29,578 research outputs found

    A single exponential bound for the redundant vertex Theorem on surfaces

    Full text link
    Let s1, t1,. . . sk, tk be vertices in a graph G embedded on a surface \sigma of genus g. A vertex v of G is "redundant" if there exist k vertex disjoint paths linking si and ti (1 \lequal i \lequal k) in G if and only if such paths also exist in G - v. Robertson and Seymour proved in Graph Minors VII that if v is "far" from the vertices si and tj and v is surrounded in a planar part of \sigma by l(g, k) disjoint cycles, then v is redundant. Unfortunately, their proof of the existence of l(g, k) is not constructive. In this paper, we give an explicit single exponential bound in g and k

    Doubly Chorded Cycles in Graphs

    Get PDF
    In 1963, Corradi and Hajnal proved that for any positive integer k if a graph contains at least 3k vertices and has minimum degree at least 2k, then it contains k disjoint cycles. This result is sharp, meaning there are graphs on at least 3k vertices with a minimum degree of 2k-1 that do not contain k disjoint cycles. Their work is the motivation behind finding sharp conditions that guarantee the existence of specific structures, e.g. cycles, chorded cycles, theta graphs, etc. In this talk, we will explore minimum degree conditions which guarantee a specific number of doubly chorded cycles, graphs that contain a spanning cycle and at least two additional edges, called chords. In particular, we will discuss our findings on these conditions and how it fits in with previous results in this area

    Cyclic, f-Cyclic, and Bicyclic Decompositions of the Complete Graph into the 4-Cycle with a Pendant Edge.

    Get PDF
    In this paper, we consider decompositions of the complete graph on v vertices into 4-cycles with a pendant edge. In part, we will consider decompositions which admit automorphisms consisting of: (1) a single cycle of length v, (2) f fixed points and a cycle of length v − f, or (3) two disjoint cycles. The purpose of this thesis is to give necessary and sufficient conditions for the existence of cyclic, f-cyclic, and bicyclic Q-decompositions of Kv

    Partitioning de Bruijn Graphs into Fixed-Length Cycles for Robot Identification and Tracking

    Full text link
    We propose a new camera-based method of robot identification, tracking and orientation estimation. The system utilises coloured lights mounted in a circle around each robot to create unique colour sequences that are observed by a camera. The number of robots that can be uniquely identified is limited by the number of colours available, qq, the number of lights on each robot, kk, and the number of consecutive lights the camera can see, \ell. For a given set of parameters, we would like to maximise the number of robots that we can use. We model this as a combinatorial problem and show that it is equivalent to finding the maximum number of disjoint kk-cycles in the de Bruijn graph dB(q,)\text{dB}(q,\ell). We provide several existence results that give the maximum number of cycles in dB(q,)\text{dB}(q,\ell) in various cases. For example, we give an optimal solution when k=q1k=q^{\ell-1}. Another construction yields many cycles in larger de Bruijn graphs using cycles from smaller de Bruijn graphs: if dB(q,)\text{dB}(q,\ell) can be partitioned into kk-cycles, then dB(q,)\text{dB}(q,\ell) can be partitioned into tktk-cycles for any divisor tt of kk. The methods used are based on finite field algebra and the combinatorics of words.Comment: 16 pages, 4 figures. Accepted for publication in Discrete Applied Mathematic

    Some Turan-type Problems in Extremal Graph Theory

    Get PDF
    abstract: Since the seminal work of Tur ́an, the forbidden subgraph problem has been among the central questions in extremal graph theory. Let ex(n;F) be the smallest number m such that any graph on n vertices with m edges contains F as a subgraph. Then the forbidden subgraph problem asks to find ex(n; F ) for various graphs F . The question can be further generalized by asking for the extreme values of other graph parameters like minimum degree, maximum degree, or connectivity. We call this type of question a Tura ́n-type problem. In this thesis, we will study Tura ́n-type problems and their variants for graphs and hypergraphs. Chapter 2 contains a Tura ́n-type problem for cycles in dense graphs. The main result in this chapter gives a tight bound for the minimum degree of a graph which guarantees existence of disjoint cycles in the case of dense graphs. This, in particular, answers in the affirmative a question of Faudree, Gould, Jacobson and Magnant in the case of dense graphs. In Chapter 3, similar problems for trees are investigated. Recently, Faudree, Gould, Jacobson and West studied the minimum degree conditions for the existence of certain spanning caterpillars. They proved certain bounds that guarantee existence of spanning caterpillars. The main result in Chapter 3 significantly improves their result and answers one of their questions by proving a tight minimum degree bound for the existence of such structures. Chapter 4 includes another Tur ́an-type problem for loose paths of length three in a 3-graph. As a corollary, an upper bound for the multi-color Ramsey number for the loose path of length three in a 3-graph is achieved.Dissertation/ThesisDoctoral Dissertation Mathematics 201
    corecore