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Introduction

Definition

A cycle is a set of points (vertices) connected in a cyclic fashion
by edges.

Here is an example of a cycle on 6 vertices:
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Introduction

Definition

A chorded cycle is a cycle with at least one additional edge.

It does not matter where the additional edge is situation in the
graph. Also, there can be more than two additional edges, the
definition only requires that there be at least one additional. Here
are three examples of chorded cycles on 6 vertices:
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Introduction

Definition

A doubly chorded cycle is a cycle with at least two additional
edges.

Once again it does not matter where those additional edges are
situation. There can also be more than two additional edges, the
definition just requires there be at least two additional. Here are
three examples of doubly chorded cycles on 6 vertices.
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Introduction

Our main constraint in our results will regard the minimum degree
of a graph. Here are the definitions:

Definition

The degree of a vertex is the number of edges incident to that
vertex (essentially the number of edges that are ”coming out” of
that vertex).

Definition

The minimum degree, δ(G ), of a graph graph G is the smallest
degree over all vertices in G (look at the degree of each vertex in
the graph, then whatever the smallest was is the minimum degree
of the graph).
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Introduction

Consider a graph(set of points and set of edges that connect two
points) G .

It is not too difficult to see that if |G | ≥ 3 (number of vertices in
G is at least 3) and δ(G ) ≥ 2 (minimum degree of at least 2),
then G contains a cycle.

This intuitive and simple idea led to the following extension and
result:

Theorem (Corrádi - Hajnal, 1963)

If |G | ≥ 3k and δ(G ) ≥ 2k, then G contains k disjoint cycles.

Where here k, and throughout the rest of these slides, is just some
positive integer.
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Introduction

The meaning of disjoint in the previous result and the rest in this
presentation is vertex disjoint. So if we state that a graph has
disjoint cycles, those cycles do not share any common vertices. For
example, the following graph clearly has to cycles:

However, the graph only has one disjoint cycle. Since as soon as
we choose one cycle (in red), we can no longer use the middle
vertex to find a second cycle.
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Introduction

The previews result concluded cycles and so the next logical step is
to consider chorded cycles, which has the following result:

Theorem (Finkel, 2008)

If |G | ≥ 4k and δ(G ) ≥ 3k, then G contains k disjoint chorded
cycles.
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Introduction

With a solution to chorded cycles, what happens with doubly
chorded cycles? There are two main results in this area:

Theorem (Hajnal - Szemerédi, 1970)

If |G | = 4k and δ(G ) ≥ 3k, then G contains k disjoint doubly
chorded cycles.

Theorem (Gould - Hirohata - Horn, 2015)

If |G | ≥ 6k and δ(G ) ≥ 3k, then G contains k disjoint doubly
chorded cycles.

Our Goal

Determine what minimum degree constraints will guarantee k
disjoint doubly chorded cycles between 4k and 6k vertices.
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Setup

We first extended Gould, Hirohata, and Horn’s result by proving
the following:

Theorem

If |G | ≥ 5k and δ(G ) ≥ 3k, then G contains k disjoint doubly
chorded cycles.

How do we actually do this?

What we do is let G be an“edge-maximal” graph with |G | ≥ 5k
and δ(G ) ≥ 3k that DOES NOT contain k disjoint doubly chorded
cycles. So if this graph does exist, it would contradict our
statement that we wish to show. Our job then is to show that no
such graph exists. If no such graph exists, there are no graphs that
contradict our result and so therefore our statement is true. (This
is a common Proof by Contradiction technique used in
mathematics).
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Setup

So we have:

G , an“edge-maximal” graph with |G | ≥ 5k and δ(G ) ≥ 3k
that does not contain k disjoint doubly chorded cycles
⇒ The ”edge maximality” allows us to conclude that G
contains k − 1 disjoint doubly chorded cycles.

Let C be the collection of k − 1 disjoint doubly chorded cycles.

Let R = G\C (R is our ”remainder,” everything else in the
graph that is not in C).

Over all collections, assume C is one satisfying these conditions

(O1) |C| is minimum
(O2) subject to (O1), number of chords in C is maximum
(O3) subject to (O1) and (O2), length of the longest path in R is
maximum
(O4) subject to (O1), (O2), (O3), number of edges in R is
maximum
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Our Work

Using these conditions on C, as well as our initial assumptions
about G , we will be able to concluded that G does not exist. We
first determined how vertices in our remainder, R, interact with
doubly chorded cycles in our collection, C. We proved:

Lemma (1)

For all v ∈ R and C ∈ C, v can be adjacent to at most 4 vertices
in C . When v is adjacent to exactly 4, then G along with v
(bottom vertex in pictures) is one of the following two strucutres:
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Our Work

Lemma (1) told us how vertices in R interact with the
collection C and actually told us a lot about the structure in
G and so is worth mentioning. It is a result we used again and
again in proving later characteristics of G . Our next step was
to determine what structure occurs within R.

Ultimately, we were able to prove that R ∼= K1,1,2, so it looks
like

Note that |R| = 4. This is important.
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Our Work

Once we knew exactly what our remainder looked like, the bulk of
our work was spent proving that all doubly chorded cycles in our
collection were on at most 5 vertices. This is the key we needed to
prove that this counter example graph does not exist.

Note that since the remainder had 4 vertices and we conclude that
the graph has k − 1 doubly chorded cycles in C, all of which are on
at most 5 vertices, then

|G | ≤ 4 + 5(k − 1) = 5k − 1.

However, we initially assumed that |G | ≥ 5k . Hence we have a
contradiction and have proven out result!

Theorem

If |G | ≥ 5k and δ(G ) ≥ 3k, then G contains k disjoint doubly
chorded cycles.
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Our Work

What happens between 4k < |G | < 5k?

Does a minimum degree of at least 3k still suffice to guarantee the
existence of k disjoint doubly chorded cycles?

Turns out a minimum degree of at least 3k is NOT enough. One
actually needs about 10k

3 .

For those interested in why δ(G ) ≥ 3k is not enough, the following
slide contains a counter example graph. This graph satisfies
4k < |G | < 5k as well as δ(G ) ≥ 3k , however it DOES NOT
contain k disjoint doubly chorded cycles.

Maia Wichman Doubly Chorded Cycles in Graphs



(10/3)k vs 3k
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Thank You!

I also want to thank Grand Valley State University
which funded a Student Summer Scholars Program
for me as well as my mentor Dr. Michael Santana.
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