122 research outputs found

    Scheduling in Networks with Limited Buffers

    Get PDF
    In networks with limited buffer capacity, packet loss can occur at a link even when the average packet arrival rate is low compared to the link's speed. To offer strong loss-rateguarantees, ISPs may need to adopt stringent routing constraints to limit the load at the network links and the routing path length. However, to simultaneously maximize revenue, ISPs should be interested in scheduling algorithms that lead to the least stringent routing constraints. This work attempts to address the ISPs needs as follows. First, by proposing an algorithm that performs well (in terms of routing constraints) on networks of output queued (OQ) routers (that is, ideal routers), and second, by bounding the extra switch fabric speed and buffer capacity required for the emulationof these algorithms in combined input-output queued (CIOQ) routers.The first part of the thesis studies the problem of minimizing the maximum session loss rate in networks of OQ routers. It introduces the Rolling Priority algorithm, a local online scheduling algorithm that offers superior loss guarantees compared to FCFS/Drop Tail and FCFS/Random Drop. Rolling Priority has the following properties: (1) it does not favor any sessions over others at any link, (2) it ensures a proportion of packets from each session are subject to a negligibly small loss probability at every link along the session's path, and (3) maximizes the proportion of packets subject to negligible loss probability. The second part of the thesis studies the emulation of OQ routers using CIOQ. The OQ routers are equipped with a buffer of capacity B packets at every output. For the family of work-conserving scheduling algorithms, we find that whereas every greedy CIOQ policy is valid for the emulation of every OQ algorithm at speedup B, no CIOQ policy is valid at speedup less than the cubic root of B-2 when preemption is allowed. We also find that CCF, a well-studied CIOQ policy, is not valid at any speedup less than B. We then introduce a CIOQ policy CEH, that is valid at speedup greater than the square root of 2(B-1)

    Design and stability analysis of high performance packet switches

    Get PDF
    With the rapid development of optical interconnection technology, high-performance packet switches are required to resolve contentions in a fast manner to satisfy the demand for high throughput and high speed rates. Combined input-crosspoint buffered (CICB) switches are an alternative to input-buffered (IB) packet switches to provide high-performance switching and to relax arbitration timing for packet switches with high-speed ports. A maximum weight matching (MWM) scheme can provide 100% throughput under admissible traffic for lB switches. However, the high complexity of MWM prohibits its implementation in high-speed switches. In this dissertation, a feedback-based arbitration scheme for CICB switches is studied, where cell selection is based on the provided service to virtual output queues (VOQs). The feedback-based scheme is named round-robin with adaptable frame size (RR-AF) arbitration. The frame size in RR-AF is adaptably changed by the serviced and unserviced traffic. If a switch is stable, the switch provides 100% throughput. Here, it is proved that RR-AF can achieve 100% throughput under uniform admissible traffic. Switches with crosspoint buffers need to consider the transmission delays, or round-trip times to define the crosspoint buffer size. As the buffered crossbar switch can be physically located far from the input ports, actual round-trip times can be non-negligible. To support non-negligible round-trip times in a buffered crossbar switch, the crosspoint buffer size needs to be increased. To satisfy this demand, this dissertation investigates how to select the crosspoint buffer size under non-negligible round trip times and under uniform traffic. With the analysis of stability margin, the relationship between the crosspoint buffer size and round-trip time is derived. Considering that CICB switches deliver higher performance than lB switches and require no speedup, this dissertation investigates the maximum throughput performance that these switches can achieve. It is shown that CICB switches without speedup achieve 100% throughput under any admissible traffic through a fluid model. In addition, a new hybrid scheme, based on longest queue-first (as input arbitration) and longest column occupancy first (as output arbitration) is proposed, which achieves 100% throughput under uniform and non-uniform traffic patterns. In order to give a better insight of the feedback nature of arbitration scheme for CICB switches, a frame-based round-robin arbitration scheme with explicit feedback control (FRE) is introduced. FRE dynamically sets the frame size according to the input load and to the accumulation of cells in a VOQ. FRE is used as the input arbitration scheme and it is combined with RR, PRR, and FRE as output arbitration schemes. These combined schemes deliver high performance under uniform and nonuniform traffic models using a buffered crossbar with one-cell crosspoint buffers. The novelty of FRE lies in that each VOQ sets the frame size by an adjustable parameter, Δ(i,j) which indicates the degree of service needed by VOQ(i, j). This value is adjusted according to the input loading and the accumulation of cells experienced in previous service cycles. This dissertation also explores an analysis technique based on feedback control theory. This methodology is proposed to study the stability of arbitration and matching schemes for packet switches. A continuous system is used and a control model is used to emulate a queuing system. The technique is applied to a matching scheme. In addition, the study shows that the dwell time, which is defined as the time a queue receives service in a service opportunity, is a factor that affects the stability of a queuing system. This feedback control model is an alternative approach to evaluate the stability of arbitration and matching schemes

    On packet switch design

    Get PDF

    Fair Scheduling in Networks Through Packet Election

    Get PDF
    We consider the problem of designing a fair scheduling algorithm for discrete-time constrained queuing networks. Each queue has dedicated exogenous packet arrivals. There are constraints on which queues can be served simultaneously. This model effectively describes important special instances like network switches, interference in wireless networks, bandwidth sharing for congestion control and traffic scheduling in road roundabouts. Fair scheduling is required because it provides isolation to different traffic flows; isolation makes the system more robust and enables providing quality of service. Existing work on fairness for constrained networks concentrates on flow based fairness. As a main result, we describe a notion of packet based fairness by establishing an analogy with the ranked election problem: packets are voters, schedules are candidates and each packet ranks the schedules based on its priorities. We then obtain a scheduling algorithm that achieves the described notion of fairness by drawing upon the seminal work of Goodman and Markowitz (1952). This yields the familiar Maximum Weight (MW) style algorithm. As another important result we prove that algorithm obtained is throughput optimal. There is no reason a priori why this should be true, and the proof requires non-traditional methods.Comment: 14 pages (double column), submitted to IEEE Transactions on Information Theor

    Analysis and Simulation of a Parallel Packet Switch for Satellite On-board Switching

    Get PDF
    In this paper we consider a packet switching system composed of X parallel switching planes operating independently and at a speed lower than the input lines. Arriving traffic is segmented into fixed length cells, then each cell is sent to one of the X planes, where it is switched to the correct output port and finally recombined with the other cells, coming from other planes, to reconstruct the original packet. This architecture, originally proposed by Iyer and McKeown [1], is referred to as a Parallel Packet Switch (PPS) and allows to design a switching fabric operating at a fraction of the line rate R. A PPS, with planes operating at rate r, must have at least k=R/r planes to avoid systematic packet losses. In [1] it was proved that a PPS can emulate the behavior of an Output Queue Switch (OQS) with the same buffering capabilities and the same number of ports. However, the centralized scheduling algorithm required to achieve this result can not be easily implemented in hardware, due to its complexity. In this paper we propose a Redundant Parallel Packet Switch (RePPS), i.e. a PPS with more than k planes, with a distributed scheduling algorithm, and multiplexing/demultiplexing stages without coordination buffers, which is a fair trade-off between performance and complexity. In particular we show that the minimum number n = X - k of redundant planes required to emulate an OQS with FIFO policy under any incoming traffic type is n = k2-2k+1. The distributed scheduling algorithm, which is the key component of the proposed switch, is presented and its performance, analyzed thru simulation, is discussed for a realistic fabric with a limited number of redundant planes. The results so far obtained suggest a possible application of this architecture for satellite on-board packet switches

    Design of a scheduling mechanism for an ATM switch

    Get PDF
    Includes bibliographical references.In this dissenation, the candidate proposes the use of a ratio to multiply the weights used in the matching algorithm to control the delay that individual connections encounter. We demonstrate the improved characteristics of a switch using a ratio presenting results from simulations. The candidate also proposes a novel scheduling mechanism for an input queued ATM switch. In order to evaluate the performance of the scheduling mechanism in terms of throughput and fairness, the use of various metrics, initially proposed in the literature to evaluate output buffered switches are evaluated, adjusted and applied to input scheduling. In particular the Worst-case Fairness Index (WFl) which measures the maximum delay a connection will encounter is derived for use in input queued switches

    Weighted round robin scheduling in input-queued packet switches subject to deadline constraints

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and the Institute of Engineering and Science of Bilkent Univ., 2000.Thesis (Master's) -- Bilkent University, 2000.Includes bibliographical references leaves 59-63In this thesis work, the problem of scheduling deadline constrained traffic is studied. The problem is explored in terms of Weighted Round Robin (WRR) service discipline in input queued packet switches. Application of the problem may arise in packet switching networks and Satellite-Switched Time Division Multiple Access (SS/TDMA) systems. A new formulation of the problem is presented. The main contribution of the thesis is a ’’backward extraction” technique to schedule packet forwarding through the switch fabric. A number of heuristic algorithms, each based on backward extraction, are proposed, and their performances are studied via simulation. Numerical results show that the algorithms perform significantly better than earlier proposed algorithms. The experimental results strongly assert Philp and Liu conjecture.Rai, Idris AM.S

    Algorithmic aspects of high speed switching

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2002.Includes bibliographical references (p. 145-148).A major drawback of the traditional output queuing technique is that it requires a switch speedup of N, where N is the size of the switch. This dependence on N makes the switch non-scalable at high speeds. Input queuing has been suggested instead. The introduction of input queuing creates the necessity for developing switching algorithms to decide which packets to keep waiting at the input, and which packets to forward across the switch. In this thesis, we address various algorithmic aspects of switching. We prove in this thesis, that many of the practical switching algorithms still require a speedup to achieve even a weak notion of throughput. We propose two switching algorithms that belong to a family to which we refer in this thesis as priority switching. These two algorithms overcome some of the disadvantages in existing priority switching algorithms, such as the excessive amount of state information that needs to be maintained. We also develop a practical algorithm that belongs to a family to which we refer in this thesis as iterative switching. This algorithm achieves high throughput in practice and offers the advantage of not requiring more than one iteration, unlike other existing iterative switching algorithms which require multiple iterations to achieve high throughput. Finally, we address the issue of using switches in parallel to accommodate for the need of speedup. We study two settings of parallel switches, one with standard packet switching, and one with flow scheduling, in which flows cannot be split across multiple switches.by Saadeddine Mneimneh.Ph.D

    Novel techniques in large scaleable ATM switches

    Get PDF
    Bibliography: p. 172-178.This dissertation explores the research area of large scale ATM switches. The requirements for an ATM switch are determined by overviewing the ATM network architecture. These requirements lead to the discussion of an abstract ATM switch which illustrates the components of an ATM switch that automatically scale with increasing switch size (the Input Modules and Output Modules) and those that do not (the Connection Admission Control and Switch Management systems as well as the Cell Switch Fabric). An architecture is suggested which may result in a scalable Switch Management and Connection Admission Control function. However, the main thrust of the dissertation is confined to the cell switch fabric. The fundamental mathematical limits of ATM switches and buffer placement is presented next emphasising the desirability of output buffering. This is followed by an overview of the possible routing strategies in a multi-stage interconnection network. A variety of space division switches are then considered which leads to a discussion of the hypercube fabric, (a novel switching technique). The hypercube fabric achieves good performance with an O(N.log₂N)²) scaling. The output module, resequencing, cell scheduling and output buffering technique is presented leading to a complete description of the proposed ATM switch. Various traffic models are used to quantify the switch's performance. These include a simple exponential inter-arrival time model, a locality of reference model and a self-similar, bursty, multiplexed Variable Bit Rate (VBR) model. FIFO queueing is simple to implement in an ATNI switch, however, more responsive queueing strategies can result in an improved performance. An associative memory is presented which allows the separate queues in the ATM switch to be effectively logically combined into a single FIFO queue. The associative memory is described in detail and its feasibility is shown by laying out the Integrated Circuit masks and performing an analogue simulation of the IC's performance is SPICE3. Although optimisations were required to the original design, the feasibility of the approach is shown with a 15Ƞs write time and a 160Ƞs read time for a 32 row, 8 priority bit, 10 routing bit version of the memory. This is achieved with 2µm technology, more advanced technologies may result in even better performance. The various traffic models and switch models are simulated in a number of runs. This shows the performance of the hypercube which outperforms a Clos network of equivalent technology and approaches the performance of an ideal reference fabric. The associative memory leverages a significant performance advantage in the hypercube network and a modest advantage in the Clos network. The performance of the switches is shown to degrade with increasing traffic density, increasing locality of reference, increasing variance in the cell rate and increasing burst length. Interestingly, the fabrics show no real degradation in response to increasing self similarity in the fabric. Lastly, the appendices present suggestions on how redundancy, reliability and multicasting can be achieved in the hypercube fabric. An overview of integrated circuits is provided. A brief description of commercial ATM switching products is given. Lastly, a road map to the simulation code is provided in the form of descriptions of the functionality found in all of the files within the source tree. This is intended to provide the starting ground for anyone wishing to modify or extend the simulation system developed for this thesis
    • …
    corecore