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Given a set of data W = {w1, . . . , wN} ∈ R
D drawn from a union of subspaces,

we focus on determining a nonlinear model of the form U =
⋃

i∈I Si, where {Si ⊂
R

D}i∈I is a set of subspaces, that is nearest to W. The model is then used to classify
W into clusters. Our approach is based on the binary reduced row echelon form of
data matrix, combined with an iterative scheme based on a non-linear approximation
method. We prove that, in absence of noise, our approach can find the number of
subspaces, their dimensions, and an orthonormal basis for each subspace Si. We
provide a comprehensive analysis of our theory and determine its limitations and
strengths in presence of outliers and noise.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In many engineering and mathematics applications, data lives in a union of low dimensional subspaces
[1–6]. For instance, the set of all two dimensional images of a given face i, obtained under different illumi-
nations and facial positions, can be modeled as a set of vectors belonging to a low dimensional subspace
Si living in a higher dimensional space R

D [4,7,8]. A set of such images from different faces is then a
union U =

⋃
i∈I Si. Similar nonlinear models arise in sampling theory where R

D is replaced by an infinite
dimensional Hilbert space H , e.g., L2(RD) [1,9–12].

The goal of subspace clustering is to identify all of the subspaces that a set of data W = {w1, . . . , wN} ∈
R

D is drawn from and assign each data point wi to the subspace it belongs to. The number of subspaces,
their dimensions, and a basis for each subspace are to be determined even in presence of noise, missing data,
and outliers. The subspace clustering or segmentation problem can be stated as follows: Let U =

⋃M
i=1 Si

where {Si ⊂ B}Mi=1 is a set of subspaces of a Hilbert space or Banach space B. Let W = {wj ∈ B}Nj=1 be
a set of data points drawn from U . Then,

1. determine the number of subspaces M ,
2. determine the set of dimensions {di}Mi=1,
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3. find an orthonormal basis for each subspace Si,
4. collect the data points belonging to the same subspace into the same cluster.

Note that often the data may be corrupted by noise, may have outliers or the data may not be complete,
e.g., there may be missing data points. In some subspace clustering problems, the number M of subspaces or
the dimensions of the subspaces {di}Mi=1 are known. A number of approaches have been devised to solve the
problem above or some of its special cases. They are based on sparsity methods [13–18], algebraic methods
[19,20], iterative and statistical methods [2,3,10,21–24], and spectral clustering methods [14,15,25–32].

1.1. Paper contributions

• We develop an algebraic method for solving the general subspace segmentation problem for noiseless
data. For the case where all the subspaces are four dimensional, Gear observed, without proof, that the
reduced echelon form can be used to segment motions in videos [33]. In this paper, we develop this idea
and prove that the reduced row echelon form can completely solve the subspace segmentation problem
in its most general version. This is the content of Theorem 3.7 in Section 3.1.

• For noisy data, the reduced echelon form method does not work, and a thresholding must be applied.
However, the effect of the noise on the reduced echelon form method depends on the noise level and
the relative positions of the subspaces. This dependence is analyzed in Section 3.2 and is contained in
Theorems 3.9 and 3.11.

• When the dimensions of the subspaces is equal and known, we relate the subspace segmentation problem
to the non-linear approximation problem (Problem 1). The existence of a solution as well as an iterative
search algorithm for finding the solution is presented in Theorem 2.1. This algorithm works well with
noisy data but requires a good initial condition to locate the global minimum.

• The reduced echelon form together with the iterative search algorithm are combined together: A thresh-
olded reduced echelon form algorithm provides the initial condition to the iterative search algorithm.
This is done in Section 4.

• In Section 5, the algorithms are tested on synthetic and real data to evaluate the performance and
limitations of the methods.

2. Non-linear approximation formulation of subspace segmentation

When M is known, the subspace segmentation problem, for both the finite and infinite dimensional space
cases, can be formulated as follows:

Let B be a Banach space, W = {w1, . . . , wN} a finite set of vectors in B that correspond to observed
data. For i = 1, . . . ,M , let C = C1 × C2 × · · · × CM be the Cartesian product of M families Ci of closed
subspaces of B each containing the trivial subspace {0}. Thus, an element S ∈ C is a sequence {S1, . . . , SM}
of M subspaces of B with Si ∈ Ci. For example, when each Ci is the family of all subspaces of dimensions less
than or equal to d in the ambient space B = R

D, then an element S ∈ C is a set of M subspaces Si ⊂ R
D,

with dimensions dimSi � d. Another example is the infinite dimensional case in which B = L2(R) and each
Ci is a family of closed, shift-invariant subspaces of L2(R) that are generated by at most r < ∞ generators.
For example if r = 1, M = 2, an element S ∈ C may be the subspace S1 of all bandlimited functions
(generated by integer shifts of the generator function sinc(x) = sin(x)/x), and S2 the shift invariant space
generated by the B-spline functions βn of degree n. In these cases the subspaces in Si ∈ Ci are also infinite
dimensional subspaces of L2.

Problem 1.

1. Given a finite set W ⊂ B, a fixed p with 0 < p � ∞, and a fixed integer M � 1, find the infimum of
the expression
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e(W,S) :=
∑
w∈W

min
1�j�M

dp(w,Sj),

over S = {S1, . . . , SM} ∈ C , and d(x, y) := ‖x− y‖B.
2. Find a sequence of M -subspaces So = {So

1 , . . . , S
o
M} ∈ C (if it exists) such that

e
(
W,So

)
= inf

{
e(W,S): S ∈ C

}
. (1)

Given a family C of closed subspaces of B, a solution to Problem 1 may not exists even in the simple
case when M = 1. For example, assume that B = R2 and C is the set of all lines through the origin except
the line x = 0. For this case, a minimizer may exist for certain distribution of data points but not for others.
The existence of a solution here means that a minimizer exists for any distribution of any finite number of
data points.

In the presence of outliers, it is shown that p = 1 is a good choice [34] and a good choice for light-tailed
noise is p = 2. The necessary and sufficient conditions for the existence of a solution when p = 2 and B is
a Hilbert space can be found in [9].

Definition 1. For 0 < p � ∞, a set of closed subspaces C of a Banach space B has the Minimum Subspace
Approximation Property p-(MSAP) if for every finite subset W ⊂ B there exists an element S ∈ C that
minimizes the expression e(W, S) =

∑
w∈W dp(w,S) over all S ∈ C.

The MSAP definition was proposed in [9] for finite and infinite dimensional Hilbert spaces (i.e., the
2-MSAP according to Definition 1). It turns out that although MSAP is formulated for approximating data
by a single subspace, it is key for the existence of a solution to Problem 1. Necessary and sufficient conditions
for the existence of a solution for Problem 1 and its relation to MSAP can be found in [9,35]. Under the
assumption that each family of subspaces Ci satisfies p-(MSAP), Problem 1 has a minimizer:

Theorem 2.1. If for each i = 1, . . .M , Ci satisfies p-(MSAP), then Problem 1 has a minimizing set of
subspaces for all finite sets of data.

Proof. Let P(W) be the set of all partitions of W into M subsets, i.e., P = {W1, . . . ,WM} ∈ P(W) if
W =

⋃
i Wi, and Wi ∩ Wj = ∅. Let P = {W1, . . . ,WM} be a partition in P(W) (in our definition of

partition, we allow one or more of the sets Wi to be empty). For each subset Wi in the partition P find
the subspace So

i (P ) ∈ Ci that minimizes the expression e(Wi, S) =
∑

w∈Wi
dp(w,S) over all S ∈ Ci. Let

m = min{
∑M

i=1 e(Wi, S
o
i (P )): P ∈ P(W)}, and denote by P o = {Wo

1, . . . ,Wo
M} any partition for which

m =
∑M

i=1 e(Wo
i , S

o
i (P o)). Then, for any S = {S1, . . . , SM} ∈ C we have that

e(W,S) =
M∑
j=1

e(Xj , Sj) �
M∑
j=1

e
(
Xj , S

o
j (PS)

)
�

M∑
j=1

e
(
Wo

j , S
o
j

(
P o

))
= e

(
W,So

)
where PS = {X1, . . . , XM} is any partition of W generated using S by

Xj =
{
w ∈ W: d(w,Sj) � d(w,Si), i = 1, . . . ,M

}
.

It follows that e(W,So) = m = inf{e(W,S): S ∈ C }. �
The proof of Theorem 2.1 suggests a search algorithm (Algorithm 1 below) for the optimal solution So.

This algorithm is similar to k-subspaces algorithm [8]. Obviously, this solution can be obtained by Algo-
rithm 1. This algorithm will work well if a good initial partition is chosen. Otherwise, the algorithm may
terminate in a local minimum instead of the global minimum.
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Algorithm 1 Search for optimal solution So.
1: Pick any partition P ∈ P(W)
2: For each subset Wi in the partition P find the subspace So

i (P ) ∈ Ci that minimizes the expression e(Wi, S) =
∑

w∈Wi
dp(w,S)

3: while
∑M

i=1 e(Wi, S
o
i (P )) > e(W,So(P )) do

4: for all i from 1 to M do
5: Update Wi = {w ∈ W: d(w, So

i (P )) � d(w, So
k(P )), k = 1, . . . ,M}

6: Update So
i (P ) = argminS∈Ci

e(Wi, S)
7: end for
8: Update P = {W1, . . . ,WM}
9: end while

10: So = {So
1 (P ), . . . , So

M (P )}

3. Subspace segmentation in finite dimensional space

3.1. Subspace segmentation noiseless case

In this section we consider the problem in which a set of vectors W = {w1, . . . , wN} are drawn from a
union U =

⋃
i∈I Si of M subspaces Si ∈ R

D of dimension di. In order to find the M subspaces from the
data set W it is clear that we need enough vectors W = {w1, . . . , wN}. In particular for the problem of
subspace segmentation, it is necessary that the set W can be partitioned into M sets W = {W1, . . . ,WM}
such that spanWi = Si, i = 1, . . . ,M . Thus, we need to assume that we have enough data for solving the
problem. Thus, taking B = R

D, C = C1 ×C2 . . . Cn where each Ci is a family of subspaces of dimensions d,
we assume that any k � d vectors drawn from a subspace S ∈ Ci of dimension d are linearly independent,
and we make the following definition.

Definition 3.1. Let S be a linear subspace of RD with dimension d. A set of data W drawn from S ⊂ R
D

with dimension d is said to be generic if (i) |W| > d, and (ii) every d vectors from W form a basis for S.

Another assumption that we will make is that the union of subspaces U =
⋃

i∈I Si from which the data
is drawn consists of independent subspaces:

Definition 3.2 (Independent subspaces). Subspaces {Si ⊂ R
D}ni=1 are called independent if dim(S1 + · · · +

Sn) = dim(S1) + · · · + dim(Sn).

In particular, {Si ⊂ R
D}ni=1 are independent, then

∑n
i=1 dim(Si) � D and Si ∩ Sj = {0} for i �= j. Note

that if the data W = {w1, . . . , wN} is generic and is drawn from a union U =
⋃

i∈I Si of M independent
subspaces Si ∈ R

D of dimension di, then the solution to Problem 1 is precisely the subspaces Si from which
W is drawn. However, for this case, the solution can be obtained in a more efficient and direct way as will
be developed below.

We note that to find the subspaces Si it would suffice to find the partition P (W) = {W1, . . . ,WM} of
the data W. From this partition, the subspaces can be obtained simply by Si = spanWi. Conversely, if we
knew the subspaces Si, it would be easy to find the partition P (W) = {W1, . . . ,WM} such that Wi ⊂ Si.
However, all we are given is the data W, and we do not know the partition P (W) or the subspaces Wi.
Our goal for solving Problem 1 from this case is to find the partition P (W) = {W1, . . . ,WM} of W. To
do this, we construct a matrix W = [w1, . . . , wN ] whose columns are the data vectors wi ∈ R

D. The matrix
W is a D × N matrix, where D may be large, thus our first goal is to replace W by another matrix W̃
while preserving the clusters:

Proposition 3.3. Let A and B be m× n and n× k matrices. Let C = AB. Assume J ⊂ {1, 2, . . . , k}.

(i) If bi ∈ span{bj : j ∈ J} then ci ∈ span{cj : j ∈ J}.
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(ii) If A is full rank and m � n then bi ∈ span{bj : j ∈ J} ⇐⇒ ci ∈ span{cj : j ∈ J}.

Proof. The relation bi =
∑

j∈J αjbj implies that Abi =
∑

j∈J αjAbj , and (i) follows from the fact that
the columns cl of C and bl of B are related by cl = Abl. For (ii), we note that AtA is invertible and
(AtA)−1AtC = B. We then apply part (i) of the proposition. �

The proposition can be paraphrased by saying that for any matrices A,B,C, a cluster of the columns of
B is also a cluster of the columns of C = AB. A cluster of C however is not necessarily a cluster B, unless
A has full rank. Thus, the proposition above suggest that – for the purpose of column clustering – we can
replace a matrix B by matrix C as long as A has the stated properties. Thus by choosing A appropriately
the matrix B can be replaced by a more suitable matrix C, e.g. C has fewer rows, is better conditioned or
is in a format where columns can be easily clustered. One such useful format is if C is a row echelon form
matrix as will be demonstrated below. In fact, the first r rows of the reduced row echelon forms (rref) of
C = AB and of B are the same if B has rank r:

Proposition 3.4. Let A be an m× n full rank matrix with m � n, and B an n× k matrix. Then

rref(AB) =
[ rref(B)

0

]
.

In particular, if B has rank r then rref(B) can be obtained from the first r rows of rref(AB).

In particular in the absence of noise, a data matrix W with the SVD W = UΣV t has the same reduced
row echelon form as that of V t up to the rank r of W (see Corollary 3.5 below). This fact together
with Proposition 3.3 will help us devise a reduction algorithm for subspace clustering. Before proving
Proposition 3.4, recall that there are three elementary row operations that can be used to transform a
matrix to its unique reduced row echelon form. The three elementary row operations can be performed by
the elementary row operation matrices.

Proof of Proposition 3.4. Since the reduced row echelon form of A can be obtained by product with ele-
mentary matrices corresponding to the elementary row operations, we have

rref(A) = Eq · · ·E1A =
[
In

0

]
. (2)

Applying the same elementary row operations to AB, we get

D := (Eq · · ·E1)AB = (Eq · · ·E1A)B =
[
In

0

]
B =

[
B

0

]
, (3)

from which we obtain

rref(D) = rref(AB) = rref
([

B

0

])
=

[ rref(B)
0

]
. � (4)

Corollary 3.5 will be utilized in the development of our subspace segmentation algorithm based on the
reduced row echelon form.

Corollary 3.5. Assume that rank(W) = r and let UΣV t be the singular value decomposition of W. Then
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rref(W) =
[ rref((V t)r)

0

]
,

where (V t)r is the first r rows of V t.

Proof. Using Proposition 3.4 several times, we have that

rref(W) = rref
(
U tW

)
= rref

(
ΣV t

)
= rref

[
D(V t)r

0

]
=

[ rref(D(V t)r)
0

]
=

[ rref((V t)r)
0

]
where D = diag(σ1, . . . , σr) is an r × r diagonal matrix whose diagonal are the r (nonzero) singular values
of W. �
Definition 3.6. Matrix R is said to be the binary reduced row echelon form of matrix A if all non-pivot
column vectors are converted to binary vectors, i.e., non-zero entries are set to one.

Theorem 3.7. Let {Si}Mi=1 be a set of non-trivial linearly independent subspaces of RD with corresponding
dimensions {di}Mi=1. Let W = [w1 · · ·wN ] ∈ R

D×N be a matrix whose columns are drawn from
⋃M

i=1 Si.
Assume the data is drawn from each subspace and that it is generic. Let Brref(W) be the binary reduced
row echelon form of W. Then

1. The inner product 〈ei, bj〉 of a pivot column ei and a non-pivot column bj in Brref(W) is one, if and only
if the corresponding column vectors {wi, wj} in W belong to the same subspace Sl for some l = 1, . . . ,M .

2. Moreover, dim(Sl) = ‖bj‖1, where ‖bj‖1 is the l1-norm of bj.
3. Finally, wp ∈ Sl if and only if bp = bj or 〈bp, bj〉 = 1.

This theorem suggests a very simple yet effective approach to cluster the data points (Algorithm 2). The
data W can be partitioned into M clusters {W1, . . . ,WM}, such that spanWl = Sl. The clusters can be
formed as follows: Pick a non-pivot element bj in Brref(W), and group together all columns bp in Brref(W)
such that 〈bj , bp〉 > 0. Repeat the process with a different non-pivot column until all columns are exhausted.

Algorithm 2 Subspace segmentation – row echelon form approach – no noise.
Require: D × N data matrix W.
1: Find rref(W) of W.
2: Find Brref(W) of W by setting all non-zero entries of rref(W) to 1.
3: for all j from 1 to N do
4: Pick the jth column bj of Brref(W).
5: if bj is pivot then
6: continue
7: end if
8: for all i from 1 to j − 1 do
9: if bi is non-pivot and 〈bi, bj〉 > 0 then

10: Place {bi, bj} in the same cluster Ci.
11: break
12: end if
13: end for
14: end for
15: for all Ci do
16: Pick any b ∈ Ci.
17: Separate b into unit vectors u1

i , . . . , u
di

i . {These vectors form a basis for a subspace Si with dimension di.}
18: for all k from 1 to N do
19: if bk ∈ {u1

i , . . . , u
di

i } then
20: Place bk in the same cluster Ci. {This is for handling pivot columns.}
21: end if
22: end for
23: Place the corresponding columns in W into the same cluster Wi.
24: end for
25: Renumber indices i’s of Si starting from 1.
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Proof of Theorem 3.7. The reduced row echelon form of W is of the form

rref(W) =
[
R

0

]
. (5)

Let P be an N × N permutation matrix such that WP = [U V ], where the columns of U are the
columns associated with the pivots rref(W) and preserving their left to right order. Thus, U forms a basis
for

⋃M
i=1 Si. This can be done, since the data is drawn from each subspace and it is generic, and that

{Si}Mi=1 are independent. In particular, U includes exactly di points from each Si, and U ⊂ R
D×r with

rank r =
∑M

i=1 di. Moreover, because of the generic assumption of the data, |V | � M . In addition, every
column of V is a linear combination of the columns of U , that is, there exists an r× (N − r) matrix Q with
V = UQ. Therefore

WP = [U V ] = U [ Ir Q ] , (6)

where Ir is r × r identity matrix. Let E := El · · ·E1 be the product of elementary row operation matrices
such that EWP = rref(WP ). Then,

EWP = EU [ Ir Q ] =
[
Ir X

0 0

]
. (7)

Thus EU =
[
Ir
0

]
, and X = Q. By the choice of U above, we get that [ Ir Q ] = RP . It follows that,

WP = U [ Ir Q ] = URP , and since P is invertible, W = UR.
〈ei, bj〉 = 1 if and only if 〈ei, rj〉 �= 0 where rj is the column in R that corresponds to the column bj

in Brref(W). Now rj =
∑r

i=1 ciei. If 〈ei, rj〉 �= 0, then ci �= 0. Thus wj = Urj = ciwi +
∑

k �=i ckUek. If
wi ∈ Sl, then wi = Uei is one of the basis vectors of Sl, and since ci �= 0, independence of the subspaces
implies that wj ∈ Sl. Conversely, if wj = Urj and wi = Uei belong to the same subspace Sl, then
wj = ciwi +

∑
Uek∈Sl k �=i ckUek, due to independence of the subspaces. This, together with the assumption

that the data is generic implies that ci �= 0. Hence rj = ciei +
∑

k ckek, and we get 〈ei, rj〉 = ci �= 0. This
proves part (1).

Now let us assume that wj ∈ Sl. Since the data is generic and subspaces are independent, wj can be
written as a linear combination of exactly dl columns of U . This means that there are dl nonzero entries in
the corresponding column rj in R. Since all the nonzero entries are set to 1 for Brref(W), l1-norm of the
corresponding non-pivot columns must be dl. This proves part (2).

Finally to prove part (3) if wp and wj belong to Sl, then if wp = Uep then part (1) implies 〈ep, bj〉 = 1.
Otherwise the fact the subspaces are independent and the data generic imply that bp = bj .

Now let bp be a column of Brref(W) with bp = bj . Let rp, rj be the corresponding columns in R. Then,
wp = Urp and wj = Urj . Since wj ∈ Sl, and wp and wj are in the span of the same column vectors of U
corresponding to Sl, it follows, wp ∈ Sl. Finally if bp �= bj and 〈bp, bj〉 = 1, then rp is a pivot column of R.
Part (1) then implies that {wp, wj} belong to the same subspace Sl. �
3.2. Noisy data case

In practice the data W is corrupted by noise. In this case, the RREF-based algorithm cannot work,
even under the assumption of Theorem 3.7, since the noise will have two effects: 1) The rank of the data
corrupted by noise W+η ⊂ R

D becomes full; i.e., rank(W+η) = D; and 2) Even under the assumption that
r = D, none of the entries of the non-pivot columns of rref(W + η) will be zero. One way of circumventing
this problem, is to use the RREF-based algorithm in combination with thresholding to set to zero those
entries that are small. The choice of the threshold depends on the noise characteristics and the position of
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the subspaces relative to each other. Thus the goal of this section to estimate this error in terms of these
factors.

In general, dim(
∑M

i=1 Si) = rank(W) � D, where D is the dimension of the ambient space R
D. After

projection of W, the new ambient space is isomorphic to R
r, where r = rank(W), and we may assume

that rank(W) = D. Without loss of generality, let us assume that W = [A B ] where the columns of
A form basis for R

D, i.e., the columns of A consist of di linearly independent vectors from each subspace
Si, i = 1, . . . ,M . Let W̃ = W + N be the data with additive noise. Then the reduced echelon form
applied to W̃ is given by rref(W̃) = [ I Ã−1B̃ ]. If bi and b̃i denote the columns of B and B̃ respectively,
ei = Ã−1b̃i −A−1bi, Δ = Ã−A, and νi = b̃i − bi, then we have

ei = Ã−1b̃i −A−1bi =
(
I + A−1Δ

)−1
A−1(bi + νi) −A−1bi.

Let σmin denote the smallest singular value of A, then if ‖Δ‖ � σmin(A), we get

‖ei‖2 =
∥∥(I −A−1Δ +

(
A−1Δ

)2 − (
A−1Δ

)3 + · · ·
)
A−1(bi + νi) −A−1bi

∥∥
2

=
∥∥A−1ε +

(
−A−1ΔA−1 +

(
A−1Δ

)2
A−1 −

(
A−1Δ

)3
A−1 + · · ·

)
(bi + νi)

∥∥
2

�
∥∥A−1∥∥‖νi‖2 +

(∥∥A−1∥∥2‖Δ‖ +
∥∥A−1∥∥3‖Δ‖2 +

∥∥A−1∥∥4‖Δ‖3 + · · ·
)(
‖bi‖2 + ‖νi‖2

)
= ‖νi‖2

σmin(A) + ‖Δ‖
σ2

min(A)

(
1

1 − ‖Δ‖
σmin(A)

)(
‖bi‖2 + ‖νi‖2

)
, (8)

where ‖ · ‖ denotes the operator norm ‖ · ‖�2→�2 . Unless specified otherwise, the noise N will be assumed
to consist of entries that are i.i.d. N (0, σ2) Gaussian noise with zero mean and variance σ2. For this case,
the expected value of ‖Δ‖ can be estimated by E‖Δ‖ � C

√
Dσ [36]. Note that to estimate the error in

(8) we still need to estimate σmin(A). This singular value depends on the position of the subspaces {Si}Mi=1
relative to each other which can be measured by the principle angles between them. The principle angles
between two subspaces F ,G , can be obtained using any pair of orthogonal bases for F ,G as described in
the following lemma [37]:

Lemma 3.8. Let F and G be two subspaces of RD with p = dim(F ) � dim(G ) = q. Assume that QF ∈ R
D×p

and QG ∈ R
D×q are matrices whose columns form orthonormal bases for the subspaces F and G . If

1 � σ1 � σ2 � · · · � σp � 0 are the singular values of Qt
FQG , then the principle angles are given by

θk = arccos(σk) k = 1, . . . , p. (9)

The dependence of the minimum singular value σmin(A) on the principle angles between the subspaces
{Si}Mi=1 is given in the theorem below, which is one of the two main theorems of this section.

Theorem 3.9. Assume that {Si}Mi=1 are independent subspaces of RD with corresponding dimensions {di}Mi=1
such that

∑M
i=1 di = D. Let {θj(Si)}min(di,D−di)

j=1 be the principle angles between Si and
∑

��=i S�. If A =
[ a1 . . . aD ] is a matrix whose columns {a1, . . . , aD} ⊂

⋃M
i=1 Si form a basis for R

D, with ‖ai‖2 = 1,
i = 1, . . . , D, then

σ2
min(A) � min

i

(min(di,D−di)∏
j=1

(
1 − cos2

(
θj(Si)

)))1/D

, (10)

where σmin(A) is the smallest singular value of A.
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Corollary 3.10. Under the same conditions of Theorem 3.9, a simpler but possibly larger upper bound is
given by:

σ2
min(A) � min

i

(
1 − cos

(
θ1(Si)

))1/D41/D, (11)

where θ1(Si) is the minimum angle between Si and
∑

��=i S�.

Theorem 3.11. Assume that {Si}Mi=1 are independent subspaces of RD with corresponding dimensions {di}Mi=1
such that

∑M
i=1 di = D. Let {θj(Si)}min(di,D−di)

j=1 be the principle angles between Si and
∑

��=i S�. Assume that
W = [w1 · · · wN ] ∈ R

D×N is a matrix whose columns are drawn from
⋃M

i=1 Si and the data is generic
for each subspace Si. If P is a permutation matrix such that WP = [AP BP ], and AP is invertible, then

sup
P

{
σ2

min(AP )
}
� min

i

(min(di,D−di)∏
j=1

(
1 − cos2

(
θj(Si)

)))1/D

. (12)

In particular,

sup
P

{
σ2

min(AP )
}
� min

i

(
1 − cos

(
θ1(Si)

))1/D41/D, (13)

where θ1(Si) is the minimum angle between Si and
∑

��=i S�.

Remark 3.12. The value σmin(AP ) can be arbitrarily close to zero, thus, one of the goals is to find D columns
of W that form a basis such that σmin(AP ) is as close to the upper bound as possible without an exhaustive
search. One possible way to do this is discussed in Section 5.1.

3.3. Proof of Theorem 3.9

The following lemma is essential in the proof of the theorem.

Lemma 3.13. Assume that S1 and S2 are subspaces of R
n with dimensions d1 and d2, respectively, with

d1 � d2. Let Q1 and Q2 be orthonormal bases for S1 and S2 and λ2
1 � λ2

2, . . . ,� λ2
d1

� 0 be the singular
values of Qt

1Q2. Let A = [Q1 Q2 ], then,

1. If d2 > d1, then the spectrum σ(AtA) = {1} ∪ {1 − λ2
i , 1 + λ2

i }d1
i=1.

2. If d2 = d1, then the spectrum σ(AtA) = {1 − λ2
i , 1 + λ2

i }d1
i=1.

Proof of Lemma 3.13. AtA is given by

AtA =
[
Qt

1

Qt
2

] [
Q1 Q2

]
=

[
Qt

1Q1 Qt
1Q2

Qt
2Q1 Qt

2Q2

]
=

[
Id1 C

Ct Id2

]
, (14)

where C := Qt
1Q2, and Id denotes the d× d identity matrix. Thus,

CtC = V ΣtΣV t,

where ΣtΣ = diag{λ4
1, λ

4
2, . . . , λ

4
d1
, 0, . . . , 0︸ ︷︷ ︸

d2−d1

}, i.e., the diagonal elements are the eigenvalues of CtC. Using

(14), μ2 is an eigenvalue of AtA, if and only if
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[
Id1 C

Ct Id2

] [
x1

x2

]
= μ2

[
x1

x2

]
for some x =

[ x1
x2

]
�= 0, where x1 ∈ R

d1 and x2 ∈ R
d2 . Thus, we have

Cx2 =
(
μ2 − 1

)
x1,

Ctx1 =
(
μ2 − 1

)
x2,

from which we get, CtCx2 = (μ2 − 1)2x2. Hence, if x2 �= 0, then (μ2 − 1)2 belongs to the eigenvalues
{λ4

1, λ
4
2, . . . , λ

4
d1
, 0, . . . , 0︸ ︷︷ ︸

d2−d1

} of CtC. If x2 = 0, then μ2 = 1, and x1 is an eigenvector for CCt, corresponding

to the eigenvalue λd1 = 0.
It follows that if d2 > d1, then σ(AtA) ⊂ {1} ∪ {1 − λ2

i , 1 + λ2
i }d1

i=1, and if d2 = d1, then σ(AtA) ⊂
{1 − λ2

i , 1 + λ2
i }d1

i=1.
To show the other inclusions, let λ4 ∈ {λ4

1, λ
4
2, . . . , λ

4
d1
} and let x2 �= 0 be the corresponding eigenvector.

If λ �= 0, define x1 = 1
λ2Cx2. Then, using (14) we get

[
Id1 C

Ct Id2

] [
x1

x2

]
=

[
x1 + Cx2

Ctx1 + x2

]
. (15)

Since λ2x1 = Cx2, we have that λ2Ctx1 = CtCx2 = λ4x2 so that we get Ctx1 = λ2x2. Thus, for λ �= 0 we
have [

Id1 C

Ct Id2

] [
x1

x2

]
=

[
x1 + λ2x1

λ2x2 + x2

]
=

(
1 + λ2) [x1

x2

]
.

In particular 1 + λ2 is an eigenvalue of AtA with the eigenvalue
[ x1
x2

]
. If λ = 0, then CtC is singular. Thus,

C is singular as well. Let x2 be a nonzero vector in the null space of C and define x1 = 0. Then[
Id1 C

Ct Id2

] [ 0
x2

]
=

[ 0 + Cx2

0 + x2

]
=

[ 0
x2

]
,

so that 1 ∈ σ(AtA). Thus in all case λ4 ∈ {λ4
1, λ

4
2, . . . , λ

4
d1
} implies that 1 + λ2 ∈ σ(AtA). A similar proof

yields that 1 − λ2 ∈ σ(AtA).
Finally, if d2 > d1, C has a nontrivial kernel. Let x2 �= 0 be such that Cx2 = 0 and x1 = 0. Then,

an argument similar to the last one implies that 1 ∈ σ(AtA). Thus we have proved that if d2 > d1 then
{1} ∪ {1 − λ2

i , 1 + λ2
i }d1

i=1 ⊂ σ(AtA), and if d2 = d1, then {1 − λ2
i , 1 + λ2

i }d1
i=1 ⊂ σ(AtA). �

Proof of Theorem 3.9. We first consider two subspaces {S1, S2} ⊂ R
D of dimensions d1 and d2 with

d1 + d2 = D. We note that if AP = AP where P is any permutation matrix, then AP and A have the same
singular values. Thus, without loss of generality, we assume that A = [A1 A2 ], where the columns of A1
and A2 are unit norm bases of S1 and S2, respectively. Using the QR decomposition, we get

A = [A1 A2 ] = [Q1R1 Q2R2 ] = [Q1 Q2 ]
[
R1 0
0 R2

]
= QR,

where Q1 and Q2 are orthonormal and R1 and R2 are upper triangular matrices with unit column vectors.
It follows that

det
(
AtA

)
= det

(
RtQtQR

)
= det

(
RtR

)
det

(
QtQ

)
� det

(
QtQ

)
, (16)
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where for the last inequality we have used the fact that the column vectors of R1 and R2 have unit norm.
Let {μ̃i}Di=1 and {μi}Di=1 be the singular values of A and Q, respectively. Hence, by (16) and Lemma 3.13
we get

D∏
i

μ̃2
i �

D∏
i

μ2
i =

(
1 − λ2

1
)(

1 − λ2
2
)
. . .

(
1 − λ2

d1

)(
1 + λ2

d1

)(
1 + λ2

d2−1
)
. . .

(
1 + λ2

1
)
. (17)

Noting that μ̃1 is the smallest singular value for A, and using Lemma 3.8 we obtain

σD
min(A) =

(
μ̃2

1
)D �

(
1 − λ4

1
)(

1 − λ4
2
)(

1 − λ4
3
)
. . .

(
1 − λ4

d1

)
(18)

�
d1∏
j=1

(
1 − cos2

(
θj(S1)

))
. (19)

For the general case of M subspaces, we replace S1 by Si, S2 by
∑

��=i S�, d1 by min(di, D− di), and we let
i run from 1 to M . �
Proof of Corollary 3.10. As in the previous proof, for two subspaces {S1, S2} ⊂ R

D of dimensions d1 and
d2 with d1 + d2 = D, we use (18) to get

σD
min(A) =

(
μ̃2

1
)D �

(
1 − λ2

1
)(

1 + λ2
1
)(

1 − λ4
2
)(

1 − λ4
3
)
. . .

(
1 − λ4

d1

)
�

(
1 − λ2

1
)(

1 + λ2
1
)(

1 − λ4
d1

)
�

(
μ2

1
)(

1 − λ2
d1

)
(2)2.

This implies

σmin(A) � μ
2/D
1 41/D =

(
1 − cos

(
θ1(S1)

))1/D41/D.

To finish the proof, as before, we replace S1 by Si, S2 by
∑

��=i S�, and we let i run from 1 to M . �
4. Subspace segmentation algorithm for noisy data

Algorithm 1 described in Section 1 works perfectly in noiseless data. For noisy data, the success of the
algorithm depends on finding a good initial partition. Otherwise, the algorithm may terminate at a local
minimum. Algorithm 2 described in Section 3 works perfectly for noiseless data (it determines a basis for
each subspace and it correctly clusters all of the data points). However, it does not perform very well when
sufficiently large noise is present because any threshold value will keep some of the values that need to be
zeroed out and will zero out some of the values that need to be kept. However, the thresholded reduced
echelon form can be used to determine a set of clusters that can in turn be used to determine a good initial
set of subspaces in Algorithm 1.

For example, if the number of subspaces is known and the subspaces have equal and known dimensions
(assume that there are M subspaces and each subspace has dimension d), then Algorithm 3 below combines
Algorithms 1 and 2 as follows: First, the reduced row echelon form rref(W) of W is computed. Since the
data is noisy, the non-pivot columns of rref(W) will most likely have all non-zero entries. The error in those
entries will depend on the noise and the positions of the subspaces as in Theorem 3.9. Since each subspace
is d-dimensional, the highest d entries of each non-pivot column is set to 1 and all other entries are set to 0.
This determines the binary reduced row echelon form Brref(W) of W (note that, according to Theorem 3.7,
each non-pivot column of Brref(W) is supposed to have d entries). M groups of the equivalent columns
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of Brref(W) are determined and used as the initial partition for Algorithm 1. This process is described in
Algorithm 3. Note that a dimensionality reduction is also performed (according to Corollary 3.5) to speed
up the process.

Algorithm 3 Combined algorithm – optimal solution So.
Require: Normalized data matrix W.
1: Set r = M × d.
2: Compute the SVD of W and find (V t)r as in Corollary 3.5.
3: Replace the data matrix W with (V t)r.
4: Compute rref(W)
5: Compute Brref(W) by setting the highest d entries of each non-pivot column to 1 and all the others to 0.
6: Group the non-pivot equivalent columns of Brref(W) into M largest clusters {W1, . . . ,WM} and set the initial partition

P = {W1, . . . ,WM}.
7: For each subset Wi in the partition P find the subspace So

i (P ) that minimizes the expression e(Wi, S) =
∑

w∈Wi
dp(w, S).

8: while
∑M

i=1 e(Wi, S
o
i (P )) > e(W,So(P )) do

9: for all i from 1 to M do
10: Update Wi = {w ∈ W: d(w, So

i (P )) � d(w, So
k(P )), k = 1, . . . ,M}

11: Update So
i (P ) = argminS e(Wi, S)

12: end for
13: Update P = {W1, . . . ,WM}
14: end while
15: So = {So

1 (P ), . . . , So
M (P )}

In Step-7 of Algorithm 3, we find the subspace So
i (P ) that minimizes the expression e(Wi, S) =∑

w∈Wi
dp(w,S) for each subset Wi in the partition P . For data with light-tailed noise (e.g. Gaussian

distributed noise) p = 2 is optimal and the minimum in Step-7 can be found using SVD. For heavy-
tailed noise (e.g. Laplacian distributed noise), p = 1 is the better choice as described in the simulations
section.

Remark 4.1. In Step-5 of Algorithm 3, Brref(W) is computed by setting the highest d entries of each
non-pivot columns to 1 and the others to 0. If we do not know the dimensions of the subspaces, we may
need to determine a threshold from the noise characteristics and a priori knowledge of the relative position
of subspaces using (8) and (10).

Remark 4.2. In order to reduce the dimensionality of the problem, we compute the SVD of W = UΣV t,
where U = [ u1 u2 · · · uD ] is a D×D matrix, V = [ v1 v2 · · · vN ] is an N ×N matrix, and Σ is a
D×N diagonal matrix with diagonal entries σ1, . . . , σl with l = min{D,N}. In Algorithm 3, each subspace
is d-dimensional and there are M subspaces. Therefore, it replaces W by (V t)r, where r = M × d is known
or estimated rank of W.

5. Simulations and experiments

5.1. Simulations for selection of pivot columns

In order to pick pivots columns from W to form the basis A in such a way that the value σmin(A) is as
close to the upper bound in (10) as possible, at each step of the reduced row echelon form process, we pick a
pivot column that has the largest entry. The simulation in this section shows that this is a good technique.

Fig. 1 shows the relationship between the minimum angle and the segmentation rate. For this simulation,
10 data points that come from two 2-dimensional subspaces of R

4 was generated. The angles between
the subspaces are computed. Then, some white noise was added to the data in a controlled fashion, i.e.,
the noise variance was increased from 0.00 to 0.40 with 0.01 increments. The segmentation rate for each
step is calculated and then the average segmentation rate is computed. The experiment is repeated 200
times and the scatter plots for three techniques are displayed in Fig. 1. The best-A method refers to the
segmentation by using matrix A found after an exhausted search. The modified RREF method refers to the
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Fig. 1. Comparison of the relationship between minimum angle and segmentation rates in noisy data using three approaches for
performing the RREF.

segmentation by giving priority to the highest entries for finding the pivot rows in the reduced row echelon
form calculations. The regular RREF method refers to the segmentation using the traditional reduced row
echelon form calculation. After computing the reduced row echelon forms using those three techniques, a
spectral clustering technique was applied.

5.2. Simulations of subspace segmentation (Algorithm 3)

This section provides various simulations performed on synthetically generated data. The data is first
added with Gaussian distributed noise (light-tailed noise). The data is then contaminated with Laplacian
distributed noise (heavy-tailed noise). We also evaluated the effect of outliers. In all of the experiments,
subspaces with known dimensions are simulated to avoid computing a data driven threshold. Also, the rank
of the data matrix is assumed to be known. This is to make sure that simulations evaluate the intended
cases properly.

5.2.1. Simulations – light-tailed noise
Let W be D × N dimensional matrix of data drawn from a single d dimensional subspace S ∈ R

D. In
order to find S, W can be factorized as W = UV t where the columns of the D × d matrix U form a basis
for S and V t is a d×N matrix. However if the data is noisy, we must estimate U .

If the noise is additive and Gaussian, then the maximum likelihood estimation of U (and V ) can be
obtained as the minimization of the following error [38].

E(U, V ) =
∥∥W − UV t

∥∥2
2. (20)

It is known that the SVD-based matrix factorization gives the global minimum of (20). Therefore, for light
tailed noise, we choose p = 2 in Step-7 of Algorithm 3, and apply this approach for each Wi, i.e., we factor
Wi = UiΣiV

t
i and assign So

i (P ) = span{ui1 , . . . , uid} where {ui1 , . . . , uid} are the columns of Ui.
Fig. 2 shows a sample result for segmenting data that comes from three 4-dimensional subspaces of

R
20 with different number of points. Each data point (each column of data matrix) was normalized using

l2-norm. Gaussian distributed noise was added in each step of simulation. Since the data is normalized,
noise variance represent approximately the percentage noise added to the data. The algorithm is robust for
around 15% noise level, which is a considerably high measurement noise rate.
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Fig. 2. Segmentation rate for: Three subspaces of R
20 with dim(S1) = 4, dim(S2) = 4, dim(S3) = 4, number of data points for

S1 = 300, S2 = 400, S3 = 500, and contaminated with Gaussian distributed noise.

5.2.2. Simulations – heavy-tailed noise
In many computer vision applications such as motion segmentation and target tracking, noise is modeled

as non-Gaussian heavy-tailed distribution based on empirical studies [39–41]. It is therefore important
to analyze this case. Now, assume that noise can be modeled by i.i.d. Laplacian distribution, which is a
heavy-tailed distribution [42]. Then, the maximum likelihood estimation of U (and V ) can be obtained as
the minimization of the following error [38].

E(U, V ) =
∥∥W − UV t

∥∥
1. (21)

This is generally a non-convex optimization problem. However, if U is known, E(U, V ) becomes a convex
function with respect to V and similarly if V is known, E(U, V ) becomes a convex function with respect to
U . Therefore, we will need to determine U and V iteratively [38].

Thus, for this case we choose p = 1 in Step-7 of Algorithm 3, and we factor Wi = UiV
t
i based on �1-norm

approach (of (21)) as described in Algorithm 4 and assign So
i (P ) = span{ui1 , . . . , uid} where {ui1 , . . . , uid}

are the columns of Ui. Although, in theory p = 1 is a better choice for handling heavy-tailed noise, note
that the alternating minimization algorithm used to solve Eq. (21), doesn’t guarantee a global optimum, in
general. Thus, it is not clear that the alternating minimization algorithm for finding the optimal solution
will work better that p = 2 in all cases.

Algorithm 4 Iterative solution for (21).
1: Initialize U by SVD: W = UΣV t

2: while not converged do
3: V = argminV ‖W − UV t‖1
4: for all i from 1 to N do
5: vi = argminv‖Wi − Uv‖1. (Note that ‖W − UV t‖1 =

∑N
i=1 ‖Wi − Uvi‖1 where vt

i is the ith row of V .)
6: end for
7: U = argminU‖W − UV t‖1
8: for all i from 1 to m do
9: Q := Wt

10: ui = argminu‖Qi − V u‖1. (Note that ‖W − UV t‖1 = ‖Q− V Ut‖1 =
∑d

i=1 ‖Qi − V ui‖1 where ut
i is the ith row of U .)

11: end for
12: end while

Fig. 3 displays a sample result for segmenting data that comes from union of two 4-dimensional sub-
spaces of R12. Each subspace contains 100 data points. We used linear programming software library for
implementing Algorithm 4. It is shown that the algorithm is robust for almost 15% noise level.
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Fig. 3. Segmentation rate for: Two subspaces of R
12 with dim(S1) = 4, dim(S2) = 4, number of data points for S1 = 100, number

of data points for S2 = 100, and contaminated with Laplacian distributed noise.

Fig. 4. Segmentation rate for: Two subspaces of R
12 with dim(S1) = 4, dim(S2) = 4, number of data points for S1 = 100, number

of data points for S2 = 100, and contaminated with Laplacian distributed noise.

5.2.3. Simulations – outliers
It is known that SVD-based matrix factorization cannot handle outliers and missing data [43,38,44–46].

�1-norm factorization approach can handle outliers robustly compared to least square approach (�2-norm
approach). Missing data points can be handled in Algorithm 4 by simply ignoring the missing data points
(or steps corresponding to the missing data points).

Fig. 4 shows the segmentation rates for noise-free data with outliers. In order to generate the outliers,
certain number of data points from each subspace are randomly picked. Then, those points are randomly
corrupted. The data contains only outliers but no noise.

5.3. Experimental results

5.3.1. Motion segmentation problem
Consider a moving affine camera that captures F frames of a scene that contains multiple moving objects.

Let p be a point of one of these objects and let xi(p), yi(p) be the coordinates of p in frame i. Define the
trajectory vector of p as the vector w(p) = (x1(p), y1(p), x2(p), y2(p), . . . , xF (p), yF (p))t in R

2F . It can be
shown that the trajectory vectors of all points of an object in a video belong to a vector subspace in
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Table 1
% segmentation errors for sequences with two motions.

Checker (78) RREF-based approach
Average 8.81%
Median 5.44%

Traffic (31) RREF-based approach
Average 16.04%
Median 11.94%

Articulated (11) RREF-based approach
Average 17.25%
Median 12.69%

All (120 seq) RREF-based approach
Average 11.45%
Median 6.78%

R
2F of dimension no larger than 4 [47,48]. Thus, trajectory vectors in videos can be modeled by a union

M =
⋃

i∈I Vi of M subspaces where M is the number of moving objects (background is itself a motion).
The Hopkins 155 Dataset [20] was created as a benchmark database to evaluate motion segmentation

algorithms. It contains two and three motion sequences. There are three groups of video sequences in the
dataset: (1) 38 sequences of outdoor traffic scenes captured by a moving camera, (2) 104 indoor checker
board sequences captured by a handheld camera, and (3) 13 sequences of articulated motions such as head
and face motions. Cornerness features that are extracted and tracked across the frames are provided along
with the dataset. The ground truth segmentations are also provided for comparison. Table 1 displays the
results for the two-motion data from the Hopkins 155 Dataset. The RREF-based algorithm is extremely fast
and works well with two-motion video sequences. The average error for all two-motion sequences is 11.45%,
while the best results to date is less than 1% [48]. However, the error, as some other methods (e.g. GPCA)
is too high for three-motion sequences and it does not work well with such video sequences.
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