and they can have
substantially higher power than the ADF or PP unit root
tests. Unlike AR(MA) unit root tests, stationarity tests are far
less numerous and have as null hypothesis the stationarity
assumption and as alternative the unit root. Among the most
well known stationarity tests, the most extensively used one
is the Kwiatkowski et al. (1992) test, also known as KPSS
[24], which is intended to complement unit root tests and
can be used to distinguish short memory and long memory
stationary processes.

There exist many other unit root and stationarity tests
as well as generalizations and combinations of the ones
mentioned above. For supplementary material on unit root
and stationarity testing, see [10, 25–29], and so forth, formore
details.

However, one fundamental problem is that there is still
no consensus on the optimal choice of the stationarity test.
Therefore, to be more objective, we take advantage of several
common tests tomake a comprehensive study of the Ethernet
traffic data in the following empirical study.

4. Discussion

In this section, we present the statistical testing results of
the four series, that is, pAug.TL, pOct.TL, OctExt.TL, and
OctExt4.TL data. Our interest lies in the identification of
the existence of the unit root in the series. We finally adopt
the most widely used ADF, PP, ERS, and KPSS tests in the
empirical application. Based on the software R, we mainly
utilize the functions of the packages “urca” and “fUnitRoots”
to realize the statistical tests. The null hypothesis is that the
series is 𝐼(0) stationary, while the alternative is that it is 𝐼(1).
The 𝑃 value of each test under the time scales 𝑇 = 2𝑛, 𝑛 =
9, . . . , 17 are presented in Tables 2, 3, 4, and 5. It is worth
mentioning that we have also tried to utilize the Robinson
(1994) test [30] to test the stationarity of the series due to
their identified long range dependence features. However,
according to the result of Ferrara et al. (2010) [31], this test
is appropriate to use only for series whose sample size is at
least 3000, which could never be satisfied in our case.

As seen in Tables 2–5 as time scale increases, the accu-
mulated traffic series 𝑦(𝑛) is more likely to be stationary,
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Figure 1: Trajectory of the accumulated pAug.TL data under different time scales.
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Figure 2: Trajectory of the accumulated pOct.TL data under different time scales.
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Figure 3: Trajectory of the accumulated Octxt.TL data under different time scales.
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Figure 4: Trajectory of the accumulated OctExt4.TL data under different time scales.
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Figure 5: Spectrum of the accumulated pAug.TL data under different time scales.
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Figure 6: Spectrum of the accumulated pOct.TL data under different time scales.
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Figure 7: Spectrum of the accumulated Octxt.TL data under different time scales.
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Figure 8: Spectrum of the accumulated OctExt4.TL data under different time scales.
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Table 2: Test results for pAug.TL series.

Test KPSS ADF PP ERS
𝑇 = 512 <0.01 <2.2𝑒 − 16 <2.2𝑒 − 16 <2.2𝑒 − 16
𝑇 = 1024 <0.01 <2.2𝑒 − 16 <2.2𝑒 − 16 <2.2𝑒 − 16
𝑇 = 2048 0.01531 6.622𝑒 − 14 <2.2𝑒 − 16 <2.2𝑒 − 16
𝑇 = 4096 0.02589 8.969𝑒 − 08 <2.2𝑒 − 16 1.736𝑒 − 13
𝑇 = 8192 0.05159 0.1222 1.076𝑒 − 11 6.255𝑒 − 07

𝑇 = 16384 0.07265 0.03636 0.003181 1.563𝑒 − 05

𝑇 = 32768 >0.1 0.02883 0.0157 0.1148
𝑇 = 65536 >0.1 0.9794 0.007272 0.3533
𝑇 = 131072 >0.1 0.9433 0.8024 NA

Table 3: Test results for pOct.TL series.

Test KPSS ADF PP ERS
𝑇 = 512 <0.01 <2.2𝑒 − 16 <2.2𝑒 − 16 <2.2𝑒 − 16
𝑇 = 1024 <0.01 <2.2𝑒 − 16 <2.2𝑒 − 16 <2.2𝑒 − 16
𝑇 = 2048 <0.01 7.589𝑒 − 15 <2.2𝑒 − 16 <2.2𝑒 − 16
𝑇 = 4096 <0.01 0.0002329 <2.2𝑒 − 16 2.749𝑒 − 09
𝑇 = 8192 <0.01 0.005249 <2.2𝑒 − 16 1.107𝑒 − 05
𝑇 = 16384 <0.01 0.07512 1.609𝑒 − 10 0.01228
𝑇 = 32768 <0.01 0.294 8.265𝑒 − 05 0.1865
𝑇 = 65536 <0.01 0.197 0.03797 0.7795
𝑇 = 131072 0.01835 0.4773 0.07518 NA

Table 4: Test results for OctExt.TL series.

Test KPSS ADF PP ERS
𝑇 = 512 <0.01 <2.2𝑒 − 16 <2.2𝑒 − 16 <2.2𝑒 − 16
𝑇 = 1024 0.01112 3.262𝑒 − 11 <2.2𝑒 − 16 <2.2𝑒 − 16
𝑇 = 2048 0.02846 3.615𝑒 − 05 <2.2𝑒 − 16 3.718𝑒 − 13
𝑇 = 4096 0.0487 0.000314 <2.2𝑒 − 16 1.216𝑒 − 08
𝑇 = 8192 0.08652 0.04858 5.691𝑒 − 11 1.65𝑒 − 05

𝑇 = 16384 >0.1 0.01177 0.01622 0.0006824
𝑇 = 32768 >0.1 0.1303 0.1326 0.0247
𝑇 = 65536 >0.1 0.2777 0.6618 0.1359
𝑇 = 131072 >0.1 0.2846 0.8794 NA

Table 5: Test results for OctExt4.TL series.

Test KPSS ADF PP ERS
𝑇 = 512 <0.01 0.0001743 <2.2𝑒 − 16 <2.2𝑒 − 16
𝑇 = 1024 <0.01 0.001538 <2.2𝑒 − 16 6.507𝑒 − 11
𝑇 = 2048 <0.01 0.05514 <2.2𝑒 − 16 3.832𝑒 − 05
𝑇 = 4096 0.01045 0.1265 <2.2𝑒 − 16 0.000242
𝑇 = 8192 0.03833 0.1103 <2.2𝑒 − 16 0.04042
𝑇 = 16384 0.07791 0.3414 1.6𝑒 − 14 0.4146
𝑇 = 32768 >0.1 0.5884 1.004𝑒 − 06 0.3668
𝑇 = 65536 >0.1 0.885 0.008174 0.314
𝑇 = 131072 >0.1 0.8827 0.6979 NA

which is on the contrast with the intuitive observation from
the trajectory figures. Moreover, given the significance level
at 1%, when the time scale is small, the accumulated traffic

could be judged as non-stationary and possesses a unit root.
Specifically, we have the following findings.

(i) The accumulated traffic of pOct.TL series could be
regarded as stationary until the time scale reaches
17, while the other three series cannot be rejected to
be stationary once the time scale is greater than 15.
Thus, among the four series, the pOct.TL series seems
to possess the least possibility to be stationary under
each time scale.

(ii) Considering the series of pAug.TL, pOct.TL,
OctExt.TL, and OctExt4.TL, it seems that their
stationarity behaviors are quite similar and hard to
distinguish from each other under the corresponding
time scales.

(iii) For all these four series, when the time scale is small,
the accumulated traffic has a unit root and exhibits at
the same time some long range dependence behavior,
which indicates after first order difference we could
obtain a stationary process.

The previous discussions are for the Ethernet traffic but
the methods may also be a reference for other types of time
series, for instance, those in [32–35]. Our future research will
work on the general description of network traffic rather than
the Ethernet one alone.

5. Conclusions

In this paper, we have carried out several widely used tests
of stationarity in order to study the stationary property of
the accumulated Ethernet series at different time scales. The
quantitative results reveal that when the time scale increases,
the investigated accumulated Ethernet traffic is more likely to
be stationary, which coincides with the normality investiga-
tion results for the same series and provide a useful empirical
evidence for the traffic data modeling under large time scale.
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