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A DIMENSION REDUCTION SCHEME FOR THE
COMPUTATION OF OPTIMAL UNIONS OF SUBSPACES

A. ALDROUBI, M. ANASTASIO, C. CABRELLI, AND U. MOLTER

ABSTRACT. Given a set of points F in a high dimensional space, the
problem of finding a union of subspaces U;V; C RY that best explains
the data F increases dramatically with the dimension of RY. In this
article, we study a class of transformations that map the problem into
another one in lower dimension. We use the best model in the low
dimensional space to approximate the best solution in the original high
dimensional space. We then estimate the error produced between this
solution and the optimal solution in the high dimensional space.

1. INTRODUCTION

Given a set of vectors (points) F = {f1,..., fmn} in a Hilbert space H
(finite or infinite dimensional), the problem of finding a union of subspaces
U;V; C H that best explains the data F has applications to mathematics
and engineering [9, [T, 12| 13 14, [15, [6] [I8]. The subspaces V; allowed
in the model are often constrained. For example the subspaces V; may be
constrained to belong to a family of closed subspaces C [4]. A typical example
for # = RY is when C is the set of subspaces of dimension k << N. If C
satisfies the so called Minimum Subspace Approximation Property (MSAP),
an optimal solution to the non-linear subspace modeling problem that best
fit the data exists, and algorithms to find these subspaces were developed [4].
Necessary and sufficient conditions for C to satisfy the MSAP are obtained
in [5].

In some applications the model is a finite union of subspaces and H is finite
dimensional. Once the model is found, the given data points can be clustered
and classified according to their distances from the subspaces, giving rise to
the so called subspace clustering problem (see e.g., [9] and the references
therein). Thus a dual problem is to first find a “best partition” of the data.
Once this partition is obtained, the associated optimal subspaces can be
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easily found. In any case, the search for an optimal partition or optimal
subspaces usually involves heavy computations that dramatically increases
with the dimensionality of 7. Thus one important feature is to map the
data into a lower dimensional space, and solve the transformed problem in
this lower dimensional space. If the mapping is chosen appropriately, the
original problem can be solved exactly or approximately using the solution
of the transformed data.

In this article, we concentrate on the non-linear subspace modeling prob-
lem when the model is a finite union of subspaces of R of dimension
k << N. Our goal is to find transformations from a high dimensional space
to lower dimensional spaces with the aim of solving the subspace modeling
problem using the low dimensional transformed data. We find the optimal
data partition for the transformed data and use this partition for the origi-
nal data to obtain the subspace model associated to this partition. We then
estimate the error between the model thus found and the optimal subspaces
model for the original data.

2. PRELIMINARIES

Since one of our goals is to model a set of data by a union of subspaces,
we first provide a measure of how well a given set of data can be modeled
by a union of subspaces.

We will assume in this article that the data belongs to the finite dimen-
sional space RY. There is no loss of generality in doing that, since it is
easy to see that the subspaces of any optimal solution belong to the span
of the data, which is a finite dimensional subspace of our (possible infinite
dimensional) Hilbert space. (see [3], Lemma 4.2). So we can assume that
the initial Hilbert space is the span of the data.

Definition 2.1. Given a set of vectors F = {f1,..., fm} in RY, a real
number p > 0 and positive integers [,k < N we will say that the data F is
(1, k, p)-sparse if there exist subspaces Vi, ..., V; of RV with dim(V;) < k for
i=1,...,1, such that

m

e(F.AW,....Vi}) = 1Igji_gld2(fz,Vj) <p,
=1 7

where d stands for the euclidean distance in RV.
When F is (I, k,0)-sparse, we will simply say that F is (I, k)-sparse.

Note that if F is (I, k)-sparse, there exist [ subspaces Vi, ...,V of dimen-
sion at most k, such that

FCU_ V.
For the general case p > 0, the (I, k, p)-sparsity of the data implies that F

can be partitioned into a small number of subsets, in such a way that each
subset belongs to or is at no more than p-distance from a low dimensional
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subspace. The collection of these subspaces provides an optimal non-linear
sparse model for the data.

Observe that if the data F is (I, k, p)-sparse, a model which verifies Def-
inition 2] provides a dictionary of length not bigger than [k (and in most
cases much smaller) in which our data can be represented using at most k
atoms with an error smaller than p.

More precisely, let {Vi,...,V;} be a collection of subspaces which satisfies
Definition 2Tl and D a set of vectors from |J; V; that is minimal with the
property that its span contains [ ;Vj. Then for each f € F there exists
A C D with #A < k such that

IIf — ZozggH% < p, for some scalars ay.
geN

In [4] the authors studied the problem of finding, for each given set of
pairs (I, k), the minimum p-sparsity value of the data. They also provided
an algorithm for finding the optimal value of p, as well as the optimal sub-
spaces associated with p and the corresponding optimal partition of the
data. Specifically, denote by B the collection of bundles of subspaces of R,

B={B=A{Vy,....,V;} : dim(V;) <k, i =1,...,1},
and for F = {f1,..., fm} a finite subset of R"V, define
eo(F) :=inf{e(F,B) : B € B}. (1)
As a special case of a general theorem in [4] we obtain the next theorem.

Theorem 2.2. Let F = {f1,..., fm} be vectors in RY, and let | and k be
given (I < m, k < N), then there exists a bundle By = {V?,...,V°} € B
such that

e(F,By) = eg(F) = inf{e(F,B) : B € B}. (2)
Any bundle By € B satisfying (2) will be called an optimal bundle for F.

The following relations between partitions of the indices {1,...,m} and
bundles will be relevant for our analysis.

We will denote by IT;({1,...,m}) the set of all [-sequences S = {S1,...,5}
of subsets of {1,...,m} satisfying the property that for all 1 <i,5 <,

l
USr:{l,...,m} and S;NS; =0 for i # j.
r=1

We want to emphasize that this definition does not exclude the case when
some of the S; are the empty set. By abuse of notation, we will still call the
elements of II;({1,...,m}) partitions of {1,...,m}.

Definition 2.3. Given a bundle B = {V1,...,V;} € B, we can split the set
{1,...,m} into a partition S = {Sy,...,S;} € I;({1,...,m}) with respect
to that bundle, by grouping together into S; the indices of the vectors in F
that are closer to a given subspace V; than to any other subspace Vj, j # i.
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Thus, the partitions generated by B are defined by S = {S1,...,S5} €
IT;({1,...,m}), where

jeS; ifandonlyif d(f;,V;) <d(f;, Vi), Yh=1,...,L

We can also associate to a given partition S € II; the bundles in B as
follows:

Definition 2.4. Given a partition S = {S1,...,5;} € II;, a bundle B =
{V1,...,Vi} € B is generated by S if and only if for every i = 1,...,1,

Z d*(f;, Vi) < Z d*(f;, W) for all subspaces W such that dim (W) < k.
JES; JES;

In this way, for a given data set F, every bundle has a set of associated
partitions (those that are generated by the bundle) and every partition has
a set of associated bundles (those that are generated by the partition). Note
however, that the fact that S is generated by B does not imply that B is
generated by S, and vice versa. However, if By is an optimal bundle that
solves the problem for the data F as in Theorem 22 then in this case, the
partition Sy generated by By also generates By. On the other hand not
every pair (B, S) with this property produces the minimal error ey(F).

Here and subsequently, the partition Sy generated by the optimal bundle
By will be called an optimal partition for F.

If M is a set of data and V is a subspace of RV, we will denote by E(M, V)
the mean square error of the data M to the subspace V, i.e.

E(M,V) =Y d(f,V). (3)

feM
3. MAIN RESULTS

The problem of finding the optimal union of subspaces that best models
a given set of data F when the dimension of the ambient space N is large
is computationally expensive. When the dimension k of the subspaces is
considerably smaller than N, it is natural to map the data onto a lower-
dimensional subspace, solve an associated problem in the lower dimensional
space and map the solution back into the original space. Specifically, given
the data set F = {f1,..., fm} € RY which is (I, k, p)-sparse and a sampling
matrix A € R™Y | with » << N, find the optimal partition of the sampled
data F' := A(F) = {Af1,...,Afm} CR", and use this partition to find an
approximate solution to the optimal model for F.

3.1. Dimensionality reduction: The ideal case p = 0. In this section
we will assume that the data F = {f,..., fm} C RY is (I, k)-sparse, i.e.,
there exist [ subspaces of dimension at most & such that F lies in the union of
these subspaces. For this ideal case, we will show that we can always recover
the optimal solution to the original problem from the optimal solution to
the problem in the low dimensional space as long as the low dimensional
space has dimension r > k.
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We will begin with the proof that for any sampling matrix A € R"™* the
measurements F' = A(F) are (I, k)-sparse in R".

Lemma 3.1. Assume the data F = {f1,..., fm} C RY is (I, k)-sparse and
let A€ RN, Then F' := A(F) = {Af1,..., Afm} CR" is (I, k)-sparse.

Proof. Let V..., VEO be optimal spaces for F. Since
dim(A(V?)) < dim(V0) <k V1<i<lI,

and

QO
AWV,

it follows that W := {A(V}),.
e(F, W) =0.

%)} is an optimal bundle for F and

O

Let F = {f1,..., fm} € RY be (I, k)-sparse and A € RV, By Lemma
B, F'is (I, k)-sparse. Thus, there exists an optimal partition S = {S1,...,S;}
for 7/ in IL;({1,...,m}), such that

l
/QUW
=1

where W; := span{Af;};jcs, and dim(W;) < k. Note that {W;,..., Wi} is
an optimal bundle for F'.
We can define the bundle Bg = {V4,...,V;} by
Vi :==span{f;}jes,, V1<i<L 4)

Since S € II;({1,...,m}), we have that

l
cUv
i=1

Thus, the bundle Bg will be optimal for F if dim(V;) <k, V1 <1i <[. The
above discussion suggests the following definition:

Definition 3.2. Let F = {f1,..., fm} € R¥ be (I, k)-sparse. We will call
a matrix A € R™N admissible for F if for every optimal partition S for F7,
the bundle Bg defined by (@) is optimal for F.

The next proposition states that almost all A € R™% are admissible for
F.
The Lebesgue measure of a set £ C R? will be denoted by |E].

Proposition 3.3. Assume the data F = {f1,..., fm} C RV is (I, k)-sparse
and let r > k. Then, almost all A € R™N are admissible for F.
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Proof. If a matrix A € R™¥ is not admissible, there exists an optimal
partition S € II; for F' such that the bundle Bg = {Vi,...,V;} is not
optimal for F.
Let Dy, be the set of all the subspaces V in RY of dimension bigger than
k, such that V' = span{f;}jes with S C {1,...,m}.
Thus, we have that the set of all the matrices of
admissible for F is contained in the set

U {4eR™N ¢ dim(A(V)) < K}
VeDy

RN which are not

Note that the set Dy is finite, since there are finitely many subsets of
{1,...,m}. Therefore, the proof of the proposition is complete by showing
that for a fixed subspace V' C R¥, such that dim(V) > k, it is true that

{A e RN : dim(A(V)) < k}| =0. (5)

Let then V' be a subspace such that dim(V') =t > k. Given {vy,...,v:} a
basis for V', by abuse of notation, we continue to write V for the matrix in
RN > with vectors v; as columns. Thus, proving (B) is equivalent to proving
that

{A € RN . rank(AV) < k}| = 0. (6)

As min{r,t} > k, the set {4 € R™ : rank(AV) < k} is included in

{A e RN : det(V*A*AV) = 0}. (7)

Since det(V*A*AV) is a non-trivial polynomial in the r x N coefficients of
A, the set ([7) has Lebesgue measure zero. Hence, (@) follows.
O

3.2. Dimensionality reduction: The non-ideal case p > 0. Even if a
set of data is drawn from a union of subspaces, in practice it is often cor-
rupted by noise. Thus, in general p > 0, and our goal is to estimate the
error produced when we solve the associated problem in the lower dimen-
sional space and map the solution back into the original space.

Intuitively, if A € R is an arbitrary matrix, the set F = AF will pre-
serve the original sparsity only if the matrix A does not change the geometry
of the data in an essential way. One can think that in the ideal case, since
the data is sparse, it actually lies in an union of low dimensional subspaces
(which is a very thin set in the ambient space).

However, when the data is not O-sparse, but only p-sparse with p > 0, the
optimal subspaces plus the data do not lie in a thin set. This is the main
obstacle in order to obtain an analogous result as in the ideal case.

Far from having the result that for almost any matrix A the geometry of
the data will be preserved, we have the Johnson-Lindenstrauss lemma, that
guaranties - for a given data set - the existence of one such matrix A.

In what follows, we will use random matrices to obtain positive results
for the p > 0 case.
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Let (Q,Pr) be a probability measure space. Given r, N € N, a random
matrix 4, € RV is a matrix with entries (4,); ; = a; j(w), where {a; ;} are
independent and identically distributed random variables for every 1 < i < r
and 1 <j < N.

Definition 3.4. We say that a random matrix A, € R™*V satisfies the
concentration inequality if for every 0 < & < 1, there exists ¢y = co(e) > 0
(independent of r, N) such that for any 2 € RY,

Pr((1 =)ol < 4wz} < (1 +e)lelf) 21-27  (8)
Such matrices are easy to come by as the next proposition shows [I].

Proposition 3.5. Let A, € R™N be a random matriz whose entries are
chosen independently from either N'(0, 1) or {\_/—%, %} Bernoulli. Then A,

satisfies (8) with co(e) = % - %.

By using random matrices A, satisfying (§]) to produce the lower dimen-
sional data set F , we will be able to recover with high probability an optimal
partition for F using the optimal partition of F .

Below we will state the main results of Section and we will give their
proofs in Section (4l

Note that by Lemma B, if F = {f1,..., fm} € RY is (I, k,0)-sparse,
then A, (F) is (I, k,0)-sparse for all w € . The following proposition is
a generalization of Lemma [B.] to the case where F is (I, k, p)-sparse with
p>0.

Proposition 3.6. Assume the data F = {f1,...,fm} C RY is (I,k,p)-
sparse with p > 0. If A, € R™N is a random matriz which satisfies (3),
then A,F is (I, k, (1 4+ €)p)-sparse with probability at least 1 — 2me~".

Hence if the data is mapped with a random matrix which satisfies the con-
centration inequality, then with high probability, the sparsity of the trans-
formed data is close to the sparsity of the original data. Further, as the
following theorem shows, we obtain an estimation for the error between F
and the bundle generated by the optimal partition for 7' = A, F.

Note that, given a constant o > 0, the scaled data oF = {afi,...,afn}
satisfies that e(aF, B) = a?e(F, B) for any bundle B. So, an optimal bundle
for F is optimal for aF, and vice versa. Therefore, we can assume that the
data F = {f1,..., fm} is normalized, that is, the matrix M € RV*™ which
has the vectors {f1,..., f,mm} as columns has unitary Frobenius norm. Recall
that the Frobenius norm of a matrix M € RV*™ is defined by

1M = ZZMW 9)

=1 j=1

where M; ; are the coefficients of M.
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Theorem 3.7. Let F = {f1,..., fm} C RY be a normalized data set and
0 <e < 1. Assume that A, € R™N is a random matriz satisfying (8) and
S, is an optimal partition for F' = AyF in R". If B, is a bundle generated
by the partition S, and the data F in RN as in Definition [2.3, then with
probability exceeding 1 — (2m? + 4m)e™ " we have

e(F,By,) < (1 +¢)eo(F) + ec, (10)
where ¢; = (I(d — k))*/? and d = rank(F).

Finally, we can use this theorem to show that the set of matrices which
are 1n-admissible (see definition below) is large.

The following definition generalizes Definition to the p-sparse setting,
with p > 0.

Definition 3.8. Assume F = {f1,..., fm} € RV is (I, k, p)-sparse and let
0 <n < 1. We will say that a matrix A € R™ is n-admissible for F if for
any optimal partition S for 7/ = AF in R", the bundle Bs generated by S
and F in RV, satisfies

G(I,Bs) <p+n.

We have the following generalization of Proposition B3] which provides
an estimate on the size of the set of n-admissible matrices.

Corollary 3.9. Let F = {f1,..., fm} € RY be a normalized data set and
0 <n < 1. Assume that A, € R™N is a random matriz which satisfies

property (8) fore =n (1 ++/I(d—k))~'. Then A, is n-admissible for F
with probability at least 1 — (2m? + 4m)e~"<0(),

Proof. Using the fact that eq(F) < E(F,{0}) = || F||*> = 1, we conclude
from Theorem [B.7 that

Pr(e(F, Bu) < co(F) +e(1+e1)) 21— e, (11)
where ¢; = (I(d — k))"/?, d = rank(F), and ¢; = 2m? 4+ 4m. That is,
Pr(e(}", By) < eo(F) + ?7) > 1 — (2m? + 4m)e "),
(]

As a consequence of the previous corollary, we have a bound on the di-
mension of the lower dimensional space to obtain a bundle which produces
an error at n-distance of the minimal error with high probability.

Now, using that co(e) > % for random matrices with gaussian or Bernoulli
entries (see Proposition B.5)), from Theorem [B.7] we obtain the following
corollary.

Corollary 3.10. Let 1,6 € (0,1), be given. Assume that A, € R™Y is q
random matriz whose entries are as in Proposition [3.3.
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Then for every r satisfying,

. 12(1 + \/1(d — k))? In <2m2 —|—4m>
> >

)
with probability at least 1 — § we have that

e(F,Byw) < eo(F)+mn.

We want to remark here that the results of subsection are valid for
any probability distribution that satisfies the concentration inequality (8]).
The bound on the error is still valid for p = 0. However in that case we were
able to obtain sharp results.

4. PROOFS

4.1. Background and supporting results. Before proving the results of
the previous section we need several known theorems, lemmas, and propo-
sitions below.

Given M € R™™ a Hermitian matrix, let \;{(M) > (M) > -+ >
Am(M) be its eigenvalues and s1(M) > so(M) > -+ > s, (M) > 0 be its
singular values.

Recall that the Frobenius norm defined in (Q) satisfies that

”MH2 = Z Mz%j = ZS?(M)a
i=1

1<i,j<m

where M; ; are the coefficients of M.
Given r € RV, we write ||x||2 for the /2 norm of z in R¥.

Theorem 4.1. [8, Theorem I11.4.1]
Let A, B € R™*™ be Hermitian matrices. Then for any choice of indices
1< <ig < <1 <m,

k
Jj=

k
()‘ij (A) - )‘ZJ(B)) < Z)‘](A - B).
1 j=1

Corollary 4.2. Let A, B € R™*™ be Hermitian matrices. Assume k and d
are two integers which satisfy 0 < k < d < m, then

d
| > ) = x(B)| < (@ -k - B,
j=k+1

Proof. Since A — B is Hermitian, it follows that for each 1 < j < m there
exists 1 < i; < m such that

A (A= B)| = si,(A - B).
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From this and Theorem [4.1] we have

d d—
> (Ai(4) = x(B)) < ZAJ (A-B) gz
Jj=k+1 =
d—k Ak s
< Ys(A-B) < (@-k)"(YsH4a-B)
Jj=1 j=1
< (d—k)'?|A-B|.

O

Remark 4.3. Note that the bound of the previous corollary is sharp. In-
deed, let A € R™*™ be the diagonal matrix with coefficients a; = 2 for
1 <1 <d, and a;; = 0 otherwise. Let B € R™*™ be the diagonal matrix
with coefficients b; =2 for 1 <i <k, bj;=1fork+1<i<d,and b; =0
otherwise. Thus,

‘ Zd: (/\j(A)—/\j(B))‘ :‘ Zd: (2_1)‘ d
Ik J=k+1

Further ||A — B|| = (d — k)'/2, and therefore
d
|3 () = A(B)] = (@~ k)2 A - B
j=k+1

Lemma 4.4. [7] Suppose that A, € R"™N is a random matriz which satisfies
@) and u,v € RY, then

[(u, v) = (Awu, Ayv)| < elullzlv]2,
with probability at least 1 — 4e™ "0,

The following proposition was proved in [I6], but we include its proof for
the sake of completeness.

Proposition 4.5. Let A, € R™Nbe a random matriz which satisfies (3)
and M € RVN*™ be a matriz. Then, we have

IMM — M*ALAM|| < e|| M|,
—rco

with probability at least 1 — 2(m? 4+ m)e

Proof. Set Y; j(w) = (M*M — M*ALA,M); ; = (fi, fj) — (Aufi, Ao fj)- By
Lemma [£4] with probability at least 1 — 4e~"% we have that

Yij (@) < ellfillzll £z (12)

Note that if (I2]) holds for all 1 < ¢ < j < m, then
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IM*M = M ALAM|P = Y Yij(w)?
1< j<m

e Y W3S = 1Mt

1<i,j<m

IN

Thus, by the union bound, we obtain

Pr(IIM*M — M*ALAM || < €| M]?)
> Pr([Yis @)l < ellfillollfill: V1<i<j<m)
2 1 - ZlSZSJSm 46_7‘60 — 1 - 2(m2 + m)e_mo.
O
4.2. New results and proof of Theorem [3.7. Given M € RV*™ with

columns {f1,..., fm} and a subspace V. C R, let E(M,V) be as in (3],
that is

E(M,V) = id2(fi,V).
=1

We will denote the k-minimal error associated with M by

E(M) = V:dglnl(l\})gk E(M,V).

Let d := rank(M). Eckart-Young’s Theorem (see [I7]) states that

d
Ep(M) = Y N(M*M), (13)
Jj=k+1
where A\j(M*M) > -+ > Ng(M*M) > 0 are the positive eigenvalues of
M*M.

Lemma 4.6. Assume that M € RVN*™ and A € R™N are arbitrary ma-
trices. Let S € RN*® be a submatriz of M. If d := rank(M) is such that
0 <k <d, then

|Ei(S) — Ex(AS)| < (d — k)2 ||S*S — S*A*AS|).
Proof. Let ds := rank(S). We have rank(AS) < ds. If ds < k, the result is
trivial. Otherwise by (I3]) and Corollary 4.2l we obtain
ds
Bu($) — BLAS)] = | 0 ((578) = A(5747AS)
Jj=k+1
< (dg — k)Y?||S*S — S*A*AS].
As S is a submatrix of M, we have that (dy — k)'/2 < (d — k)'/2, which

proves the lemma.
O
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Recall that eg(F) is the optimal value for the data F, and ey(A,F) is the
optimal value for the data F' = A, F (See (Il)). A relation between these
two values is given by the following lemma.

Lemma 4.7. Let F = {f1,....,fm} CRY and 0 < e < 1. If A, € R™N
is a random matriz which satisfies (8), then with probability exceeding 1 —
2me~"% we have

eo(AwF) < (1 +¢)eg(F).

Proof. Let V C R¥ be a subspace and M € RV*™ be a matrix. Using (8)
and the union bound, with probability at least 1 — 2me™"“ we have that

B(A,M,AYV) = > d*(Aufi AV) <> l[Aufi — Au(Py )3
=1

i=1

< A+ i - Prfilli =1+ e)E(M,V),
=1

where Py is the orthogonal projection onto V.

Assume that S = {S1, ..., S;} is an optimal partition for F and {V1,...,V;}
is an optimal bundle for 7. Suppose that m; = #(S;) and M; € RV>*™ are
the matrices which have {f;};cs, as columns. From what has been proved
above and the union bound, with probability exceeding 1— 22:1 2m;e "0 =
1 —2me="%, it holds

l l
o(AuF) < Z BE(A,M;, ALV;) < (14¢2) Y E(M;, Vi) = (1+ €)eo(F).
=1 i=1

Proof of Proposition[34. This is a direct consequence of Lemma [£71 O

Proof of Theorem [3.7. If S, = {8, SL....,SLY, and mi, = #(S%), let M €
RN XMy be the matrices which have { fitjesi as columms. Since B, =
{V1 ... Vi}is generated by S, and F, it follows that E(M¢, Vj) Ej(ME).

And as SW is an optimal partition for A, F in R", we have that lel Ep(A,MY) =
eo(Aw]:).
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Hence, using Lemma [£.6] Lemma [£.7] and Proposition 4.5 with high
probability it holds that

1 l
e("t7Bw) < ZE(MZNVJ) = ZEk(Mi;)
=1 i=1

I I
< Y ER(AGML) + (d— k)2 | MM — M AL ALM||
i=1 =1

! o . CN1/2
< eo(AuF) + (Ud = k)Y (D IME ML — ME AL AMEP)
=1
< (14e)eo(F) + (I(d — k)2 || M*M — M*AX A M|
< (L+e)eo(F) +e(l(d — k)2,

where M € RN*™ is the unitary Frobenius norm matrix which has the
vectors {f1,..., fm} as columns.

The right side of ({I0) follows from Proposition 4.5l Lemma [A.7] and the
fact that

Pr(e(F, Bu) < (14 €)eo(F) +£(U(d — k))/?)

> Pr(HM*M — M*ALALM| < e and eg(A,F) < (1 + 6)eo(f)>
> 1—(2(m?+m)e " + 2me ") =1 — (2m? 4 4m)e ",

5. CONCLUSIONS AND RELATED WORK

The existence of optimal union of subspaces models and an algorithm for
finding them was obtained in [4]. In the present paper we have focused on
the computational complexity of finding these models. More precisely, we
studied techniques of dimension reduction for the algorithm proposed in [4].
These techniques can also be used in a wide variety of situations and are
not limited to this particular application.

We used random linear transformations to map the data to a lower di-
mensional space. The “projected” signals were then processed in that space,
(i.e. finding the optimal union of subspaces) in order to produce an optimal
partition. Then we applied this partition to the original data to obtain the
associated model for that partition and obtained a bound for the error.

We have analyzed two situations. First we studied the case when the
data belongs to a union of subspaces (ideal case with no noise). In that
case we obtained the optimal model using almost any transformation (see
Proposition B.3)).

In the presence of noise, the data usually doesn’t belong to a union of
low dimensional subspaces. Thus, the distances from the data to an optimal
model add up to a positive error. In this case, we needed to restrict the
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admissible transformations. We applied recent results on distributions of
matrices satisfying concentration inequalities, which also proved to be very
useful in the theory of compressed sensing.

We were able to prove that the model obtained by our approach is quasi
optimal with a high probability. That is, if we map the data using a random
matrix from one of the distributions satisfying the concentration law, then
with high probability, the distance of the data to the model is bounded by the
optimal distance plus a constant. This constant depends on the parameter
of the concentration law, and the parameters of the model (number and
dimension of the subspaces allowed in the model).

Let us remark here that the problem of finding the optimal union of
subspaces that fit a given data set is also known as “Projective clustering”.
Several algorithms have been proposed in the literature to solve this problem.
Particularly relevant is [10] (see also references therein) where the authors
used results from volume and adaptive sampling to obtain a polynomial-time
approximation scheme. See [2] for a related algorithm.
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