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A DIMENSION REDUCTION SCHEME FOR THE

COMPUTATION OF OPTIMAL UNIONS OF SUBSPACES

A. ALDROUBI, M. ANASTASIO, C. CABRELLI, AND U. MOLTER

Abstract. Given a set of points F in a high dimensional space, the
problem of finding a union of subspaces ∪iVi ⊆ R

N that best explains
the data F increases dramatically with the dimension of RN . In this
article, we study a class of transformations that map the problem into
another one in lower dimension. We use the best model in the low
dimensional space to approximate the best solution in the original high
dimensional space. We then estimate the error produced between this
solution and the optimal solution in the high dimensional space.

1. Introduction

Given a set of vectors (points) F = {f1, . . . , fm} in a Hilbert space H
(finite or infinite dimensional), the problem of finding a union of subspaces
∪iVi ⊆ H that best explains the data F has applications to mathematics
and engineering [9, 11, 12, 13, 14, 15, 6, 18]. The subspaces Vi allowed
in the model are often constrained. For example the subspaces Vi may be
constrained to belong to a family of closed subspaces C [4]. A typical example
for H = R

N is when C is the set of subspaces of dimension k << N . If C
satisfies the so called Minimum Subspace Approximation Property (MSAP),
an optimal solution to the non-linear subspace modeling problem that best
fit the data exists, and algorithms to find these subspaces were developed [4].
Necessary and sufficient conditions for C to satisfy the MSAP are obtained
in [5].

In some applications the model is a finite union of subspaces andH is finite
dimensional. Once the model is found, the given data points can be clustered
and classified according to their distances from the subspaces, giving rise to
the so called subspace clustering problem (see e.g., [9] and the references
therein). Thus a dual problem is to first find a “best partition” of the data.
Once this partition is obtained, the associated optimal subspaces can be
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easily found. In any case, the search for an optimal partition or optimal
subspaces usually involves heavy computations that dramatically increases
with the dimensionality of H. Thus one important feature is to map the
data into a lower dimensional space, and solve the transformed problem in
this lower dimensional space. If the mapping is chosen appropriately, the
original problem can be solved exactly or approximately using the solution
of the transformed data.

In this article, we concentrate on the non-linear subspace modeling prob-
lem when the model is a finite union of subspaces of R

N of dimension
k << N . Our goal is to find transformations from a high dimensional space
to lower dimensional spaces with the aim of solving the subspace modeling
problem using the low dimensional transformed data. We find the optimal
data partition for the transformed data and use this partition for the origi-
nal data to obtain the subspace model associated to this partition. We then
estimate the error between the model thus found and the optimal subspaces
model for the original data.

2. Preliminaries

Since one of our goals is to model a set of data by a union of subspaces,
we first provide a measure of how well a given set of data can be modeled
by a union of subspaces.

We will assume in this article that the data belongs to the finite dimen-
sional space R

N . There is no loss of generality in doing that, since it is
easy to see that the subspaces of any optimal solution belong to the span
of the data, which is a finite dimensional subspace of our (possible infinite
dimensional) Hilbert space. (see [3], Lemma 4.2). So we can assume that
the initial Hilbert space is the span of the data.

Definition 2.1. Given a set of vectors F = {f1, . . . , fm} in R
N , a real

number ρ ≥ 0 and positive integers l, k < N we will say that the data F is
(l, k, ρ)-sparse if there exist subspaces V1, . . . , Vl of R

N with dim(Vi) ≤ k for
i = 1, . . . , l, such that

e(F , {V1, . . . , Vl}) =
m
∑

i=1

min
1≤j≤l

d2(fi, Vj) ≤ ρ,

where d stands for the euclidean distance in R
N .

When F is (l, k, 0)-sparse, we will simply say that F is (l, k)-sparse.

Note that if F is (l, k)-sparse, there exist l subspaces V1, . . . , Vl of dimen-
sion at most k, such that

F ⊆ ∪l
i=1Vi.

For the general case ρ > 0, the (l, k, ρ)-sparsity of the data implies that F
can be partitioned into a small number of subsets, in such a way that each
subset belongs to or is at no more than ρ-distance from a low dimensional
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subspace. The collection of these subspaces provides an optimal non-linear
sparse model for the data.

Observe that if the data F is (l, k, ρ)-sparse, a model which verifies Def-
inition 2.1 provides a dictionary of length not bigger than lk (and in most
cases much smaller) in which our data can be represented using at most k
atoms with an error smaller than ρ.

More precisely, let {V1, . . . , Vl} be a collection of subspaces which satisfies
Definition 2.1 and D a set of vectors from

⋃

j Vj that is minimal with the

property that its span contains
⋃

j Vj. Then for each f ∈ F there exists
Λ ⊆ D with #Λ ≤ k such that

‖f −
∑

g∈Λ
αgg‖

2
2 ≤ ρ, for some scalars αg.

In [4] the authors studied the problem of finding, for each given set of
pairs (l, k), the minimum ρ-sparsity value of the data. They also provided
an algorithm for finding the optimal value of ρ, as well as the optimal sub-
spaces associated with ρ and the corresponding optimal partition of the
data. Specifically, denote by B the collection of bundles of subspaces of RN ,

B = {B = {V1, . . . , Vl} : dim(Vi) ≤ k, i = 1, ..., l},

and for F = {f1, . . . , fm} a finite subset of RN , define

e0(F) := inf{e(F , B) : B ∈ B}. (1)

As a special case of a general theorem in [4] we obtain the next theorem.

Theorem 2.2. Let F = {f1, . . . , fm} be vectors in R
N , and let l and k be

given (l < m, k < N), then there exists a bundle B0 = {V 0
1 , . . . , V

0
l } ∈ B

such that

e(F , B0) = e0(F) = inf{e(F , B) : B ∈ B}. (2)

Any bundle B0 ∈ B satisfying (2) will be called an optimal bundle for F .

The following relations between partitions of the indices {1, . . . ,m} and
bundles will be relevant for our analysis.

We will denote byΠl({1, . . . ,m}) the set of all l-sequences S = {S1, . . . , Sl}
of subsets of {1, . . . ,m} satisfying the property that for all 1 ≤ i, j ≤ l,

l
⋃

r=1

Sr = {1, . . . ,m} and Si ∩ Sj = ∅ for i 6= j.

We want to emphasize that this definition does not exclude the case when
some of the Si are the empty set. By abuse of notation, we will still call the
elements of Πl({1, . . . ,m}) partitions of {1, . . . ,m}.

Definition 2.3. Given a bundle B = {V1, . . . , Vl} ∈ B, we can split the set
{1, . . . ,m} into a partition S = {S1, . . . , Sl} ∈ Πl({1, . . . ,m}) with respect
to that bundle, by grouping together into Si the indices of the vectors in F
that are closer to a given subspace Vi than to any other subspace Vj , j 6= i.
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Thus, the partitions generated by B are defined by S = {S1, . . . , Sl} ∈
Πl({1, . . . ,m}), where

j ∈ Si if and only if d(fj , Vi) ≤ d(fj , Vh), ∀h = 1, . . . , l.

We can also associate to a given partition S ∈ Πl the bundles in B as
follows:

Definition 2.4. Given a partition S = {S1, . . . , Sl} ∈ Πl, a bundle B =
{V1, . . . , Vl} ∈ B is generated by S if and only if for every i = 1, . . . , l,
∑

j∈Si

d2(fj, Vi) ≤
∑

j∈Si

d2(fj,W ) for all subspaces W such that dim(W ) ≤ k.

In this way, for a given data set F , every bundle has a set of associated
partitions (those that are generated by the bundle) and every partition has
a set of associated bundles (those that are generated by the partition). Note
however, that the fact that S is generated by B does not imply that B is
generated by S, and vice versa. However, if B0 is an optimal bundle that
solves the problem for the data F as in Theorem 2.2, then in this case, the
partition S0 generated by B0 also generates B0. On the other hand not
every pair (B,S) with this property produces the minimal error e0(F).

Here and subsequently, the partition S0 generated by the optimal bundle
B0 will be called an optimal partition for F .

IfM is a set of data and V is a subspace of RN , we will denote by E(M,V )
the mean square error of the data M to the subspace V , i.e.

E(M,V ) =
∑

f∈M
d2(f, V ). (3)

3. Main results

The problem of finding the optimal union of subspaces that best models
a given set of data F when the dimension of the ambient space N is large
is computationally expensive. When the dimension k of the subspaces is
considerably smaller than N , it is natural to map the data onto a lower-
dimensional subspace, solve an associated problem in the lower dimensional
space and map the solution back into the original space. Specifically, given
the data set F = {f1, . . . , fm} ⊆ R

N which is (l, k, ρ)-sparse and a sampling
matrix A ∈ R

r×N , with r << N , find the optimal partition of the sampled
data F ′ := A(F) = {Af1, . . . , Afm} ⊆ R

r, and use this partition to find an
approximate solution to the optimal model for F .

3.1. Dimensionality reduction: The ideal case ρ = 0. In this section
we will assume that the data F = {f1, . . . , fm} ⊆ R

N is (l, k)-sparse, i.e.,
there exist l subspaces of dimension at most k such that F lies in the union of
these subspaces. For this ideal case, we will show that we can always recover
the optimal solution to the original problem from the optimal solution to
the problem in the low dimensional space as long as the low dimensional
space has dimension r > k.
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We will begin with the proof that for any sampling matrix A ∈ R
r×N , the

measurements F ′ = A(F) are (l, k)-sparse in R
r.

Lemma 3.1. Assume the data F = {f1, . . . , fm} ⊆ R
N is (l, k)-sparse and

let A ∈ R
r×N . Then F ′ := A(F) = {Af1, . . . , Afm} ⊆ R

r is (l, k)-sparse.

Proof. Let V 0
1 , . . . , V

0
l be optimal spaces for F . Since

dim(A(V 0
i )) ≤ dim(V 0

i ) ≤ k ∀ 1 ≤ i ≤ l,

and

F ′ ⊆
l
⋃

i=1

A(V 0
i ),

it follows that W := {A(V 0
1 ), . . . , A(V

0
l )} is an optimal bundle for F ′ and

e(F ′,W ) = 0.
�

Let F = {f1, . . . , fm} ⊆ R
N be (l, k)-sparse and A ∈ R

r×N . By Lemma
3.1, F ′ is (l, k)-sparse. Thus, there exists an optimal partition S = {S1, . . . , Sl}
for F ′ in Πl({1, . . . ,m}), such that

F ′ ⊆
l
⋃

i=1

Wi,

where Wi := span{Afj}j∈Si
and dim(Wi) ≤ k. Note that {W1, . . . ,Wl} is

an optimal bundle for F ′.
We can define the bundle BS = {V1, . . . , Vl} by

Vi := span{fj}j∈Si
, ∀ 1 ≤ i ≤ l. (4)

Since S ∈ Πl({1, . . . ,m}), we have that

F ⊆
l
⋃

i=1

Vi.

Thus, the bundle BS will be optimal for F if dim(Vi) ≤ k, ∀ 1 ≤ i ≤ l. The
above discussion suggests the following definition:

Definition 3.2. Let F = {f1, . . . , fm} ⊆ R
N be (l, k)-sparse. We will call

a matrix A ∈ R
r×N admissible for F if for every optimal partition S for F ′,

the bundle BS defined by (4) is optimal for F .

The next proposition states that almost all A ∈ R
r×N are admissible for

F .
The Lebesgue measure of a set E ⊆ R

q will be denoted by |E|.

Proposition 3.3. Assume the data F = {f1, . . . , fm} ⊆ R
N is (l, k)-sparse

and let r > k. Then, almost all A ∈ R
r×N are admissible for F .
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Proof. If a matrix A ∈ R
r×N is not admissible, there exists an optimal

partition S ∈ Πl for F ′ such that the bundle BS = {V1, . . . , Vl} is not
optimal for F .

Let Dk be the set of all the subspaces V in R
N of dimension bigger than

k, such that V = span{fj}j∈S with S ⊆ {1, . . . ,m}.
Thus, we have that the set of all the matrices of R

r×N which are not
admissible for F is contained in the set

⋃

V ∈Dk

{A ∈ R
r×N : dim(A(V )) ≤ k}.

Note that the set Dk is finite, since there are finitely many subsets of
{1, . . . ,m}. Therefore, the proof of the proposition is complete by showing
that for a fixed subspace V ⊆ R

N , such that dim(V ) > k, it is true that

|{A ∈ R
r×N : dim(A(V )) ≤ k}| = 0. (5)

Let then V be a subspace such that dim(V ) = t > k. Given {v1, . . . , vt} a
basis for V , by abuse of notation, we continue to write V for the matrix in
R
N×t with vectors vi as columns. Thus, proving (5) is equivalent to proving

that

|{A ∈ R
r×N : rank(AV ) ≤ k}| = 0. (6)

As min{r, t} > k, the set {A ∈ R
r×N : rank(AV ) ≤ k} is included in

{A ∈ R
r×N : det(V ∗A∗AV ) = 0}. (7)

Since det(V ∗A∗AV ) is a non-trivial polynomial in the r ×N coefficients of
A, the set (7) has Lebesgue measure zero. Hence, (6) follows.

�

3.2. Dimensionality reduction: The non-ideal case ρ > 0. Even if a
set of data is drawn from a union of subspaces, in practice it is often cor-
rupted by noise. Thus, in general ρ > 0, and our goal is to estimate the
error produced when we solve the associated problem in the lower dimen-
sional space and map the solution back into the original space.

Intuitively, if A ∈ R
r×N is an arbitrary matrix, the set F

′

= AF will pre-
serve the original sparsity only if the matrix A does not change the geometry
of the data in an essential way. One can think that in the ideal case, since
the data is sparse, it actually lies in an union of low dimensional subspaces
(which is a very thin set in the ambient space).

However, when the data is not 0-sparse, but only ρ-sparse with ρ > 0, the
optimal subspaces plus the data do not lie in a thin set. This is the main
obstacle in order to obtain an analogous result as in the ideal case.

Far from having the result that for almost any matrix A the geometry of
the data will be preserved, we have the Johnson-Lindenstrauss lemma, that
guaranties - for a given data set - the existence of one such matrix A.

In what follows, we will use random matrices to obtain positive results
for the ρ > 0 case.
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Let (Ω,Pr) be a probability measure space. Given r,N ∈ N, a random
matrix Aω ∈ R

r×N is a matrix with entries (Aω)i,j = ai,j(ω), where {ai,j} are
independent and identically distributed random variables for every 1 ≤ i ≤ r

and 1 ≤ j ≤ N .

Definition 3.4. We say that a random matrix Aω ∈ R
r×N satisfies the

concentration inequality if for every 0 < ε < 1, there exists c0 = c0(ε) > 0
(independent of r,N) such that for any x ∈ R

N ,

Pr
(

(1− ε)‖x‖22 ≤ ‖Aωx‖
2
2 ≤ (1 + ε)‖x‖22

)

≥ 1− 2e−rc0 (8)

Such matrices are easy to come by as the next proposition shows [1].

Proposition 3.5. Let Aω ∈ R
r×N be a random matrix whose entries are

chosen independently from either N (0, 1r ) or {−1√
r
, 1√

r
} Bernoulli. Then Aω

satisfies (8) with c0(ε) =
ε2

4 − ε3

6 .

By using random matrices Aω satisfying (8) to produce the lower dimen-

sional data set F
′

, we will be able to recover with high probability an optimal
partition for F using the optimal partition of F

′

.
Below we will state the main results of Section 3.2 and we will give their

proofs in Section 4.
Note that by Lemma 3.1, if F = {f1, . . . , fm} ⊆ R

N is (l, k, 0)-sparse,
then Aω(F) is (l, k, 0)-sparse for all ω ∈ Ω. The following proposition is
a generalization of Lemma 3.1 to the case where F is (l, k, ρ)-sparse with
ρ > 0.

Proposition 3.6. Assume the data F = {f1, . . . , fm} ⊆ R
N is (l, k, ρ)-

sparse with ρ > 0. If Aω ∈ R
r×N is a random matrix which satisfies (8),

then AωF is (l, k, (1 + ε)ρ)-sparse with probability at least 1− 2me−rc0.

Hence if the data is mapped with a random matrix which satisfies the con-
centration inequality, then with high probability, the sparsity of the trans-
formed data is close to the sparsity of the original data. Further, as the
following theorem shows, we obtain an estimation for the error between F
and the bundle generated by the optimal partition for F ′ = AωF .

Note that, given a constant α > 0, the scaled data αF = {αf1, . . . , αfm}
satisfies that e(αF , B) = α2e(F , B) for any bundleB. So, an optimal bundle
for F is optimal for αF , and vice versa. Therefore, we can assume that the
data F = {f1, . . . , fm} is normalized, that is, the matrix M ∈ R

N×m which
has the vectors {f1, . . . , fm} as columns has unitary Frobenius norm. Recall
that the Frobenius norm of a matrix M ∈ R

N×m is defined by

‖M‖2 :=

N
∑

i=1

m
∑

j=1

M2
i,j, (9)

where Mi,j are the coefficients of M .
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Theorem 3.7. Let F = {f1, . . . , fm} ⊆ R
N be a normalized data set and

0 < ε < 1. Assume that Aω ∈ R
r×N is a random matrix satisfying (8) and

Sω is an optimal partition for F ′ = AωF in R
r. If Bω is a bundle generated

by the partition Sω and the data F in R
N as in Definition 2.3, then with

probability exceeding 1− (2m2 + 4m)e−rc0 , we have

e(F , Bω) ≤ (1 + ε)e0(F) + εc1, (10)

where c1 = (l(d− k))1/2 and d = rank(F).

Finally, we can use this theorem to show that the set of matrices which
are η-admissible (see definition below) is large.

The following definition generalizes Definition 3.2 to the ρ-sparse setting,
with ρ > 0.

Definition 3.8. Assume F = {f1, . . . , fm} ⊆ R
N is (l, k, ρ)-sparse and let

0 < η < 1. We will say that a matrix A ∈ R
r×N is η-admissible for F if for

any optimal partition S for F ′ = AF in R
r, the bundle BS generated by S

and F in R
N , satisfies

e(F , BS) ≤ ρ+ η.

We have the following generalization of Proposition 3.3, which provides
an estimate on the size of the set of η-admissible matrices.

Corollary 3.9. Let F = {f1, . . . , fm} ⊆ R
N be a normalized data set and

0 < η < 1. Assume that Aω ∈ R
r×N is a random matrix which satisfies

property (8) for ε = η (1 +
√

l(d− k))−1. Then Aω is η-admissible for F

with probability at least 1− (2m2 + 4m)e−rc0(ε).

Proof. Using the fact that e0(F) ≤ E(F , {0}) = ‖F‖2 = 1, we conclude
from Theorem 3.7 that

Pr
(

e(F , Bω) ≤ e0(F) + ε(1 + c1)
)

≥ 1− c2e
−rc0(ε), (11)

where c1 = (l(d − k))1/2, d = rank(F), and c2 = 2m2 + 4m. That is,

Pr
(

e(F , Bω) ≤ e0(F) + η
)

≥ 1− (2m2 + 4m)e−rc0(ε).

�

As a consequence of the previous corollary, we have a bound on the di-
mension of the lower dimensional space to obtain a bundle which produces
an error at η-distance of the minimal error with high probability.

Now, using that c0(ε) ≥
ε2

12 for randommatrices with gaussian or Bernoulli
entries (see Proposition 3.5), from Theorem 3.7 we obtain the following
corollary.

Corollary 3.10. Let η, δ ∈ (0, 1), be given. Assume that Aω ∈ R
r×N is a

random matrix whose entries are as in Proposition 3.5.
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Then for every r satisfying,

r ≥
12(1 +

√

l(d− k))2

η2
ln

(2m2 + 4m

δ

)

with probability at least 1− δ we have that

e(F , Bω) ≤ e0(F) + η.

We want to remark here that the results of subsection 3.2 are valid for
any probability distribution that satisfies the concentration inequality (8).
The bound on the error is still valid for ρ = 0. However in that case we were
able to obtain sharp results.

4. Proofs

4.1. Background and supporting results. Before proving the results of
the previous section we need several known theorems, lemmas, and propo-
sitions below.

Given M ∈ R
m×m a Hermitian matrix, let λ1(M) ≥ λ2(M) ≥ · · · ≥

λm(M) be its eigenvalues and s1(M) ≥ s2(M) ≥ · · · ≥ sm(M) ≥ 0 be its
singular values.

Recall that the Frobenius norm defined in (9) satisfies that

‖M‖2 =
∑

1≤i,j≤m

M2
i,j =

m
∑

i=1

s2i (M),

where Mi,j are the coefficients of M .
Given x ∈ R

N , we write ‖x‖2 for the ℓ2 norm of x in R
N .

Theorem 4.1. [8, Theorem III.4.1]
Let A,B ∈ R

m×m be Hermitian matrices. Then for any choice of indices
1 ≤ i1 < i2 < · · · < ik ≤ m,

k
∑

j=1

(λij (A)− λij(B)) ≤
k

∑

j=1

λj(A−B).

Corollary 4.2. Let A,B ∈ R
m×m be Hermitian matrices. Assume k and d

are two integers which satisfy 0 ≤ k ≤ d ≤ m, then

∣

∣

∣

d
∑

j=k+1

(λj(A)− λj(B))
∣

∣

∣
≤ (d− k)1/2‖A−B‖.

Proof. Since A − B is Hermitian, it follows that for each 1 ≤ j ≤ m there
exists 1 ≤ ij ≤ m such that

|λj(A−B)| = sij (A−B).
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From this and Theorem 4.1 we have

d
∑

j=k+1

(λj(A)− λj(B)) ≤
d−k
∑

j=1

λj(A−B) ≤
d−k
∑

j=1

sij(A−B)

≤
d−k
∑

j=1

sj(A−B) ≤ (d− k)1/2
(

d−k
∑

j=1

s2j(A−B)
)1/2

≤ (d− k)1/2‖A−B‖.

�

Remark 4.3. Note that the bound of the previous corollary is sharp. In-
deed, let A ∈ R

m×m be the diagonal matrix with coefficients aii = 2 for
1 ≤ i ≤ d, and aii = 0 otherwise. Let B ∈ R

m×m be the diagonal matrix
with coefficients bii = 2 for 1 ≤ i ≤ k, bii = 1 for k + 1 ≤ i ≤ d, and bii = 0
otherwise. Thus,

∣

∣

∣

d
∑

j=k+1

(λj(A)− λj(B))
∣

∣

∣
=

∣

∣

∣

d
∑

j=k+1

(2− 1)
∣

∣

∣
= d− k.

Further ‖A−B‖ = (d− k)1/2, and therefore

∣

∣

∣

d
∑

j=k+1

(λj(A)− λj(B))
∣

∣

∣
= (d− k)1/2‖A−B‖.

Lemma 4.4. [7] Suppose that Aω ∈ R
r×N is a random matrix which satisfies

(8) and u, v ∈ R
N , then

|〈u, v〉 − 〈Aωu,Aωv〉| ≤ ε‖u‖2‖v‖2,

with probability at least 1− 4e−rc0 .

The following proposition was proved in [16], but we include its proof for
the sake of completeness.

Proposition 4.5. Let Aω ∈ R
r×Nbe a random matrix which satisfies (8)

and M ∈ R
N×m be a matrix. Then, we have

‖M∗M −M∗A∗
ωAωM‖ ≤ ε‖M‖2,

with probability at least 1− 2(m2 +m)e−rc0 .

Proof. Set Yi,j(ω) = (M∗M −M∗A∗
ωAωM)i,j = 〈fi, fj〉 − 〈Aωfi, Aωfj〉. By

Lemma 4.4 with probability at least 1− 4e−rc0 we have that

|Yi,j(ω)| ≤ ε‖fi‖2‖fj‖2 (12)

Note that if (12) holds for all 1 ≤ i ≤ j ≤ m, then
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‖M∗M −M∗A∗
ωAωM‖2 =

∑

1≤i,j≤m

Yi,j(ω)
2

≤ ε2
∑

1≤i,j≤m

‖fi‖
2
2‖fj‖

2
2 = ε2‖M‖4.

Thus, by the union bound, we obtain

Pr
(

‖M∗M −M∗A∗
ωAωM‖ ≤ ε‖M‖2

)

≥ Pr
(

|Yi,j(ω)| ≤ ε‖fi‖2‖fj‖2 ∀ 1 ≤ i ≤ j ≤ m
)

≥ 1−
∑

1≤i≤j≤m 4e−rc0 = 1− 2(m2 +m)e−rc0 .

�

4.2. New results and proof of Theorem 3.7. Given M ∈ R
N×m with

columns {f1, . . . , fm} and a subspace V ⊆ R
N , let E(M,V ) be as in (3),

that is

E(M,V ) =
m
∑

i=1

d2(fi, V ).

We will denote the k-minimal error associated with M by

Ek(M) := min
V : dim(V )≤k

E(M,V ).

Let d := rank(M). Eckart-Young’s Theorem (see [17]) states that

Ek(M) =

d
∑

j=k+1

λj(M
∗M), (13)

where λ1(M
∗M) ≥ · · · ≥ λd(M

∗M) > 0 are the positive eigenvalues of
M∗M .

Lemma 4.6. Assume that M ∈ R
N×m and A ∈ R

r×N are arbitrary ma-
trices. Let S ∈ R

N×s be a submatrix of M . If d := rank(M) is such that
0 ≤ k ≤ d, then

|Ek(S)− Ek(AS)| ≤ (d− k)1/2 ‖S∗S − S∗A∗AS‖.

Proof. Let ds := rank(S). We have rank(AS) ≤ ds. If ds ≤ k, the result is
trivial. Otherwise by (13) and Corollary 4.2, we obtain

|Ek(S)− Ek(AS)| =
∣

∣

∣

ds
∑

j=k+1

(λj(S
∗S)− λj(S

∗A∗AS))
∣

∣

∣

≤ (ds − k)1/2‖S∗S − S∗A∗AS‖.

As S is a submatrix of M , we have that (ds − k)1/2 ≤ (d − k)1/2, which
proves the lemma.

�



12 A. ALDROUBI, M. ANASTASIO, C. CABRELLI, AND U.MOLTER

Recall that e0(F) is the optimal value for the data F , and e0(AωF) is the
optimal value for the data F ′ = AωF (See (1)). A relation between these
two values is given by the following lemma.

Lemma 4.7. Let F = {f1, . . . , fm} ⊆ R
N and 0 < ε < 1. If Aω ∈ R

r×N

is a random matrix which satisfies (8), then with probability exceeding 1 −
2me−rc0, we have

e0(AωF) ≤ (1 + ε)e0(F).

Proof. Let V ⊆ R
N be a subspace and M ∈ R

N×m be a matrix. Using (8)
and the union bound, with probability at least 1− 2me−rc0 we have that

E(AωM,AωV ) =

m
∑

i=1

d2(Aωfi, AωV ) ≤
m
∑

i=1

‖Aωfi −Aω(PV fi)‖
2
2

≤ (1 + ε)

m
∑

i=1

‖fi − PV fi‖
2
2 = (1 + ε)E(M,V ),

where PV is the orthogonal projection onto V .
Assume that S = {S1, . . . , Sl} is an optimal partition for F and {V1, . . . , Vl}

is an optimal bundle for F . Suppose that mi = #(Si) and Mi ∈ R
N×mi are

the matrices which have {fj}j∈Si
as columns. From what has been proved

above and the union bound, with probability exceeding 1−
∑l

i=1 2mie
−rc0 =

1− 2me−rc0 , it holds

e0(AωF) ≤
l

∑

i=1

E(AωMi, AωVi) ≤ (1 + ε)

l
∑

i=1

E(Mi, Vi) = (1 + ε)e0(F).

�

Proof of Proposition 3.6. This is a direct consequence of Lemma 4.7. �

Proof of Theorem 3.7. If Sω = {S1
ω, . . . , S

l
ω}, and mi

ω = #(Si
ω), let M i

ω ∈

R
N×mi

ω be the matrices which have {fj}j∈Si
ω

as columns. Since Bω =

{V 1
ω , . . . , V

l
ω} is generated by Sω and F , it follows that E(M i

ω, V
i
ω) = Ek(M

i
ω).

And as Sω is an optimal partition forAωF in R
r, we have that

∑l
i=1 Ek(AωM

i
ω) =

e0(AωF).



A DIMENSION REDUCTION SCHEME 13

Hence, using Lemma 4.6, Lemma 4.7, and Proposition 4.5, with high
probability it holds that

e(F , Bω) ≤
l

∑

i=1

E(M i
ω, V

i
ω) =

l
∑

i=1

Ek(M
i
ω)

≤
l

∑

i=1

Ek(AωM
i
ω) + (d− k)1/2

l
∑

i=1

‖M i∗
ω M i

ω −M i∗
ω A∗

ωAωM
i
ω‖

≤ e0(AωF) + (l(d− k))1/2
(

l
∑

i=1

‖M i∗
ω M i

ω −M i∗
ω A∗

ωAωM
i
ω‖

2
)1/2

≤ (1 + ε)e0(F) + (l(d− k))1/2‖M∗M −M∗A∗
ωAωM‖

≤ (1 + ε)e0(F) + ε(l(d − k))1/2,

where M ∈ R
N×m is the unitary Frobenius norm matrix which has the

vectors {f1, . . . , fm} as columns.
The right side of (10) follows from Proposition 4.5, Lemma 4.7, and the

fact that

Pr
(

e(F , Bω) ≤ (1 + ε)e0(F) + ε(l(d − k))1/2
)

≥ Pr
(

‖M∗M −M∗A∗
ωAωM‖ ≤ ε and e0(AωF) ≤ (1 + ε)e0(F)

)

≥ 1− (2(m2 +m)e−rc0 + 2me−rc0) = 1− (2m2 + 4m)e−rc0 .

�

5. Conclusions and related work

The existence of optimal union of subspaces models and an algorithm for
finding them was obtained in [4]. In the present paper we have focused on
the computational complexity of finding these models. More precisely, we
studied techniques of dimension reduction for the algorithm proposed in [4].
These techniques can also be used in a wide variety of situations and are
not limited to this particular application.

We used random linear transformations to map the data to a lower di-
mensional space. The “projected” signals were then processed in that space,
(i.e. finding the optimal union of subspaces) in order to produce an optimal
partition. Then we applied this partition to the original data to obtain the
associated model for that partition and obtained a bound for the error.

We have analyzed two situations. First we studied the case when the
data belongs to a union of subspaces (ideal case with no noise). In that
case we obtained the optimal model using almost any transformation (see
Proposition 3.3).

In the presence of noise, the data usually doesn’t belong to a union of
low dimensional subspaces. Thus, the distances from the data to an optimal
model add up to a positive error. In this case, we needed to restrict the
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admissible transformations. We applied recent results on distributions of
matrices satisfying concentration inequalities, which also proved to be very
useful in the theory of compressed sensing.

We were able to prove that the model obtained by our approach is quasi
optimal with a high probability. That is, if we map the data using a random
matrix from one of the distributions satisfying the concentration law, then
with high probability, the distance of the data to the model is bounded by the
optimal distance plus a constant. This constant depends on the parameter
of the concentration law, and the parameters of the model (number and
dimension of the subspaces allowed in the model).

Let us remark here that the problem of finding the optimal union of
subspaces that fit a given data set is also known as “Projective clustering”.
Several algorithms have been proposed in the literature to solve this problem.
Particularly relevant is [10] (see also references therein) where the authors
used results from volume and adaptive sampling to obtain a polynomial-time
approximation scheme. See [2] for a related algorithm.
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