There is a growing interest in computer science, engineering, and mathematics
for modeling signals in terms of union of subspaces and manifolds. Subspace
segmentation and clustering of high dimensional data drawn from a union of
subspaces are especially important with many practical applications in computer
vision, image and signal processing, communications, and information theory.
This paper presents a clustering algorithm for high dimensional data that comes
from a union of lower dimensional subspaces of equal and known dimensions. Such
cases occur in many data clustering problems, such as motion segmentation and
face recognition. The algorithm is reliable in the presence of noise, and
applied to the Hopkins 155 Dataset, it generates the best results to date for
motion segmentation. The two motion, three motion, and overall segmentation
rates for the video sequences are 99.43%, 98.69%, and 99.24%, respectively