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ABSTRACT

Cyclic, f -Cyclic, and Bicyclic Decompositions of the Complete Graph into the

4-Cycle with a Pendant Edge

by

Daniel Cantrell

In this paper, we consider decompositions of the complete graph on v vertices into

4-cycles with a pendant edge. In part, we will consider decompositions which admit

automorphisms consisting of:

(1) a single cycle of length v,

(2) f fixed points and a cycle of length v − f , or

(3) two disjoint cycles.

The purpose of this thesis is to give necessary and sufficient conditions for the exis-

tence of cyclic, f -cyclic, and bicyclic Q-decompositions of Kv.
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1 INTRODUCTION

Design theory is a branch of combinatorial mathematics that contains many inter-

esting areas of study and has many applications. Design theory is used in computer

science, telecommunications, traffic management, and environmental conservation [5].

A few of the more interesting areas of study within design theory are those of decom-

positions, packings, and coverings of graphs.

A graph, G, consists of two sets: a non-empty set of vertices, V , and a set of edges,

E. There are finite and infinite graphs. In this paper we only consider finite graphs.

Two vertices are adjacent if they have an edge in common. An edge, e = {v, w}, is

said to be incident with vertices v and w. A graph on v vertices in which every vertex

is adjacent to every other vertex is a complete graph on v vertices and is denoted Kv.

The degree of a vertex, v, is defined as the number of edges incident with v [8].

Also of interest are directed graphs. In a directed graph (or digraph) edges are

replaced with arcs that are assigned a direction. Complete directed graphs, Dv, are

similar to complete graphs. In these graphs, each edge is replaced by two arcs of

opposite orientation [8].

A G-decomposition of graph H is a set of subgraphs, γ = {G1, G2, . . . , Gn}, where

Gi
∼= G for i ∈ {1, 2, . . . , n}, E(Gi) ∩ E(Gj) = ∅ for i 6= j, and

n⋃
i=1

E(Gi) = E(H).

A set γ′ ⊂ γ is a subsystem of the G-decomposition of H if
⋃

G∈γ′ E(G) = E(H ′)

for some subgraph H ′ of H. The study of graph decompositions is a vibrant area of

research [4]. Of relevance to our study are decompositions of Kv. For example, in

Figure 1, we have decomposed K5 into 5–cycles.
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Figure 1: Decomposition of a K5 into 5–cycles.

The Gi are called blocks of the decomposition. In particular, a 3-cycle (C3) de-

composition of Kv exists if and only if v ≡ 1 or 3 (mod 6). These were the first

decompositions to be studied and are called Steiner triple systems of order v, denoted

STS(v) [12, 16, 17]. Directed graphs can also be decomposed. Instead of edge sets,

E(G), we now have arc sets, A(G). Thus, orientations were given to 3-cycles. The

only orientations of a 3-cycle, the 3-circuit and the transitive triple, are shown in

Figure 2.

Figure 2: 3-circuit and transitive triple.

The next decompostions studied were Mendelsohn triple systems of order v, MTS(v),

and directed triple systems of order v, DTS(v) [11, 13]. In these decompostions, a Dv
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is decomposed into 3-circuits and transitive triples, respectively. A MTS(v) exists if

and only if v ≡ 0 or 1 (mod 3), v 6= 6 [13]. A DTS(v) exists if and only if v ≡ 0 or 1

(mod 3) [11].

There are several other notable decompostions of Kv. It is well known that a

C4-decomposition of Kv exists if and only if v ≡ 1 (mod 8)[1]. Let L denote the

graph with V (L) = {a, b, c, d} and E(L) = {(a, b), (b, c), (a, c), (a, d)}, i.e., the 3-

cycle with a pendant edge. An L-decomposition of Kv exists if and only if v ≡ 0

or 1 (mod 8) [3]. Let Q denote the graph with V (Q) = {a, b, c, d, e} and E(Q) =

{(a, b), (b, c), (c, d), (a, d), (a, e)}, the 4-cycle with a pendant edge. We denote such Q

as [a, b, c, d; e], as in Figure 3. A Q-decomposition of Kv exists if and only if v ≡ 0 or

1 (mod 5), v ≥ 10 [2].
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Figure 3: Q = [a, b, c, d; e].

An automorphism of a G-decomposition of H is a permutation π of V (G) which

fixes the set γ. The orbit of a block Gi under π is the set {πn(Gi) | n ∈ N} and the

length of the orbit of Gi is the cardinality of the orbit of Gi. A set, B, of blocks is
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a set of base blocks under permutation π if the orbits of the blocks of B generate an

G-decomposition of H and the orbits of the elements of B are disjoint.

An automorphism is said to be cyclic if it consists of a single cycle. A f -cyclic

automorphism consists of f fixed points and a single cycle. An automorphism is

bicyclic if it consists of two disjoint cycles. A common method of construction for

graph decompositions is the use of difference methods and cyclic permutations. A

cyclic C3-decomposition of Kv exists if and only if v ≡ 1 or 3 (mod 6), v 6= 9 [15]. It

is well known that a cyclic C4-decomposition of Kv exists if and only if v ≡ 1 (mod

8)[1]. A cyclic L-decomposition of Kv exists if and only if v ≡ 1 (mod 8) [3, 9].

The f -cyclic automorphism was introduced by Micale and Pennisi in connection

with oriented triple systems, which are concerned with decompositions of complete

digraphs into orientations of a 3-cylce [14]. When discussing bicyclic automorphisms,

we assume that the cycles have lengths M and N where M ≤ N . A bicyclic C3-

decomposition of Kv exists if and only if:

(i) v = M + N ≡ 1 or 3 (mod 6),

(ii) M ≡ 1 or 3 (mod 6), M 6= 9 (M > 1), and M | N [6].

A bicyclic L-decomposition of Kv exists if and only if:

(i) N = 2M and v = M + N ≡ 9 (mod 24), or

(ii) m ≡ 1 (mod 8) and N = kM where k ≡ 7 (mod 8) [9].

The purpose of this thesis is to give necessary and sufficient conditions for the exis-

tence of cyclic, f -cyclic, and bicyclic Q-decompositions of Kv.
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2 CYCLIC AND ROTATIONAL Q-DECOMPOSITIONS

The following result, in conjunction with unpublished work of Dr. Robert Gardner

and Gary Coker [7, 10], gives necessary and sufficient conditions for the existence of

a cyclic Q-decompositions of Kv.

Theorem 2.1 [7, 10] A cyclic Q-decomposition of Kv exists if and only if v ≡ 1 (mod

10).

Proof. We consider cyclic Q-decompositions of Kv where V (Kv) = {0, 1, 2, . . . , (v −

1)} and where the cyclic permutation is π = (0, 1, 2, . . . , v − 1).

Suppose such a system exists for v ≡ 0 or 6 (mod 10). By raising π to the v/2

power, we see that the edge (0, v/2) is fixed by interchanging the vertices 0 and v/2.

Since the edge (0, v/2) is in exactly one copy of Q in the decomposition, then this copy

of Q must be fixed by πv/2. However, it is not possible to fix Q with a permutation

which interchanges the ends of an edge. Therefore such systems do not exist.

Now suppose that v ≡ 5 (mod 10). The length of the orbit of each edge and every

block Gi of set γ is v. Therefore the orbits of the Gi create a partition of γ into |γ|/v

sets. But with v ≡ 5 (mod 10), v does not divide |γ| and so such a system does not

exist.

Suppose v ≡ 1 (mod 10), say v = 10k+1. If v = 11, consider {[0, 1, 5, 3; 6]}. If v =

21, consider {[0, 1, 5, 3; 6], [0, 7, 17, 9; 5]}. If v ≥ 31, consider {[0, 1, 5, 3; 6], [0, 7, 17, 9; 5]}

∪{[0, 5i + 11, 10i + 25, 5i + 13; 5 + 15] | i = 0, 1, . . . , k − 3}. In each case, a set of base

blocks is given for a cyclic Q-decomposition of Kv under π. �
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The following figure illustrates a cyclic Q-decompositions of K11. Starting with

the block {[0, 1, 5, 3; 6]}, we obtain K11 by rotating the block around the vertices.

Figure 4: Cyclic Q-decomposition of K11.

A special case of a bicyclic permutation is a permutation consisting of a single

fixed point and a single cycle (M = 1 and N = v − 1 in the notation of Section

1). A graph decomposition admitting such a partition is said to be rotational (or

1-rotational). The following unpublished theorem, proven by Dr. Robert Gardner

[10], classifies rotational Q-decompositions of Kv.
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Theorem 2.2 [10] A rotational Q-decomposition of Kv exists if and only if v ≡ 0

(mod 10).

Proof. In such a system, the length of the orbit of each block is v − 1. Therefore

the number of edges must be a multiple of 5(v − 1). Now |E(Kv)| = v(v−1)
2

, so it

follows that v ≡ 0 (mod 10) is necessary. So suppose v ≡ 0 (mod 10), say v = 10k,

V (Kv) = {∞, 0, 1, 2, . . . , (v − 1)} and π = (∞)(0, 1, 2, · · · , (v − 1)). Consider the set

of blocks:

{[0, 1, 5, 3;∞]} ∪ {[0, 5i + 5, 10i + 13, 5i + 7; 5i + 9] | i = 0, 1, . . . , k − 2}.

This is a set of base blocks for a rotational Q-decomposition of Kv under π. �
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3 THE f -CYCLIC RESULTS

We now consider a permutation of a Q-decomposition of Kv where the permutation

consists of f fixed points and a cycle of length v − f .

Lemma 3.1 The fixed points of a f -cyclic automorphism of a Q-decomposition of

Kv form a subsystem. That is, if π is the f -cyclic automorphism, (a, b) is an edge of

a block B, and π(a) = a, π(b) = b, then each vertex of B is fixed by π.

Proof. We let the vertex set of Kv be {∞1,∞2 . . . ,∞f} ∪ {0, 1, . . . , (v − f − 1)}

and the f -cyclic permutation be (∞1)(∞2) · · · (∞f )(0, 1, . . . (v − f − 1)). Now, edge

(a, b) appears in exactly one block of a decomposition. Since (a, b) is in both B and

π(B), it must be that B = π(B). The only way to fix an edge of B without fixing all

vertices of B is to fix three vertices of B and interchange the other two. If this is the

case, then π must consist of several (at least three) fixed points and a transposition.

Assume that the vertices in the transposition are c and d. Edge (c, d) must be in some

block, but π fixes edge (c, d) and hence must fix block B′. However, it is impossible to

fix B while interchanging the vertices of one of its edges. Therefore π cannot consist

of fixed points and a transposition and it must be that π fixes all vertices of B. �

Lemma 3.1 along with the necessary conditions for the existence of an Q-decomposition

of Kv implies Lemma 3.2.
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Lemma 3.2 In a f -cyclic Q-decomposition of Kv, it is necessary that f ≡ 0 or 1

(mod 5), f ≥ 10.

Lemma 3.3 In a f -cyclic Q-decomposition of Kv, it is necessary that f ≤ (v−1)/9.

Proof. Suppose a block of such a decomposition contains edges of the forms (∞i, a)

and (∞i, b) where a, b ∈ Zv−f with a > b. Then πb−a maps edge (∞i, a) to (∞i, b).

Since (∞i, b) occurs in only one block, πb−a must fix this block. But the only way to

fix B without fixing each vertex is to fix three of the vertices of Q and interchange

the other two. So πb−a must consist of fixed points and transpositions. However, the

pendant edge must be fixed by πb−a and this can occur only if both vertices of the

pendant edge are fixed. But this contradicts Lemma 3.1. Therefore no block of an

f -cyclic Q-decomposition may include edges of the forms (∞i, a) and (∞i, b) where

a, b ∈ Zv−f .

By Lemma 3.1, we see that the admissible blocks of such a decomposition must be

of the following forms only: B∞ = [∞i,∞j,∞k,∞l;∞m], BC∞ = [a, b, c, d;∞i], and

BC = [a, b, c, d; e] where a, b, c, d ∈ Zv−f . Block B∞ is fixed by π and all blocks of this

form make up a Q-decomposition of Kf . So there are f(f − 1)/10 such blocks. The

length of the orbit of a block of type BC∞ is v − f . The orbit of this block contains

all edges of the form (∞i, a) for fixed i and any a ∈ Zv−f . Therefore, there must be

f(v − f) blocks of this form. These blocks contain 4f(v − f) edges of the form (a, b)

where a, b ∈ Zv−f . Since Kv has (v− f)(v− f − 1)/2 such edges, it is necessary that

4f(v − f) ≤ (v − f)(v − f − 1)/2, or f ≤ (v − 1)/9. �
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Lemma 3.4 At least one of the following conditions is necessary for the existence of

a f -cyclic Q-decomposition of Kv:

(i) If v ≡ 0 (mod 10), then f ≡ 1 (mod 10);

(ii) If v ≡ 1 (mod 10), then f ≡ 0 (mod 10);

(iii) If v ≡ 5 (mod 10), then f ≡ 6 (mod 10);

(iv) If v ≡ 6 (mod 10), then f ≡ 5 (mod 10).

Proof. With the notation of Lemma 3.3, the number of edges of the form (a, b),

where a ∈ Zv−f , which are not in blocks of the form Bc∞ is

(v − f)(v − f − 1)

2
− 4f(v − f) = (v − f)

(
v − 9f − 1)

2

)
.

These edges must be contained in blocks of the form Bc. Since each such block

contains five such edges, there must be (v − f)(v − 9f − 1)/10 such blocks. The

lengths of the orbit of each Bc is v − f , and so there must be (v − 9f − 1)/10 base

blocks of the form Bc. Since v ≡ 0 or 1 (mod 5) and f ≡ 0 or 1 (mod 5), the

conditions on v and f follow. �

Theorem 3.5 A f -cyclic Q-decomposition of Kv exists if and only if f ≤ (v − 1)/9

and

(i) If v ≡ 0 (mod 10), then f ≡ 1 (mod 10);

(ii) If v ≡ 1 (mod 10), then f ≡ 0 (mod 10);

(iii) If v ≡ 5 (mod 10), then f ≡ 6 (mod 10);

(iv) If v ≡ 6 (mod 10), then f ≡ 5 (mod 10).

17



Proof. The necessary conditions follow from Lemmas 3.3 and 3.4. For sufficiency,

consider the set:

{[0, 4i + 1, 8i + 5, 4i + 3;∞i+1] | i = 0, 1, 2, . . . , f − 1}

∪{[0, 5i+(4f+1), 10i+(8f+5), 5i+(4f+3); 5i+(4f+5)] | i = 0, 1, 2, . . . , (v−9f−11)/10}.

This is a set of base blocks for a f -cyclic Q-decomposition of Kv for the necessary

value of v and f . �
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4 THE BICYCLIC RESULTS

In this chapter we consider bicyclic Q-decompositions of Kv where the vertex set

of Kv is {01, 11, 21, . . . , (M − 1)1, 02, 12, 22, . . . , (N − 1)2} and the automorphism is

(01, 11, 21, · · · , (M − 1)1)(02, 12, 22, · · · , (N − 1)2). Therefore, we have the following

results.

Lemma 4.1 In a bicyclic Q-decomposition of Kv, neither M nor N can be even.

Proof. An argument similar to that used in the proof of Theorem 2.1 can be used

to show that in a bicyclic automorphism, neither M nor N can be even (or there is

the same uniqueness problem with edge (0, M/2) or edge (0, N/2), respectively).�

Lemma 4.2 If a bicyclic Q-decomposition of Kv exists where M < N , then M ≡ 1

(mod 10).

Proof. Suppose a bicyclic Q-decomposition of Kv exists where M < N and let π be

the bicyclic automorphism. Assume that there is a block B of the decomposition with

vertex set V (B) = {v1, w1, xi, yj, zk} and edge set satisfying (v1, w1) ⊂ E(B). Then

πM fixes edge (v1, w1) and hence must fix B. The only way to fix Q = [a, b, c, d; e]

without fixing all of the vertices is to fix the vertices a, c, and e and to interchange

vertices b and d. Therefore, such a π satisfies the property that πM fixes three vertices

of B, say v1, w1, and x1, and interchanges the other two vertices, y2 and z2. In this

case, πM must consist of M fixed points and N/2 transpositions (and so N = 2M).

However, as seen in Lemma 4.1, N cannot be even. Hence all vertices of B must

be fixed by πM and in fact V (B) = {v1, w1, x1, y1, z1}. That is, if a block of a
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bicyclic decomposition has one edge with vertices in {01, 11, 21, . . . , (M − 1)1}, then

all vertices of the block lie in this set. In fact, such blocks form a subsystem of the

bicyclic decomposition. If we restrict π to these blocks, we see that they form a cyclic

Q-decomposition of KM and by Theorem 2.1, M ≡ 1 (mod 10). �

The following lemma, due to the work of Gary Coker [7], gives the neccessary and

sufficent conditions for a bicyclic Q-decomposition to exist with cycles of the same

length.

Lemma 4.3 [7] A bicyclic Q-decomposition of Kv admitting an automorphism con-

sisting of two disjoint cycles of the same length exists if and only if v ≡ 6 (mod 20),

v ≥ 26.

Proof. With M = N and v = 2M , we have from Lemma 4.1 that a necessary

condition is v ≡ 2 (mod 4). Since v ≡ 0 or 1 (mod 5), it is necessary that v ≡ 6 or 10

(mod 20). Now if v ≡ 10 (mod 20), then M ≡ 5 (mod 10) and the length of the orbit

of each edge and every block Gi ∈ γ is M . Therefore, the orbits of the Gi create a

partition of γ into |γ|/M sets. But with v ≡ 10 (mod 20), M = v/2 does not divide

|γ| and so such a system does not exist.

Now suppose M = v/2 ≡ 3 (mod 10), i.e., M = 10k + 3. Consider the set:

{[0p, 1p, 5p, 3p; 6p], [01, (5k + 3)2, 21, 5k + 22; 02], [01, (5k + 5)2, 61, (5k + 4)2; 51],

[02, (5k + 7)1, 102, (5k + 6)1; 52] | p = 1, 2}

∪{[0p, (7 + 5i)p, (17 + 10i)p, (9 + 5i)p; (11 + 5i)p],

[01, (5k + 9 + 4i)2, (14 + 8i)1, (5k + 8 + 4i)2; (1 + i)2],

20



[01, (5k + 11 + 4i)2, (18 + 8i)1, (5k + 10 + 4i)2; (10k + 2− i)2] | p = 1, 2}.

This a set of base blocks for a bicyclic Q-decomposition of Kv as needed. �

Lemma 4.4 If a bicyclic Q-decomposition of Kv exists with M < N , then M ≡ 1

(mod 10) and N = kM where k ≡ 9 (mod 10).

Proof. By Lemma 4.2, M ≡ 1 (mod 10). Suppose all edges of the form (x1, y2)

are contained in blocks consisting only of such edges (a possibility since Q is bipar-

tite). Then the blocks with vertices from {02, 12, 22, . . . , (N − 1)2} form a cyclic Q-

decomposition of KN and by Theorem 2.1, N ≡ 1 (mod 10). But then v = M +N ≡ 2

(mod 10). Since v ≡ 0 or 1 (mod 5), this is impossible. Therefore, if a bicyclic Q-

decomposition exists with M < N , then there must be some block B which contains

both edges of the form (x1, y2) and (y2, z2) (it follows from the proof of Lemma 4.2

that no block can contain both edges of the form (x1, y1) and (y1, z2)). If we apply

πN to such a block, the edge (y2, z2) is fixed. Therefore, the block containing (y2, z2)

is fixed. As in Lemma 4.2, this can be accomplished by interchanging two of the

other vertices of B, but this would require that πN contains M/2 transpositions, a

contradiction. Therefore, all vertices of B must be fixed and, in particular, x1 must

be fixed. Therefore, M is a multiple of N : N = kM for some positive integer k.

From Lemma 4.2, we see that every edge of the form (x1, y1) is in a block of

the form [a1, b1, c1, d1; e1]. Any edge of the form (x1, y2) or the form (x2, y2) has

an orbit of length N and there are MN + N(N − 1)/2 such edges. Therefore, any

block consisting of such edges also has an orbit of length N and the total number of

edges in this orbit is 5N . This implies that 5N divides MN + N(N − 1)/2, or that
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M + (N − 1)/2 = M + (kM − 1)/2 ≡ 0 (mod 5), from which follows the result k ≡ 9

(mod 10). �

Lemma 4.5 A bicyclic Q-decomposition of Kv with M < N exists if and only if

M ≡ 1 (mod 10) and N = kM where k ≡ 9 (mod 10).

Proof. The case when M = 1 follows from Theorem 2.2. For M > 1, consider the

following collection of blocks:

{[02, 42, 22, 32; 01]} ∪ {[01, (4 + 5i)2, 21, (3 + 5i)2; (5 + 5i)2] | i = 0, 1, . . . , (M − 6)/5}

∪{[02, (5 + 5i)2, (13 + 10i)2, (7 + 5i)2; (9 + 5i)2] | i = 0, 1, . . . , (N − 19)/10}.

These blocks, along with the base blocks of a cyclic Q-decomposition of KM on ver-

tex set {01, 11, . . . , (M−1)1}, form a set of base blocks for a bicyclic Q-decomposition

of Kv as needed. �

Lemmas 4.2 to 4.5 combine to give necessary and sufficient conditions for a bicyclic

Q-decomposition of Kv.

Theorem 4.6 A bicyclic Q-decomposition of Kv, where the bicyclic automorphism

consists of disjoint cycles of lengths M and N where M ≤ N exists if and only if

(i) M = N ≡ 3 (mod 10), M = N ≥ 13, or

(ii) M ≡ 1 (mod 10) and N = kM where k ≡ 9 (mod 10).
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5 THE DIFFERENCE METHOD AND CONCLUSION

In this chapter, we will explore the difference method used to obtain the results in

the previous chapters. Define a pure difference of type i associated with edge (ai, bi) as

min{ |a− b|(mod N) , |b− a|(mod N)}, where N is the length of the cycle. The set

of all pure differences is {1, 2, 3 . . . bN/2c}. Define a mixed difference with associated

edge (a1, b2) as (b−a)(mod M). The set of all mixed differences is {0, 1, 2 . . . M − 1}.

To ensure that each edge of Kv is present after applying the given permutation, each

difference is used exactly once in one of the base blocks. The following two examples

illustate the difference method.

Consider the f -cyclic graph where f = 6 and N = 49, for a total of 55 vertices.

In this example, all of the differences are of the pure type 1 variety. The subscript

of 1 is omitted since the graph only contains one cycle. The set of all pure type 1

differences is {1, 2, 3 . . . 24}. The base blocks described by the proof of Theroem 3.5

can be seen in Figure 5.

Figure 5: f = 6, N = 49.
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The existence of each edge of K55 is ensured since each of the differences is used

exactly once in one of these blocks. For example, edge (7, 13) of K55 will be present

after applying the given permuation since the associated difference of 6 is used in

the block [0, 5, 13, 7;∞2]. A similar argument can be made for each of the differences

in the set. Thus, these blocks, along with a Q-decompostion of K6 on vertex set

{∞1,∞2, . . .∞6}, form a f -cylic Q-decomposition of K55.

For the second example, consider the bicylic graph where M = 11 and N = 99,

for a total of 110 vertices. In this example, we have both mixed and pure differences.

The set of all mixed differences is {0,1,. . . ,10} and the set of all pure type 1 and 2

differences are {1, 2, . . . , 49} and {1, 2, 3, 4, 5}, respectively. A cyclic Q-decompostion

of K11 can be seen in Figure 4, thus, we will only consider differences of the mixed

and pure type 2 variety. Again, we will show that each difference is used exactly once

in one of the blocks. Consider the following table:

Block Mixed Differences Pure Type 2 Differences
[02, 42, 22, 32; 01] 0 1, 2, 3, 4
[01, 42, 21, 32; 52] 1, 2, 3, 4, 5 -
[01, 92, 21, 82; 102] 6, 7, 8, 9, 10 -
[02, 52, 132, 72; 92] - 5, 6, 7, 8, 9

[02, 102, 232, 122; 142] - 10, 11, 12, 13, 14
[02, 152, 332, 172; 192] - 15, 16, 17, 18, 19
[02, 202, 432, 222; 242] - 20, 21, 22, 23, 24
[02, 252, 532, 272; 292] - 25, 26, 27, 28, 29
[02, 302, 632, 322; 342] - 30, 31, 32, 33, 34
[02, 352, 732, 372; 392] - 35, 36, 37, 38, 39
[02, 402, 832, 422; 442] - 40, 41, 42, 43, 44
[02, 452, 932, 472; 492] - 45, 46, 47, 48, 49

Table 1: Base blocks and differences for M = 11, N = 99.
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Table 1 lists the base blocks described in the proof of Lemma 4.5 and the associated

differences for each block. This table makes it easy to see that each mixed and pure

type 2 difference is used exactly once, ensuring that each edge of K110 will be present

under the given permutation. These blocks combined with a cyclic Q-decomposition

of K11, depicted in Figure 4, form a bicyclic Q-decomposition of K110.

In this thesis, the necessary and sufficent conditions for the existence of cyclic,

f -cyclic, and bicyclic Q-decompositions of the complete graph on v vertices have been

given. The next logical step would be to consider tricylic automorphisms. Some re-

sults have been proven concerning tricyclic Stiener Triple Systems [10]. Currently,

work is being done related to decompositions, packings, and coverings of Kv using

the 6-cycle with a pendant edge [10]. A natural generalization would be to study de-

compositions of Kv into n-cycles with a pendant edge. Since automorphisms of graph

decompositions are widely studied, one direction for future research could include the

automorphism question for Q-decompositions of Dv.
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