Given a set of points \F in a high dimensional space, the problem of finding
a union of subspaces \cup_i V_i\subset \R^N that best explains the data \F
increases dramatically with the dimension of \R^N. In this article, we study a
class of transformations that map the problem into another one in lower
dimension. We use the best model in the low dimensional space to approximate
the best solution in the original high dimensional space. We then estimate the
error produced between this solution and the optimal solution in the high
dimensional space.Comment: 15 pages. Some corrections were added, in particular the title was
changed. It will appear in "Sampling Theory in Signal and Image Processing