580 research outputs found

    A Dimension Reduction Scheme for the Computation of Optimal Unions of Subspaces

    Get PDF
    Given a set of points \F in a high dimensional space, the problem of finding a union of subspaces \cup_i V_i\subset \R^N that best explains the data \F increases dramatically with the dimension of \R^N. In this article, we study a class of transformations that map the problem into another one in lower dimension. We use the best model in the low dimensional space to approximate the best solution in the original high dimensional space. We then estimate the error produced between this solution and the optimal solution in the high dimensional space.Comment: 15 pages. Some corrections were added, in particular the title was changed. It will appear in "Sampling Theory in Signal and Image Processing

    Nearness to Local Subspace Algorithm for Subspace and Motion Segmentation

    Get PDF
    There is a growing interest in computer science, engineering, and mathematics for modeling signals in terms of union of subspaces and manifolds. Subspace segmentation and clustering of high dimensional data drawn from a union of subspaces are especially important with many practical applications in computer vision, image and signal processing, communications, and information theory. This paper presents a clustering algorithm for high dimensional data that comes from a union of lower dimensional subspaces of equal and known dimensions. Such cases occur in many data clustering problems, such as motion segmentation and face recognition. The algorithm is reliable in the presence of noise, and applied to the Hopkins 155 Dataset, it generates the best results to date for motion segmentation. The two motion, three motion, and overall segmentation rates for the video sequences are 99.43%, 98.69%, and 99.24%, respectively

    Reduced row echelon form and non-linear approximation for subspace segmentation and high-dimensional data clustering

    Get PDF
    Given a set of data W={w1,…,wN}∈RD drawn from a union of subspaces, we focus on determining a nonlinear model of the form U=⋃i∈ISi, where {Si⊂RD}i∈I is a set of subspaces, that is nearest to W. The model is then used to classify W into clusters. Our approach is based on the binary reduced row echelon form of data matrix, combined with an iterative scheme based on a non-linear approximation method. We prove that, in absence of noise, our approach can find the number of subspaces, their dimensions, and an orthonormal basis for each subspace Si. We provide a comprehensive analysis of our theory and determine its limitations and strengths in presence of outliers and noise

    Riemannian Multi-Manifold Modeling

    Full text link
    This paper advocates a novel framework for segmenting a dataset in a Riemannian manifold MM into clusters lying around low-dimensional submanifolds of MM. Important examples of MM, for which the proposed clustering algorithm is computationally efficient, are the sphere, the set of positive definite matrices, and the Grassmannian. The clustering problem with these examples of MM is already useful for numerous application domains such as action identification in video sequences, dynamic texture clustering, brain fiber segmentation in medical imaging, and clustering of deformed images. The proposed clustering algorithm constructs a data-affinity matrix by thoroughly exploiting the intrinsic geometry and then applies spectral clustering. The intrinsic local geometry is encoded by local sparse coding and more importantly by directional information of local tangent spaces and geodesics. Theoretical guarantees are established for a simplified variant of the algorithm even when the clusters intersect. To avoid complication, these guarantees assume that the underlying submanifolds are geodesic. Extensive validation on synthetic and real data demonstrates the resiliency of the proposed method against deviations from the theoretical model as well as its superior performance over state-of-the-art techniques
    • …
    corecore