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Fair Scheduling in Networks Through Packet
Election

Srikanth Jagabathula and Devavrat Shah

Abstract—We consider the problem of designing a fair schedul-
ing algorithm for discrete-time constrained queuing networks.
Each queue has dedicated exogenous packet arrivals. There
are constraints on which queues can be served simultaneously.
This model effectively describes important special instances like
network switches, interference in wireless networks, bandwidth
sharing for congestion control and traffic scheduling in road
roundabouts. Fair scheduling is required because it provides
isolation to different traffic flows; isolation makes the system
more robust and enables providing quality of service. Existing
work on fairness for constrained networks concentrates on flow
based fairness. As a main result, we describe a notion of packet
based fairness by establishing an analogy with the ranked election
problem: packets are voters, schedules are candidates and each
packet ranks the schedules based on its priorities. We then obtain
a scheduling algorithm that achieves the described notion of
fairness by drawing upon the seminal work of Goodman and
Markowitz (1952). This yields the familiar Maximum Weight
(MW) style algorithm. As another important result, we prove
that the algorithm obtained is throughput optimal. There is no
reason a priori why this should be true, and the proof requires
non-traditional methods

Index Terms—Fair scheduling, packet-based fairness, ranked
election, throughput optimality

I. I NTRODUCTION

In this paper, we focus on the problem of scheduling in
constrained queuing networks. Specifically, we consider a
collection of queues operating in discrete time with constraints
on which queues may be served simultaneously. Such queuing
systems serve as effective modeling tools for a large array
of important practical problems, and their performance is
crucially dependent on the effectiveness of the scheduling
algorithm.

In this setup, the basic question is to design a scheduling
algorithm that is optimal. There are several performance crite-
ria, with often inherent trade-offs, that determine the optimality
of a scheduling algorithm. The first is throughput optimality.
A queuing system has a limited amount of resources. The
natural constraints imposed result in an inherent limitation on
the amount of traffic load that can be supported. This is called
the capacity of the system. Roughly speaking, a scheduling
algorithm that achieves the capacity utilizes system resources
optimally. Such an algorithm is called throughput optimal.
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Apart from being throughput optimal, a scheduling algo-
rithm should allocate resources in a fair manner. The queuing
system is a common resource shared by various traffic flows,
and the scheduling algorithm should ensure that no flow is
receiving more than its “fair” share of resources. It is important
to realize that fairness in queuing systems is not only an
intuitively desired goal but also one with an immense practical
impact.

A very important consequence of fairness is isolation of
various traffic flows. Throughput optimality is oblivious tothe
identities of the different flows. But, identities are important
for the following two important reasons: (1) Being oblivious
to flow identities, throughput optimal algorithms often favor
flows with a high data rate. Therefore, a particular flow might
ill-behave and flood the system with a high data rate mali-
ciously resulting in the deterioration of service to other flows.
Since the system is a shared resource, the algorithm should
identify the rogue flow and limit the negative impact on well-
behaved flows. (2) Secondly, isolation is important to provide
performance guarantees, and thereby Quality of Service (see
Keshav (1997) [1]), to various flows in the system. Designing
a scheduling algorithm that is fair will overcome these issues.
Other benefits of fairness include reducing burstiness of flows,
eliminating bottlenecks and reducing the impact of certain
kinds of Denial-of-Service (DoS) attacks (see Bonald and
Massoulie´ (2001) [2], and Yau et al (2005) [3]). In essence,
a fair scheduling algorithm makes the queuing system robust
and less prone to manipulation by individuals.

A natural way to achieve isolation among flows, in order to
provide protection and performance guarantees, is to dedicate
resources to each of the flows. In fact, this is the approach
taken in most of the work done on designing fair algorithms
for input queued switches (details in Section I-B). This ap-
proach, though, is limited for the following reasons: Firstly,
because of constraints, it is not straightforward to determine
the amount of resources to be allocated to each flow in a
queuing network. Moreover, such determination would require
the knowledge of flow arrival rates; whereas, in the spirit of
being implementable, we require the scheduling algorithm to
be online i.e., use only current network state information like
queue-sizes, age of packets, etc., and myopic i.e., oblivious to
flow arrival rates. Secondly, resource allocation takes place on
an average over a long period of time. This is appropriate in
a flow level model where the arrival statistics remain constant
for long time periods. This assumption, though, is questionable
in many applications like Internet traffic where short flows
predominate.

We note that designing a fair scheduling algorithm com-
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prises two sub-problems: defining a reasonable notion of fair-
ness, and designing an algorithm to achieve the desired notion
of fairness. The notion of fairness is utilized to determine
the resources (more specifically, the rate or bandwidth) to
be allocated, and the scheduling algorithm ensures that the
resources are allocated on an average over a long period of
time. Inspired by this, our approach would be to first define a
notion of packet based fairness and then design a scheduling
algorithm to achieve the defined notion of fairness. For obvious
reasons, we also need to reconcile the benefits of fairness with
achieving throughput optimality.

Motivated by the above discussion, we attempt to achieve
the following three goals in this paper: (1) Define a notion
of packet based fairness. (2) Design an online and myopic
algorithm, that is also throughput optimal, to achieve the
notion of fairness. (3) Provide the throughput optimality proof
of the algorithm.

A. Our contributions

The need for a packet based notion of fairness that can
be used in a constrained network is clear. But, defining
a precise mathematical notion of fairness that achieves the
desired intuitive and practical benefits of fairness is quite
challenging. Unfortunately, none of the existing notions of
fairness directly extend to a packet based constrained queuing
network. Existing notions of flow based fairness are based
on the utility maximization framework (proposed by Kelly,
Maullo and Tan (1998) [4]), which is a concept borrowed from
Economics literature. In a similar spirit, we define a notionof
fairness by establishing a novel analogy between scheduling in
constrained queuing networks and a ranked election problem1.
Ranked election is a widely studied problem in the Economics
(and Political Science) literature and this analogy provides a
ready framework to leverage this work. We draw upon the
work of Goodman and Markowitz (1952) [5] to obtain a unique
characterization of the schedule. This, rather surprisingly,
yields a maximum weight (MW) style algorithm. MW style
algorithms are very popular in the literature and are very well
understood. Thus, MW algorithms choose schedules in a “fair”
manner, though the definition of “fair” for different weights
is different. It should be noted that the choice of weights
is crucial for obtaining the intuitive desirable properties of
fairness, and we make an important contribution here.

As another important contribution, we prove that our algo-
rithm is throughput optimal. There is no a priori reason for this
to be true. Even though the algorithm we design is the familiar
MW style algorithm, it is not queue size or waiting time
based. Therefore traditional methods of proving throughput
optimality, which include the popular Lyapunov-Foster method
and Fluid models, cannot be applied in a direct manner. The
proof technique we introduce to prove throughput optimality
is potentially applicable to a wider class of problems.

1A ranked election problem deals with choosing a winning permutation
of candidates using a set of votes, where each vote is a permutation of the
candidates. Refer to Section IV.

B. Related work

We first begin with the work on single queue fairness.
Fair scheduling in single queues has been widely studied
since the early 1990s. In one of the earliest works, John
Nagle (1987) [6] proposed a fair algorithm for single queues
called “Fair Queuing.” As mentioned earlier, fair scheduling
is required to minimize starvation and limit the negative
impact of rogue sources. In order to achieve this, Nagle
proposed maintaining separate queues for different flows and
serving them in a round-robin fashion. This is a great and
simple to implement solution, but it works only when all
the packets are of equal size. In order to overcome this
problem Demers, Keshav and Shenker (1989) [7] proposed the
notion of Weighted Fair Queueing (WFQ) and its packetized
implementation. Parekh and Gallager (1993, 1994) [8], [9]
analyzed the performance of this packetized implementation
and showed it to be a good approximation of Generalized
Processor Sharing (GPS). Shreedhar and Varghese (1996) [10]
designed a computationally efficient version of weighted fair
queuing called Deficit Weighted Round Robin (DWRR). Even
though all these algorithms are fair, they are very complex and
expensive to implement. Hence, there was a lot of work done
on achieving approximate fairness for Internet routers through
FIFO queuing and appropriate packet dropping mechanisms.
Examples include RED by Floyd and Jacobson (1993) [11],
CHoKe by Pan, Prabhakar and Psounis (2000) [12], and AFD
by Pan, Prabhakar, Breslau and Shenker (2003) [13].

To address the issue of fairness in a network, Kelly,
Maullo and Tan (1998) [4] proposed a flow-level model for
the Internet. Under this model, the resource allocation that
maximizes the global network utility provides a notion of fair
rate allocation. We refer an interested reader to survey-style
papers by Low (2003) [14] and Chuang et.al. (2006) [15] and
the book by Srikant (2004) [16] for further details. We take
a note of desirable throughput property of the dynamic flow-
level resource allocation model (see for example, Bonald and
Massoulie´ (2001) [2], and de Veciana, Konstantopoulos and
Lee (2001) [17]). This approach, though valid for a general
network with arbitrary topology, does not take scheduling
constraints into account.

We next review the work done on the design of fair schedul-
ing algorithms for Input Queued (IQ) switches. Switches
are the most simple – at the same time, highly non-trivial
– examples of constrained networks. They form the core
of Internet routers and there is extensive literature dealing
with the design and analysis of various switch architectures
and scheduling algorithms. A switch is essentially a bipartite
network with input ports and output ports. The function of
a network switch is to move packets from the input ports to
the output ports using the switch fabric, just like the traffic
at a traffic junction. Depending on the placement of buffers
and the switch fabric, there are mainly two kinds of switch
architectures – input queued switches (IQ) and output queued
(OQ) switches. As their names suggest, input queued switches
have buffers only at input ports, while output queued switches
have buffers only at the output ports. The input queued switch
has a cross-bar switch fabric that imposes the following natural
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constraints: only one packet can be moved from (to) each
input (output) port in each time slot. On the other hand, since
an output queued switch has buffers only at output ports,
packets arriving at the input ports are immediately transferred
to their respective output buffers. Thus, there are no scheduling
constraints at the switch fabric in an output queued switch.
Because of this, the memory in an output queued switch has
to operate much faster than the memory in an input queued
switch. In most high-speed switches, memory bandwidth is
the bottleneck and hence input queued switches are more
popular and widely deployed, while output queued switches
are idealized versions that are easy to study.

It is clear from the description that scheduling in output
queued switches is equivalent to that of single queues. Hence,
fair scheduling in output queued switches just correspondsto
implementing single queue fair algorithms at different output
queues. Unfortunately, such extension is not possible for input
queued switches because of the presence of constraints. One
approach is to emulate the performance of an OQ switch by
means of a IQ switch running with a minimal speedup. An
IQ switch is said to be running with a speedupS if it can be
scheduledS times in each time slot. This approach was taken
by Prabhakar and McKeown (1999) [18] and Chuang, Goel,
McKeown and Prabhakar (1999) [19], where they showed
that essentially a speedup of 2 is necessary and sufficient for
emulating an OQ switch. With the OQ switch operating under
any of the various policies like FIFO, WFQ, DWRR, strict
priority, etc. fairness can be achieved. Equivalently, if an IQ
switch is loaded up to 50% of its capacity and the notion
of fairness is defined by policies like FIFO, WFQ, DWRR,
strict priority, etc., then by emulating an OQ switch with these
policies, it is possible to have fair scheduling for the IQ switch.
However, for higher loading this approach will fail due to
inability of emulating an OQ switch.

This necessitates the need for defining an appropriate no-
tion of fairness that cleverly, and in a reasonable manner,
combines the preferences of packets based on some absolute
notions along with the scheduling constraints. In principle, this
question is very similar to the question answered by utility
maximization based framework for bandwidth allocation in a
flow network. In fact, most of the existing literature on fair
scheduling algorithms for input-queued switches is concerned
with the notion of flow-based fairness. In these approaches,
a flow is identified with all the packets corresponding to an
input-output pair. There are two main approaches taken in the
literature for the design of fair algorithms for IQ switches.
One class of fair algorithms implement a fair scheduling
scheme at each of the servers in the switch and then carry
out an iterative matching. This approach is based on the
Distributed Packet Fair Queuing architecture. Examples of
this approach include iPDRR proposed by Zhang and Bhuyan
(2003) [20], MFIQ proposed by Li, Chen and Ansari (1998)
[21], and iFS proposed by Ni and Bhuyan (2002) [22]. This
approach completely ignores fairness issues that arise because
of scheduling constraints and hence need not guarantee an
overall fair bandwidth allocation. In order to overcome this,
Hosaagrahara and Sethu (2005) [23] and more recently Pan
and Yang (2007) [24] propose algorithms to calculate overall

max-min rates of different flows, taking into account con-
tention at all levels. But this approach requires knowledgeof
rates of flows and hence, the system should either learn these
rates or know them a priori.

Thus, most of the literature on the design of fair scheduling
algorithms for constrained networks is limited because it either
ignores fairness issues caused due to scheduling constraints
or directly borrows flow-based fairness notions and allocates
bandwidth accordingly. Here, it is important to emphasize the
limitations of a flow-based approach: (a) network traffic pre-
dominantly contains “short-flows”, while flow-based approach
requires existence of ever-lasting traffic thereby inducing huge
delays when applied naively, (b) flow-based approach requires
knowledge of traffic rates, which it may have to learn, (c) our
unit of data is a packet and modeling it as a flow is just an
approximation, and (d) packets have priorities and they lack
explicit utility functions.

In summary, our question is inherently combinatorial which
requires dealing with hard combinatorial constraints unlike the
resource allocation in a flow network which deals with soft
capacity constraints in a continuous optimization setup.

C. Organization

The rest of the paper is organized as follows: Section II
describes the model, introduces the notation and states the
problem formally. Section III motivates and describes our ap-
proach. Section IV takes a digression into Economics literature
to explain the ranked election problem. Section V establishes
the analogy between the ranked election problem and network
scheduling. Sections VI and VII present the main results of
this paper. Section VI formally states our algorithm, while
Section VII provides the details of the proof of throughput
optimality. We provide some simulation results in Section VIII
and then finally conclude in Section IX.

II. M ODEL AND NOTATION

We now describe a generic abstract model of a constrained
queuing network. The model corresponds to a single-hop net-
work. This generic model describes important special instances
like an input queued switch, wireless network limited by
interference, congestion control in TCP or even traffic in a
road junction. In each of these instances, the model effectively
captures the constraints imposed by nature on simultaneous
servicing of queues. We will describe the examples of an input
queued switch and a wireless network in detail. We focus on
these two examples because they encapsulate a large class of
scheduling problems.

A. Abstract formulation

Consider a collection ofN queues. Time is discrete and
is indexed byτ ∈ {0, 1, . . .}. Each queue has a dedicated
exogenous process of packet arrival. The arrival processesof
different queues are independent. All packets are assumed to
be normalized to unit length. Arrivals to each queue occur
according to a Bernoulli process.

The service to the queues is subject to scheduling constraints
in that not all queues can be served simultaneously. The
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Figure 1. Abstract model of the constrained queuing system

scheduling constraints present are described by a finite setof
feasible schedulesS ⊆ {0, 1}N . In each time slot a feasible
scheduleπ ∈ S is chosen and queuen is offered a serviceπn
in that time slot. Since each packet is of unit length, when a
non-empty queue receives service, a packet departs from the
queue. We assume thatS is monotone i.e., ifπ ∈ S , then
for anyσv ≤ π component-wise i.e.,σvn ≤ πn, σv ∈ S . Further,
we assume that for eachn, there exists a scheduleπ ∈ S that
serves it i.e.,πn = 1.

Packets exit the system from any of theM output lines. The
lines are assumed to operate at unit speed and hence at most
one packet can leave the network from each line in each time
slot. Each of theM output lines maintain buffers termed output
queues to store packets that are ready to depart. We assume
that routing is pre-determined and, hence, the destination
output line of each packet is known. After service, each packet
is moved to its destination output queue. Each output queue
operates using a single queue scheduling policy (eg. First
Come First Serve (FCFS), Weighted Fair Queuing (WFQ)
etc.). The served packets are queued and served according
to the single queue scheduling policy. Fig. 1 illustrates this
model.

Under this setup, the problem of scheduling is to choose
a feasibleschedule in each time slot to serve the queues and
move the packets to their respective output queues. Since the
scheduling policy for each of the output queues can be chosen
independently, the problem reduces to that of the constrained
collection of queues.

1) Notation: First, some general notation.R denotes the set
of real numbers andR+ the set of non-negative real numbers
i.e., R+ = {x ∈ R : x ≥ 0}. N denotes the set of natural
numbers{1, 2, . . .} and Z+ the set of non-negative integers
{0, 1, 2, . . .}. Let 0 and 1 denote the vectors of0s and1s
respectively. All the vectors in this paper are lengthN vectors.
Let 1{·} denote the indicator function,1true = 1 and1false= 0.
x+ denotesmax {x, 0} and we use theℓ1 norm |x| =

∑

n xn.
We also use the standard inner product〈a, b〉 =

∑

aibi.
Recall that we are assuming Bernoulli i.i.d arrivals. Let

τ

Qn(τ) An(τ)

Sn(τ)1{Qn(τ)>0}

Figure 2. The order in which service and arrivals happen during time slot
τ

An(τ) ∈ {0, 1} denotes the number of arrivals to queuen,
n = 1, 2, . . . , N , during time slotτ . The arrival rate to queue
n is denoted byλn i.e., Pr (An(τ) = 1) = λn ∀τ. λ = (λn)
denotes the arrival rate vector.Qn(τ) denotes the length of
queuen at the beginning of time slotτ . Q(τ) = (Qn(τ))
denotes the queue length vector.S(τ) ∈ S denotes the
feasible schedule chosen in time slotτ to serve the queues.
Without loss of generality, we assume that a feasible schedule
is chosen and service happens at the middle of the time slot,
and exogenous arrivals occur at the end of the time slot. This
is shown in Fig. 2. WithQn(τ) denoting the queue length at
the beginning of time slotτ , we have:

Qn(τ + 1) = (Qn(τ) − Sn(τ))
+ +An(τ) (1)

Finally, let Dn(τ) denote the cumulative departure process
of queuen i.e.,

Dn(τ) =
∑

t≤τ

Sn(t)1{Qn(t)>0}. (2)

2) Definitions:We now introduce some definitions. We call
a system rate stable, or simply stable in this paper, if the
following holds with probability1: for 1 ≤ n ≤ N ,

lim
τ→∞

Dn(τ)

τ
= λn (3)

An arrival rate vectorλ = (λn) is called admissible if∃
a scheduling policy under which the queuing network loaded
with λ has a queue size processQn(τ) such that

lim sup
τ

E [|Q(τ)|] < ∞ (4)

Let Λ denote the set
{

λ ∈ RN
+ : λ is admissible

}

. Λ is
called the throughput region or capacity region of the network.
Tassiulas and Ephremides (1992) [25] proved that:

relint co (S ) ⊆ co (S ) (5)

where co (S ) denotes the convex hull ofS i.e.,
{

µ ∈ RN
+ : µ =

∑

i αiπ
i, αi ≥ 0, πi ∈ S ,

∑

i αi ≤ 1
}

.
relint co (S ) denotes the relative interior ofco (S ) and
co (S ) denotes the closure ofco (S ). Denoterelint co (S )
by Λ′. It was also shown by Tassiulas and Ephremides (1992)
[25] that:
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Λ′ =
{

µ ∈ RN
+ : µ =

∑

i

αiπ
i;

αi ≥ 0, πi ∈ S ,
∑

i

αi < 1
}

.

We call a scheduling algorithm throughput optimal if∀ λ ∈ Λ′,
the system is rate-stable.

3) Constraint free network (CFN):We now introduce the
notion of a Constraint Free Network (CFN). A constraint
free network is defined as a queuing network in which all
the queues can be served simultaneously. Therefore, for a
CFN, S = {0, 1}N . Thus, scheduling just entails moving
arriving packets immediately to their respective destination
output queues.

As discussed in Related Work (Section I-B), fairness is well
understood for single queues. Therefore, using a single queue
fair scheduling scheme for each of the output queues yields a
fair scheduling algorithm for the CFN. We assume throughout
that a CFN is operating using a fair scheduling algorithm.
Along with a CFN we define a shadow CFN as follows: Given
a constrained queuing networkN , a CFNN ′ with the same
number of queues and fed with copies of exogenous arrivals
to N , is called the shadow CFN ofN .

We conclude this section with a brief motivation for the
definition of CFN. This also serves as a preview to our
approach to the problem. As mentioned earlier, the difficulty
in designing a fair scheduling algorithm for networks arises
because of the presence of constraints. In the absence of
such constraints, the notion of fairness is equivalent to that
of a single queue. Thus, we define an ideal network that is
constraint-free, whose performance we want to emulate. This
is in some sense the best we can do in providing fairness and,
thus, serves as a benchmark for defining notions of fairness.

B. Scheduling algorithms

We consider the problem of designing scheduling algorithms
for constrained queuing networks. A scheduling scheme or
algorithm is a procedure whereby an appropriate feasible
schedule is chosen in each time slot. In this paper, we will
be interested in a class of scheduling algorithms termed the
Maximum Weight (MW) Scheduling Algorithms. In general,
a maximum weight algorithm works as follows: In each time
slot τ , each queuen is assigned a weightωn(τ). This weight
is usually – but not necessarily – a function of the queue size
Qn(τ). Then, the algorithm chooses the schedule with the
maximum weight i.e.,

S(τ) = argmax
π∈S

〈ω(τ), π〉 (6)

A feasible scheduleπ ∈ S is said to be maximal if
∀σ ∈ S , π � σ component wise. The set of all maximal
feasible schedules will be denoted bySmax. It is reasonable
to assume that we want to serve as many queues as possible
in each time slot. Therefore, when the algorithm chooses
a feasible scheduleπ, we serve the queues according to a
maximal scheduleµ ∈ Smax such thatµ ≥ π.

Remark. An important special instance of the MW schedul-
ing algorithm is the one with queue sizes as the weights
i.e., ωn(τ) = Qn(τ). In their seminal work, Tassiulas and
Ephremides (1992) [25] (and independently McKeown et. al.
(1996) [26]) showed that the MW algorithm with queue sizes
as weights is rate stable.

Since these results, there has been a significant work on
designing high-performance, implementable packet scheduling
algorithms that are derivatives of maximum weight scheduling,
where weight is some function of queue-sizes. All of these
algorithms are designed to optimize network utilization as
well as minimize delay (for example, see recent work by
Shah and Wischik (2006) [27]). However, these algorithms
ignore the requirement of fairness. Specifically, it has been
observed that the maximum weight based algorithm can lead
to unwanted starvation or very unfair rate allocation when
switch is overloaded (for example, see work by Kumar, Pan
and Shah (2004) [28]). We provide a simple example of a
switch (detailed description given in the next subsection)to
illustrate this: Consider a 2 × 2 switch with arrival rate matrix
λ11 = λ21 = 0, λ12 = 0.6, λ22 = 0.5. Hereλij corresponds
to the arrival rate of traffic at input porti for output portj.
Under this loading, output port 2 is overloaded. If OQ switch
has Round Robin (or Fair) policy at output 2 so that traffic
from both inputs is served equally, then input 1 will get rate
0.5 and input 2 will get rate 0.5 from output 2. However, the
maximum weight matching policy, with weight being queue-
size (or for that matter any increasing continuous function
of queue-size), the algorithm will try to equalize lengths of
queues at both inputs. Therefore, input 1 will get service rate
0.55 while input 2 will get service rate 0.45 from output 2.

C. Input queued switch

We now discuss an input queued switch as a special instance
of the abstract model that we have described. As mentioned
before, a switch is present at the core of an Internet router.
A router moves packets from input ports to output ports.
Based on the final destination of the arriving packet, a router
determines the appropriate output port and then transfers the
packet accordingly. The transfer of packets to the correspond-
ing output ports is called switching.

There are various switching architectures, but we discuss
the one that is commercially the most popular. Consider an
input queued switch containingM input ports andM output
ports. The queues at the output ports correspond to the output
queues mentioned above, and hence we retain the notationM
for the number of output of queues; since we are considering
only switches with equal number of input and output ports,
the number of input ports is alsoM . Packets arriving for
input port i and destined for output portj are stored at input
port i in Qij . Note that for a switch, it is convenient to denote
the queues asQij instead of asQn, as we do in the generic
model. Further, note that the total number of queuesN =
M2. The switch transfers packets from input ports to output
ports using the switching fabric. The crossbar switching fabric
implemented in an input queued switch imposes the following
constraints on packet transfer from input to output ports: in
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Input 3

Input 1

Output3Output2

Input 2

Output1
Q31

Figure 3. A 3 port input queued switch showing two different possible
matchings.

each time slot, each input port can transmit at most one packet
and each output port can receive at most one packet. Therefore,
feasible schedules are matchings from input to output ports.
This is illustrated in Fig. 3. The left and right hand figures
illustrate two different possible matchings.

The scheduling algorithm in the input queued switch
chooses an appropriate matching in each time slot. To link
back to the abstract model that we described, note that an M
port switch hasN = M2 constrained queues; for the queues
we use the notation·ij and not ·n for all terms to clearly
reference the input and output ports. The set of all feasible
schedulesS corresponds to the set of all matchings in an
M ×M bipartite graph:

S =
{

π = (π)ij ∈ {0, 1}M×M :
M
∑

k=1

πik ≤ 1;

M
∑

k=1

πkj ≤ 1, 1 ≤ i, j ≤ M
}

.

Packets leave the switch from their respective output ports
and hence the output ports correspond to the output queues.
Since at most one packet arrives at each output port in each
time slot, the packet immediately departs from the output
queue. Thus, scheduling reduces to choosing an appropriate
matching in each time slot. We point an interested reader to
[19] for a more detailed exposition on switch architectures.

D. Wireless networks

We now consider wireless networks as a special instance
of the abstract model. Consider a collection of devices (eg.
sensor nodes, WiFi nodes, etc.) that are using the wireless
medium to transmit messages. The devices share the same
frequency to transmit and hence interfere when they transmit
simultaneously. Because of power constraints, only devices
that are close to each other geographically can communicate.
This is often modeled by a graph with a node for each device
and an edge between two nodes if they can communicate.

Power constraints also limit interference to nodes that are
close to each other; in other words, only nodes that are
connected by an edge interfere. Therefore, the graph also
models the interference constraints on scheduling. In other
words, transmission to a node is successful only if none of its
neighbors in the graph is transmitting at the same time. This
model of interference is termed theindependent setmodel of
interference.

Q31

Node 1

Node 2

Node 3

Figure 4. A 3 node wireless network

We assume that the network is modeled as a graphG =
(V , E) with V denoting the node set{1, 2, . . . , N} andE de-
noting the directed edge set{(i, j) : i communicates withj}.
Each nodei maintains a queueQij for each of its neighbors
j. We assume a single hop network in which packets arrive
at nodes, get transmitted to one of the neighbors and then
leave the network through output queues. Fig. 4 illustratesa
wireless network with three nodes operating under interference
constraints.

In this setup, the scheduling problem is to decide which
directed links will be active simultaneously. Constraints
limit feasible schedules to those in which none of the
neighbors of a receiver is transmitting; in other words,
if link (i, j) is active then none of the links in the set
{(l, k) ∈ E : (l, j) ∈ E OR (j, l) ∈ E} should be active. For
each network represented by graphG = (V , E), we can
construct a conflict graphG′ = (V ′, E ′) with a node for each
of the directed links and an edge between two links if they
cannot be active simultaneously. The feasible schedules then
reduce to independent sets in the conflict graph. Formally,

S =
{

π ∈ {0, 1}|V
′| : πi + πj ≤ 1, for all (i, j) ∈ E ′

}

(7)
It should be noted that using the conflict graph, more general

constraints in the network can be modeled as independent set
constraints. Thus, the model we are considering encapsulates
the essence of a large class of scheduling problems.

III. O UR APPROACH

Network resources are shared by different users and our goal
is to design a scheduling algorithm that allocates resources
in a fair manner. Before we can design such an algorithm,
there is a need to give a precise definition of the users and
the resources of the network. Traditionally, different traffic
flows were considered the users and the bandwidth allocated
to them the resource of the network. Link capacity constraints
limited the total amount of resources available, and each flow
was allocated its “fair” share of bandwidth. This is the basis
of the utility maximizationframework in which the utility of
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each flow was a function of the allocated bandwidth – the
more the bandwidth allocated, the greater the utility. Different
utility functions yield different fairness criteria. An inherent
limitation of this approach is that it considers entire flowsas
users, disregarding the fact that flows are not continuous but
are composed of packets. Moreover, bandwidth is a resource
that is allocated on an average over a long period of time
assuming that flow statistics remain constant over such long
periods.

We overcome this limitation by treating the Head-of-Line
(HoL) packet of each flow as the user of the network resources
(We assume that each queue is associated with a flow and
hence we use these terms interchangeably). This takes into
account the packetized nature of a flow and is a consequence
of the realization that in each time slot the decision is whether
to serve the HoL packet or not, unlike the case of a continuous
flow that can be given fractional service. Therefore, utilities
should correspond to HoL packets and not entire flows. With
HoL packets as the users, the network resource becomes the
service they receive in each time slot. The network resource
is limited by the constraint setS and the algorithm should
choose a feasible scheduleπ ∈ S in a manner that is “fair”
to all the HoL packets. Inspired by the utility maximization
framework, we could define utility functions for the HoL
packets and choose a feasible schedule that maximizes the
overall utility. But, there is no natural choice of the utility
function and hence we take a different approach.

We begin with the realization that packets do not have
natural utility functions, but they do have a natural preference
order of the feasible schedules. For each packet, there are two
classes of schedules – one class containing all schedules that
serve it and the other containing all schedules that do not. The
packet is indifferent to all the schedules in the same class and
the preference relation between schedules in different classes
depends on how “urgently” the packet wants to get served. Fair
scheduling now reduces to combining individual preferences in
a fair manner to come up with a “socially” preferred schedule.
This is equivalent to a ranked election problem: HoL packets
(queues) are voters, schedules are candidates and each packet
has a preference list of the schedules (refer to Section IV for
more details on the ranked election problem). The problem of
ranked election is very well studied in the Economics literature
(also called the theory of social choice). In their seminal work
in 1952, Goodman and Markowitz [5] prove that under certain
socially desirable postulates (detailed in Section IV), when the
voters have cardinal (quantitative) preferences over candidates,
a simple function of those quantitative preferences yieldsa
uniquely preferred outcome.

In order to use the Goodman and Markowitz result, we re-
quire not just relative preferences, but quantitative preferences
over the feasible schedules. By quantitative preferences we
mean that each packet assigns numerical weights to schedules;
the higher the weight, the more preferred the schedule. In
principle, the packet can assign any weights consistent with its
relative order of preferences to obtain quantitative preferences
over the schedules. But it is important to realize that the
choice of quantitative preference is crucial for obtainingthe
practically desired benefits of the fair scheduling. In our setup,

each packet has two classes of schedules: one that it prefers
to the other while being indifferent to schedules within the
same class. Therefore, the packet assigns the same weight to
all the schedules within the same class. Since only relative
preferences matter, we assume that each packets assigns the
same weight0 to all schedules in the class it does not prefer.
Assigning quantitative preferences now reduces to choosing a
weight for each packet to assign to the class of schedules it
prefers.

One feasible option would be to use queue sizes as weights.
The problem with this choice is that it is oblivious to flow
identities and is susceptible to manipulation (a flow can gain
advantage by overloading system with packets resulting in
large queue sizes). Another option would be to use the age
(waiting time in the system) of the packet. This choice is still
oblivious to flow and packet identities and it is difficult to
provide QoS by giving priority to one flow (packet) over other.
We overcome these problems by using the idea of emulation of
the shadow CFN. As mentioned in Related Work (Section I-B),
one way of designing a fair scheduling algorithm would be to
perfectly emulate a CFN using a fair queuing policy at each
of the output queues. But this results in a loss of throughput
of the system. Therefore, our approach would be to emulate
the shadow CFN as closely as possible. In this spirit, we use a
function of the departure time of the packet from the shadow
CFN as the weight; the earlier the departure time, the higher
the weight. The details of the exact function used are covered
in Sections V and VI.

We now tie this back to the utility maximization framework.
Using the Goodman and Markowitz algorithm with the above
choice of weights yields a MW style algorithm with the
weight of each queue equal to the weight assigned to the
packet. This is identical to the result we obtain by using
the assigned weights as utilities of packets and choosing a
schedule that maximizes overall utility. Therefore, our algo-
rithm yields utility functions for packets that can be used
in the utility maximization framework. This rather surprising
result connects our approach back to utility maximization very
nicely.

We then establish that such an algorithm is throughput
optimal under the standard stochastic model of a network.
To prove throughput optimality (rate stability to be precise),
we use an appropriate quadratic Lyapunov function. However,
we cannot use the standard stability proof technique based
on Foster’s criterion because the Lyapunov function is not a
function of queue-sizes, but is function ofpreferencesderived
from the shadow CFN. This makes the analysis rather non-
trivial.

To explain the consequences of our algorithm on fair emula-
tion, we present simulations for algorithms based on FIFO OQ
switch. Intuitively, our fair algorithm should be able to reduce
the queue-size (or delay) as well as get rid of starvation caused
by well-known throughput optimal algorithms. Our simulation
results clearly confirm this intuition.

IV. RANKED ELECTION

In this section we take a digression into Economics literature
to describe the ranked election problem.
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Definition 1 (Ranked election). There areM voters that vote
for C candidates. Vote of each voter consists of a ranking (or
permutation) of allC candidates. These votes can additionally
carry quantitative values associated with their preferences. Let
amc denote the value voterm gives to candidatec, for 1 ≤
m ≤ M , 1 ≤ c ≤ C. The goal of the election is to relative
order all theC candidates as well as produce the ultimate
winner in a manner that is consistent with the votes.

The key for a good election lies in defining consistency
of the outcome of election with votes. The following are
canonical postulates that are used in the literature on ranked
election:

P1. Between any two candidatesc andc′, suppose that none
of the M voters prefersc′ to c and at least one voter
prefersc to c′. Thenc′ should not be ranked higher than
c in the output of the election. This property corresponds
to the economic notion of weak Pareto optimality.

P2. Suppose the voters are renumbered (or renamed) while
keeping their votes the same. Then the outcome of
election should remain the same. In other words, the
election outcome is blind to the identity of the voters,
that is election outcome is symmetric.

P3. Now, consider the setup when the votes are cardinal (i.e.,
quantitative). Suppose candidatec is preferred toc′ by
the election. Then, by adding the same fixed constant to
all amc andamc′ for 1 ≤ m ≤ M , the relative order of
candidatesc andc′ should not change. This makes sense
because what matters is the difference in preference levels
for the two candidates, not the actual values.

In the absence of cardinal (or quantitative) preferences, the
question of ranked election with postulates P1, P2 (and some
additional postulates) was first studied by Arrow (1951) [29].
In his celebrated work, he established the (then) very surpris-
ing impossibility of the existence of any election scheme that
satisfies P1, P2 (and additional postulates) simultaneously. We
note that this result has been an important corner stone in the
field of theory of social choice.

Subsequent to Arrow’s impossibility result, many
economists started looking for positive results. Among
many other celebrated results, the result that is relevant to
this paper is that of Goodman and Markowitz (1952) [5].
They showed that if voters have cardinal preferences, as in
our setup, then there is a unique ordering of candidates that
satisfies P1-P2-P3 simultaneously. To describe their result,
consider the following: let the net score of a candidatec be
sc =

∑M

m=1 amc. Goodman and Markowitz obtained the
following remarkable result.

Theorem 2. Suppose the scores of all candidates are distinct.
Rank candidates as follows: candidatec has higher ranking
thanc´ if and only ifsc > s′c. This ranking satisfies postulates
P1-P2-P3. Further, this is the only such ranking.

For a proof of this result, we refer the reader to [5].

V. A NALOGY BETWEEN FAIR SCHEDULING AND RANKED

ELECTION

In this section, we motivate our fair scheduling algorithm
by establishing an equivalence between fair scheduling in a
constrained queuing networkN and the problem of ranked
election. In our context, the packets (queues) are the voters
and the feasible schedulesπ ∈ S are the candidates. In
order to use the Goodman and Markowitz setup, we need to
derive preferences for packets over schedules. For each packet,
there are two classes of schedules – one class containing all
schedules that serve it and the other containing all schedules
that do not. The packet is indifferent to all the schedules inthe
same class. Since only the relative weights matter, we assume
that a packet assigns a weight of0 to all schedules that do not
serve it.

We derive preferences for packets over schedules that serve
them from the corresponding shadow CFNN ´ that is operating
with a single queue fair scheduling policy at each of its
output queues. As defined before, a copy of every packet
arriving to the networkN is fed to the shadow CFNN ´.
That is, (a copy of) a packet arriving at queue n for output
queuem of N immediately joins the output queuem in
N ´. The departures from the output queues ofN ´ happen
according to an appropriate fair scheduling policy, sayP , such
as strict priority scheme, last-in-first-out or simply first-in-
first-out. Specifically, our objective in assigning preferences
is to have the departures of packets fromN be as close
as possible to the departures from the corresponding shadow
CFN N ´. Ideally, we wantN to exactly emulateN ´ i.e., we
want the departure times of packets from both the networks
to be exactly the same. However, we settle with approximate
emulation because, as shown by Chuang et. al. [19], exact
emulation is not possible at speedup 1. Since the preferences
of packets are chosen fromN ´ and these preferences are
combined in a fair manner, the fair scheduling polices at the
output queues ofN ´ can now be chosen according to the
desired requirements.

Based on the above discussion, our approach is to use a
value that is a function of the departure time of the packet
fromN ´ – the earlier the departure time, the higher the value
assigned. More specifically, letpτn denote the HoL packet
in queuen of network N at time τ . Let dn(τ) denote the
departure time ofpτn from N ´. For the following discussion
we assume that the queue is non-empty and hencedn(τ) is
well defined. We defer the discussion of empty queues to the
next section. Now, each queuen assigns a value ofτ−dn(τ) to
all the schedules that serve it. (The choice ofτ−dn(τ) seems
arbitrary, when we could have taken any decreasing function
of dn(τ). Indeed we can, though it should have some “nice”
properties to maximize throughput. Details are in Section VII).
This completes the equivalence.

Taking a closer look at the weightτ − dn(τ), note the
following. Suppose at timeτ the packetpτn is already late
i.e, dn(τ) < τ . In this case, the weightτ − dn(τ) > 0, which
means thatpτn prefers all schedules that serve it to all the
schedules that do not by weightτ − dn(τ). Thus, the more
delayed the packet is, the higher the weight it assigns. On
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the other hand, when the packet is not late i.e.,dτn > τ , pτn
prefers schedules that do not serve it in order to give a chance
to packets that are late to get served.

Now, with the above assignment of values to each schedule
by each queue, the value of a scheduleπ ∈ S is given as:

value(π) =

N
∑

n=1

πn(τ − dn(τ))

= 〈τ − d(τ), π〉

The postulates P1-P2-P3 translate into the following postu-
lates for network scheduling.

P1′. Between any two schedulesn1 andn2, suppose that none
of the N HoL packets prefern2 to n1 and at least one
HoL packet prefersn1 to n2. Then, we should not choose
n2.

P2′. For given HoL packets, letπ be the outcome of the
election as per the above preferences for schedules. Then,
by renumbering queues while retaining the same HoL
preferences, the outcome of election should be only
renumberedπ. In other words, the election does not give
unfair priority to any port and thus is symmetric in its
inputs.

P3′. Suppose scheduleπ1 is preferred toπ2 by the election.
By adding the same fixed constant toτ − dn(τ) for all
n, the outcome of the election should remain unchanged.

The election algorithm of Goodman and Markowitz suggests
that the following scheduleS(τ) should be chosen:

S(τ) ∈ arg max
π∈Smax

〈τ − d(τ), π〉

VI. M OST URGENT CELL FIRST (MUCF(f )) ALGORITHM

Based on the discussion in the previous section, we propose
a fair scheduling algorithm called themost urgent cell first
algorithm. According to this algorithm, packets are scheduled
according to the maximum weight schedule (MWS) with ur-
gencies of queues as weights with the urgencyUn(τ) of queue
n defined asτ − dn(τ) if it is non-empty i.e., the more “late”
the packet is, the higher is its urgency. If queuen is empty
we define its urgency as−max

{

0,−minn : Qn(τ)>0Un(τ)
}

.
Note that according to this definition, the weight assigned to a
schedule by an empty queue is always less than or equal to the
weight assigned by any non-empty queue in the system. There-
fore, as desired, the fair schedule chosen by the algorithm tries
to minimize the number of empty queues it serves. Of course,
as mentioned in the previous section, we could have used
any increasing function of the urgency. In particular, suppose
f : R → R denotes a non-decreasing bi-Lipschitz continuous
function with Lipschitz constantρ > 1 i.e., for anyx, y ∈ R,
1/ρ |x− y| ≤ |f(x)− f(y)| ≤ ρ |x− y|. Without loss of
generality, we assume thatf(0) = 0; thus,f(x) ≥ 0 for x ≥ 0.
The MUCF(f ) algorithm now chooses the MWS with weight
of queuen equal toUf

n (τ), defined asf(Un(τ)). Formally,
the three components of the algorithm are as follows:

1) The arriving packets are queued according to theFIFO
queuing policy in each of the N constrained queues.

2) For a packetp in N , let d(p) denote its departure time
from N ´. Then, the arriving packets in each of theM
output queues are queued in the order of their respective
departure times fromN ´. More formally, in every output
queuem, a packetp will be ahead of every packetp´
that satisfiesd(p´) > d(p).

3) In each time slotτ , the algorithm chooses a feasible
scheduleS(τ) from S using a MW criterion as follows:

S(τ) ∈ arg max
π∈Smax

〈

Uf(τ), π
〉

(8)

VII. T HROUGHPUT OFMUCF(f ) ALGORTIHM

The previous section described how we arrived at MUCF
algorithm as a fair algorithm based on preferences obtained
from a shadow CFN. As established in the previous section,
Theorem 2 implies that MUCF is the only algorithm that
satisfies the desirable postulates P1′-P2′-P3′. In this section,
we state and prove the throughput optimality property of
the MUCF algorithm. The proof of the algorithm is non-
traditional and requires new techniques that may be of interest
for analysis of such non-queue based weighted algorithms.

Theorem 3. Consider a constrained queuing system with an
arbitrary set of constraintsS . Suppose the system is loaded
with an i.i.d. Bernoulli arrival process, and is operating under
the MUCF(f ) algorithm withf(·) a bi-Lipschitz function.
Then, if the rate vector is strictly admissible, the queuing
network is rate stable.

Before we prove Theorem 3 we need the following notation
and lemmas.
Notation. First, some useful notation. Consider the HoL
packetpτn of queuen in networkN at the beginning of the
time slot τ . As before, letan(τ) be its time of arrival and
dn(τ) be the time of its departure fromN ´, Un(τ) be its
urgency as defined above, andWn(τ) be its waiting time (i.e.,
τ − an(τ) if the queue is non-empty and0 if it is empty). Let
W f

n (τ) denotef(Wn(τ)) andF (y) denote
´ y

o
f(x)dx. Also,

define∆n(τ) asWn(τ) − Un(τ). We note that if queuen is
empty, thenWn(τ) = 0 andUn(τ) is as defined above. Hence,
∆n(τ) is always non-negative. LetBk

m, m = 1, 2, . . . ,M ,
denote the length of thekth busy cycle at output queuem in
N ´. Finally, for any functiong : R → R and a vectorv ∈ RN ,
g(v) ∈ RN denotes(g(vn)). Before we state the lemmas and
prove Theorem 3, note the following property ofF (·):

F (0) = 0, F (y) ≥ 0, for all y ∈ R. (9)

The equalityF (0) = 0 follows directly from the definition
of F (·). Coming toF (y) ≥ 0, note that sincef(·) is non-
decreasing andf(0) = 0, it follows that f(x) ≤ 0 for x ≤
0 and f(x) ≥ 0 for x > 0. Hence, fory > 0, F (y) =
´ y

0
f(x)dx ≥ 0 sincef(x) ≥ 0 for x > 0. Similarly, fory < 0,

F (y) =
´ y

0 f(x)dx =
´ 0

y
(−f(x))dx ≥ 0 since−f(x) ≥ 0

for x < 0.
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Lemma 4. Let L(τ) : = 〈F (W (τ)), λ〉 =
∑

n F (Wn(τ))λn.
Then, under the MUCF(f ) algorithm withf(·) a bi-Lipschitz
function andλ being strictly admissible, there exists anε > 0
such that

E [L(τ + 1)− L(τ)] ≤ −εE [|W (τ)|] + 2E [|∆(τ)|] +K,

for some constantK.

Lemma 5. Under the MUCF(f) algorithm, with f(·) a bi-
Lipschitz function andλ being strictly admissible, suppose
Zτ = 1

τ log τ

∑τ

i=1 |W (i)| and E [Zτ ] ≤ O(1) < ∞ for all
τ. Then, we must have

Pr

(

lim
τ→∞

1

τ
|W (τ)| = 0

)

= 1. (10)

Lemma 6. Let Θm(τ) denote max0≤k≤τ B
k
m, for m =

1, 2, . . . ,M . Then, under a strictly admissibleλ with the
output queues ofN ´ operating under a Work Conserving
Policy (WCP), the following is true for alltand 1 ≤ m ≤ M ,

E [Θm(τ)] ≤ O(log τ)

We will first prove the result of Theorem 3 assuming the
results of Lemmas 4 and 6, and defer their proof until after
the proof of Theorem 3.

Proof of Theorem 3:We first note that if queuen is non-
empty then

∆n(τ) ≤ max
0≤k≤τ

Bk
m (11)

wherem is the destination output queue of packetpτn. This
is true because when queuen is non-empty,∆n(τ) denotes
the waiting time ofpτn in its destination output queue inN ´,
and hence cannot be more than the length of the busy cycle
it belongs to. Since there can be at mostτ busy cycles up to
time τ and pτn arrived toN ´ beforeτ , (11) should be true.
Therefore, from lemma 6 and (11) it follows that:

E [∆n(τ)] ≤ O(log τ) (12)

If queuen is empty, then by definition it follows that either
∆n(τ) = 0 or ∆n(τ) = dn′(τ) − τ , for some queuen′ that
is non-empty. Since,∆l(τ) ≥ 0 ∀l, τ , we have from (12) that
E [∆n(τ)] ≤ E [∆n′(τ)] ≤ O(log τ). Hence, (12) is valid even
for empty queues and it thus follows that:

E [|∆n(τ)|] ≤ O(log τ) (13)

From lemma 4 and (13), we obtain the following:

E [L(τ + 1)− L(τ)] ≤ −εE [|W (τ)|] +O(log τ) +K, (14)

Telescopic summation of (14) from1, 2, . . . , τ , we obtain
(after cancellations),

E [L(τ + 1)] ≤ E [L(0)]− εE

[

τ
∑

i=1

|W (i)|

]

+O(τ log τ) + τK, (15)

Now, the network starts empty at time0. Therefore,
E [L(0)] = 0. Further,L(·) is non-negative function. There-
fore, (15) gives us

εE

[

τ
∑

i=1

|W (i)|

]

≤ O(τ log τ) + τK. (16)

Dividing both sides byετ log τ, we obtain

E

[

1

τ log τ

τ
∑

i=1

|W (i)|

]

≤ O(1). (17)

Let Xτ = 1
τ

∑τ

i=1 |W (i)| andZτ = Xτ

log τ
. From (17), we

haveE [Zτ ] ≤ O(1) < ∞ for all τ . It now follows from
Lemma 5 that

Pr

(

lim
τ

1

τ
|W (τ)| = 0

)

= 1 (18)

Using (18), we complete the proof of rate stability of the
algorithm as follows. At timeτ , the waiting time of the HoL
packet of queuen is Wn(τ). Because of FIFO policy and at
most one arrival per time slot, we have that the queue-size of
queuen at timeτ , Qn(τ) ≤ Wn(τ). From (18), we have that

lim
τ→∞

Qn(τ)

τ
= 0, with probability 1. (19)

Now, Qn(τ) observes the following dynamics:

Qn(τ) = Qn(0) +
∑

t≤τ

An(t)−Dn(τ), (20)

where the second term on RHS is the cumulative arrival to
queuen till time τ while the third term is the cumulative
departure from queuen till time τ . By strong law of large
numbers (SLLN) for Bernoulli i.i.d. process we have that:

lim
τ→∞

1

τ

∑

t≤τ

An(t) = λn.

Using this along with (19) and (20), we obtain

lim
τ→∞

Dn(τ)

τ
= λn, with probability 1,∀n.

This completes the proof of Theorem 3.
Proof of Lemma 5:Suppose (10) is not true. Then, since

|W (τ)| ≥ 0 we have that for someδ > 0,

Pr (|W (τ)| ≥ δτ, i.o.) ≥ δ, (21)

where “i.o.” means infinitely often. Now if|W (τ)| ≥ δτ ,
then there exists an HoL packet that has been waiting in the
network for time at leastδτ/N . This is true because|W (τ)|
is the sum of waiting times of at mostN HoL packets.
Call this packetp. This packet must have arrived at time
≤ τ − δτ/N = τ(1− δ)N−1. Since waiting time of a packet
increases only by1 each time-slot, the waiting time of packet
p must be at least0.5δτ/N in time interval [τ1, τ ], where
τ1 = τ − 0.5δτN−1 = τ(1 − 0.5δN−1). Now, consider any
time τ ′ ∈ [τ1,τ ]. The packet waiting at the HoL of the queue
that containsp must have waiting time higher than that ofp
due to the FIFO ordering policy. Therefore, the contribution
to |W (τ ′)| by HoL packets of the queue that contains packet
p is at least0.5δτN−1. Therefore, we obtain

τ
∑

τ ′=τ1

|W (τ ′)| ≥ (τ − τ1)
δτ

2N
=

δ2τ2

4N2
(22)
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Therefore, by the definition ofXτ and non-negativity of
|W (·)|, we have the following logical implication:

|W (τ)| ≥ δτ =⇒ Xτ ≥
δ2τ

4N
(23)

Thus, if (21) holds then by (23) we have

Pr

(

Xτ ≥
δ2τ

4N2
, i.o.

)

≥ δ. (24)

Now observe the following relation ofXt: since|W (·)| ≥ 0,

Xt+1 ≥

(

1−
1

t+ 1

)

Xt.

For any integerL > 0 and any integert′ ∈ [t, t+ L], we can
now write

Xt+L ≥
t+L
∏

i=t′+1

(

1−
1

i

)

Xt′ ≥
t+L
∏

i=t+1

(

1−
1

i

)

Xt′

≥

(

1−
1

t

)

Xt′ .

Now, for anyα > 1, let L = ⌊tα⌋ − t, which implies that
L ≤ (α− 1)t. We can then write for any integert′ ∈ [t, αt],

X⌊tα⌋ ≥

(

1−
1

t

)L

Xt′ ≥

(

1−
1

t

)(α−1)t

Xt′ .

Since
(

1−
1

t

)(α−1)t

≈ exp(−α+ 1),

taking α = 1.5, for t large enough, it follows that
(

1− 1
t

)(α−1)t
≈ exp(−1/2) ≥ 1/2. Thus, fort large enough

and any integert′ ∈ [t, 1.5t]

X⌊1.5t⌋ ≥
1

2
Xt′ (25)

DefineYk = X⌊1.5k⌋ for k ≥ 0. Then, the following are direct
implications of (25): for anyθ > 0,

Xτ ≥ θτ i.o. =⇒ Yk ≥ θ1.5k/3, i.o.;

Yk ≥ θ1.5k, i.o. =⇒ Xτ ≥ θτ, i.o.. (26)

The first implication is true because for anyτ such thatXτ ≥
θτ,we can find ak such thatτ ∈ [1.5k−1, 1.5k]. It then follows
from (25) thatYk = X⌊1.5k⌋ ≥ 1/2Xτ ≥ θτ/2 ≥ θ1.5k−1/2.
Similarly, for the second implication, wheneverYk ≥ θ1.5k,
taking τ =

⌊

1.5k
⌋

, we can writeXτ ≥ θ1.5k ≥ θτ.
It follows from (26) that Pr (Xτ ≥ θτ) ≤

Pr
(

Yk ≥ θ1.5k/3
)

. Thus, in order to complete the proof of
(18) by contradicting (24), and thereby (21), it is sufficient to
show that forθ = δ2/(4N2),

Pr
(

Yk ≥ θ1.5k/3, i.o.
)

= 0.

For this, let eventEk =
{

Yk ≥ θ1.5k/3
}

. Then, from
E [Zt] ≤ O(1), relations Yk = X1.5k , Zk = Xk

log k
and

Markov’s inequality we obtain that

Pr (Ek) ≤
3E [Yk]

θ1.5k
=

3 log
⌊

1.5k
⌋

E
[

Z⌊1.5k⌋

]

≤ O

(

k

1.5k

)

.

Therefore,

∑

k

Pr (Ek) ≤
∑

k

O

(

k

1.5k

)

< ∞.

Therefore, by Borel-Cantelli’s Lemma, we have that

Pr (Ek i.o.) = 0.

This completes the proof of the lemma.
Proof of Lemma 4: Define the following: for alln

W̃n(τ + 1) = Wn(τ) + 1− βnS
∗
n(τ)

where S∗
n(τ) is the schedule of MUCF algorithm andβn

is the inter-arrival time for the arrival process to queuen.
When the queue is empty, treatβn as an independent r.v.
without any meaning, while if queue is not empty then treat
it as the inter-arrival time between the packet being served
and the packet behind it. In either case, due to the FIFO
policy βn is totally independent of the scheduling decisions
performed by the algorithm till (and including) timeτ and
the information utilized by the algorithm. Therefore, we will
treat it as an independent random variable with Geometric
distribution of parameterλn (since arrival process is Bernoulli
i.i.d.). Consider the following: for anyτ ,

F
(

W̃n(τ + 1)
)

− F
(

Wn(τ)
)

=

ˆ W̃n(τ+1)

Wn(τ)

f(x)dx (27)

It is easy to see that,

ˆ W̃n(τ+1)

Wn(τ)

f(x)dx =

ˆ 1−βnS
∗

n
(τ)

0

f (y +Wn(τ)) dy (28)

Since f(·) is non-decreasing bi-Lipschitz continuous with
f(0) = 0, we have

f (y +Wn(τ)) = f (y +Wn(τ)) − f (Wn(τ)) + f (Wn(τ))

≤ |f (y +Wn(τ)) − f (Wn(τ))|+W f
n (τ)

≤ ρ |y|+W f
n (τ) (29)

Now, it follows from (27), (28), and (29) that

F
(

W̃n(τ + 1)
)

− F
(

Wn(τ)
)

≤ ρ (1− βnS
∗
n(τ))

2
+ (1− βnS

∗
n(τ))W

f
n (τ) (30)

Using (30) and the fact thatβn is a Geometric r.v. with mean
1/λn, we have the following:

E

[

∑

n

λnF
(

W̃n(τ + 1)
)

−
∑

n

λnF
(

Wn(τ)
)

∣

∣

∣

∣

W (τ)

]

≤
∑

n

W f
n (τ)λn −

∑

n

W f
n (τ)S

∗
n(τ) + ρ

∑

n

λn

− 2ρ
∑

n

S∗
n(τ) + 2ρ

∑

n

S∗
n(τ)λ

−1
n (31)

Here we have used the fact thatS∗
n(τ) ∈ {0, 1} and hence

(S∗
n(τ))

2
= S∗

n(τ), andE
[

β2
n

]

= 2/λ2
n−1/λn ≤ 2/λ2

n. Using
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the fact that
∑

n λn ≤ N,
∑

n S
∗
n(τ) ≤ N andλ−1

n < ∞ for
all n such thatλn 6= 0, we obtain

E

[

∑

n

λnF
(

W̃n(τ + 1)
)

−
∑

n

λnF
(

Wn(τ)
)

∣

∣

∣

∣

W (τ)

]

≤
〈

W f
n (τ), λ − S∗(τ)

〉

+K (32)

whereK is a large enough constant. Now, defineSw(τ) as

Sw(τ) = arg max
π∈Smax

∑

n

〈

W f (τ), π
〉

.

That is,Sw(τ) is the maximum weight schedule with weight
of queuen asW f

n (τ). Consider the following:
〈

W f (τ), λ − S∗(τ)
〉

=
〈

W f (τ), λ − Sw(τ)
〉

+
〈

W f (τ) − Uf (τ), Sw(τ) − S∗(τ)
〉

+
〈

Uf (τ), Sw(τ)− S∗(τ)
〉

. (33)

From the definition ofS∗(τ), Sw(τ), ∆(τ)(= W (τ)−U(τ)),
and bi-Lipschitz continuity off(·) it follows that

〈

Uf(τ), Sw(τ) − S∗(τ)
〉

≤ 0 (34)
〈

W f (τ) − Uf(τ), Sw(τ) − S∗(τ)
〉

≤ ρ 〈∆(τ),1〉 (35)

Now, for strictly admissibleλ such thatλ =
∑

k αkπ
k with

∑

k αk = 1− γ for someγ ∈ (0, 1) , we obtain that
〈

W f (τ), λ − Sw(τ)
〉

=

〈

W f (τ),
∑

k

αkπ
k

〉

−

(

γ +
∑

k

αk

)

〈

W f (τ), Sw(τ)
〉

=
∑

k

αk

〈

W f (τ), πk − Sw(τ)
〉

− γ
〈

W f (τ), Sw(τ)
〉

(36)

SinceSw(τ) is the maximum weight schedule with weight of
queuen asWn(τ):

〈

W f , πk − Sw(τ)
〉

≤ 0 ∀k (37)

Thus, it follows from (36) and (37) that
〈

W f (τ), λ − Sw(τ)
〉

≤ −γ
〈

W f (τ), Sw(τ)
〉

. (38)

Now since allN entries can be covered byN distinct feasible
schedules, it follows that the weight of maximum weight
matching is at least1/N the sum of weights of all the entries.
That is

〈

W f (τ), Sw(τ)
〉

≥
1

N

∑

n

W f
n (τ)

=

∣

∣W f (τ)
∣

∣

N
≥

1

ρ

|W (τ)|

N
(39)

The last inequality follows from the bi-Lipschitz continuity of
f(·). Combining (32)-(39) and taking further expectation with
respect toW (τ), we obtain

E

[

∑

n

λnF
(

W̃n(τ + 1)
)

−
∑

n

λnF
(

W (τ)
)

]

≤ εE [|W (τ)|] + ρE [|∆(τ)|] +K, (40)

where ε = γ
ρN

. To complete the proof, note that if queue

n is non-empty after service at timeτ , then W̃n(τ + 1) =

Wn(τ + 1). Else,Wn(τ + 1) = 0 and thus it follows from

(9) that F
(

W̃n(τ + 1)
)

≥ 0 = F (0) = F (Wn(τ + 1)) .

This inequality along with (40) implies the desired claim of
Lemma 4.

Proof of Lemma 6: This result corresponds to a
constraint-free network in which scheduling at different output
queues is independent. Hence, we will prove the result for a
single queue operating under a WCP and strictly admissible
loading. We use the same notation, but with subscriptm’s
dropped. For a single queue operating under a WCP and
strictly admissible loading, busy cycle lengths form an i.i.d
process i.e.,Bk are i.i.d. We now look at the large deviation
behavior of this process. For a particulark and timet = 0
starting from the beginning of busy cycleBk, let I(t) denote
the cumulative arrival process duringBk. Now consider the
eventBk > t. If the length of the busy cycle is greater than
t, it implies that the queue has been non-empty up to time
t. Further, since the service process is work conserving, it
follows that there has been one departure every time slot and
hence a total oft departures up to timet. Since the total
number of departures cannot be more than the total number
of arrivals, it follows thatI(t) > t. Thus, we conclude that
the eventBk > t implies the eventI(t) > t. For large enough
t, we can now write

Pr
(

Bk > t
)

≤ Pr (I(t)− t > 0) ≤ C exp (−Dt) (41)

whereC and D are some non-negative constants. The last
inequality follows from Chernoff bound, which can be used
because arrivals happen according to a Bernoulli process. Let
Θ denote the random variablemaxk≤τ B

k. Then, we have the
following:

E [Θ] =
∑

t

Pr (Θ > t) =
∑

t<Γ

Pr (Θ > t) +
∑

t≥Γ

Pr (Θ > t)

≤ Γ +
∑

t≥Γ

Pr (Θ > t) (42)

(42) is true for any non-negative integerΓ. In particular,
chooseΓ large enough such that (41) is true∀t ≥ Γ. It now
follows from union bound that

∑

t≥Γ

Pr (Θ > t) ≤
∑

k≤τ

∑

t≥Γ

Pr
(

Bk > t
)

≤ O (τ exp(−DΓ)) (43)

The second inequality follows from (41). Now by choosing
Γ = O (log τ) we can bound

∑

t≥Γ Pr (Θ > t) by 1. It now
follows from (43) that

E

[

max
k≤τ

Bk

]

≤ O (log τ) .

VIII. E XPERIMENTS

We carried out simulations to evaluate the performance of
our algorithm in the context of IQ switches. We assumed a
FIFO queuing policy at the input ports of the IQ switch. We
compared the performance of our algorithm with the Longest
Queue First (LQF) and Oldest Cell First (OCF) algorithms.
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Figure 5. Comparison of the logarithm of Expected latenciesof different
scheduling algorithms

We used the fixed-length packet switch simulator available at
http://klamath.stanford.edu/tools/SIM/.

We first explain the simulation setting: The switch size is
N = 16. The buffer sizes are infinite. The policy used is
FIFO. All inputs are equally loaded on a normalized scale,
andρ ∈ (0, 1) denotes the normalized load. The arrival process
is Bernoulli i.i.d. We use a Uniform load matrix, i.e.,λij =
ρ/N ∀i, j. We ran our simulation for 2.1 million time steps
removing the first100, 000 time steps to achieve steady-state.

Because we are approaching this problem from the per-
spective of fairness, we evaluate the aforementioned switching
algorithms in terms of Latency and Output-Queue (OQ) Delay.
OQ delay is defined as the difference of the departure times
of a packet in the input queued switch and the shadow OQ
switch. Further, the goal cannot only be to achieve a better
expected latency, but in fact, we wish to value consistency,or
relatively few deviations from the mean. One measure for this
are higher moments of the variables. Thus, here we provide
plots for the logarithm of first and second moments of both
Latency and the OQ Delay versus a uniform load ofρ. Figures
5 and 6 plot respectively the logarithm of the first and second
moments of the latency. We observe that for lower loads, i.e.,
for ρ < 0.45 the performance of all the three algorithms is
almost the same. But for higher loads, the first moment of
LQF and MUCF are better than OCF. Fig. 6 shows that in
terms of the second moment, MUCF performs the best and
LQF the worst, with OCF lying between. This is in line with
our expectations because, as mentioned earlier LQF is not fair
and hence performs badly at higher moments. MUCF performs
better than OCF for both the moments.

Figures 5 and 6 correspond to latency and figures 7 and
8 correspond to OQ delay. We observe that MUCF performs
better than the other two algorithms for both the metrics at
all the loads, especially for the second moments illustrating
fairness. Thus, the simulations illustrate that MUCF tracks the
performance of an OQ switch better than LQF and OCF.
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Figure 6. Comparison of the logarithm of second moments of the latencies
of different scheduling algorithms.
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Figure 7. Comparison of the logarithm of expected output queued delays of
different scheduling algorithms.

IX. CONCLUSION

In this paper, we considered the problem of designing a
fair scheduling algorithm for constrained queuing systems.
Fairness in networks is not only an intuitively desired goal,
but also one with many practical benefits. Most of the existing
work concentrates on fairly allocating bandwidth to different
flows in the network. A major limitation of this approach is
that it disregards the packetized nature of flows. We overcame
this problem and proposed a packet based notion of fairness by
establishing a novel analogy with the ranked election problem.
Ranked election is a widely studied problem in the Economics
literature, and this analogy allowed us to leverage that work.
This results in a packet based notion of fairness and an
algorithm to achieve this fairness.

Rather surprisingly, the algorithm turned out be the fa-
miliar MW style algorithm. Moreover, it does not require
the knowledge of flow arrival rates. Our fairness algorithm

http://klamath.stanford.edu/tools/SIM/
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Figure 8. Comparison of the logarithm of second moments of the output
queued delays of different scheduling algorithms.

also fits into the utility maximization framework that is more
popular for designing fair algorithms. This, in some sense,
validates our approach. We also proved that our algorithm
is throughput optimal. This result is very crucial since the
emulation approach already achieves fairness, but with a loss
of throughput. Also, the proof is non-trivial and requires some
non-traditional techniques to be introduced because existing
proof techniques don’t directly apply. We believe that the
proof techniques we introduced are more widely applicable
to similar problems and this is another important contribution
of the paper. Finally, our simulation results corroborate the fact
that our algorithm is better at providing fairness than the more
popular algorithms in the context of input queued switches.
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