
ш ш іі) тш тш
< .!>■ ̂ ̂ '"■*'■ Ui-U!̂ '''

Í E ? ;■ ; r , ; V , · , ! -

WEIGHTED ROUND ROBIN SCHEDULING IN
INPUT-QUEUED PACKET SWITCHES SUBJECT TO

DEADLINE CONSTRAINTS

A T H E SIS

S U B M IT T E D T O T H E D E P A R T M E N T O F E L E C T R IC A L A N D

E L E C T R O N IC S E N G IN E E R IN G

A N D T H E IN S T IT U T E O F E N G IN E E R IN G A N D S C IE N C E S

O F B IL K E N T U N IV E R S IT Y

IN PA R T IA L F U L F IL L M E N T O F T H E R E Q U IR E M E N T S

F O R T H E D E G R E E O F

M A S T E R O F S C IE N C E

By

Idris A. Rai

July 2000

15·?. Г

looû

B053005

1 certify that I have read this thesis and that in rny opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

■ J ,

Assist. Prof. Dr. 'Murat Alanyali(Supervisor)

I certify that I have read this thesis and that in rny opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Erdal Ankan

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Ezhan Kara.§an

Approved for the Institute of Engineering and Sciences:

Prof. Dr. MehrneÖ--Biifay
Director of Institute of Engineering and Sciences

ABSTRACT

WEIGHTED ROUND ROBIN SCHEDULING IN
INPUT-QUEUED PACKET SWITCHES SUBJECT TO

DEADLINE CONSTRAINTS

Idris A. Rai

M.S. in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Murat Alanyali

July 2000

In this thesis work, the problem of scheduling deadline constrained traffic is stud

ied. The problem is explored in terms of Weighted Round Robin (WRR) service

discipline in input queued packet switches. Application of the problem may arise

in packet switching networks and Satellite-Switched Time Division Multiple Ac

cess (SS/TDMA) systems. A new formulation of the problem is presented. The

main contribution of the thesis is a ’’backward extraction” technique to schedule

packet forwarding through the switch fabric. A number of heuristic algorithms,

each based on backward extraction, are proposed, and their performances are

studied via simulation. Numerical results show that the algorithms perform

significantly better than earlier proposed algorithms. The experimental results

strongly assert Philp and Liu conjecture.

Keywords: input-queued packet switches, weighted round robin (WRR), schedul

ing algorithms, maximum matching. Quality of Service (QoS).

Ill

ÖZET

GİRİŞ-KUYRUKLU PAKET ANAHTARLARINDA SON-GÜN

KISITLI TRAFİK İÇİN AĞIRLIKLI-DAİRESEL-SIRALI

ZAMAN ÇİZELGELEMESİ

Idris A. Rai

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Murat Alanyalı

Temmuz 2000

Bu tezde son-gün kısıtlı paket trafiğinin giriş-kuyruklu paket anahtarlarındaki

zaman çizelgelemesi problemi ele alınmaktadır. Problemin çözümü için Ağırlıklı-

Dairesel-Sıralı servis disiplini öngörülmüştür. Ele alınan durum paket anahtar-

lamalı ağlarda ve uydu anahtarlamalı zaman bölütlemeli sistemlerde ortaya

çıkmaktadır. Tezde problemin yeni bir formülasyonu verilmiştir. Tezin ana

özgün katkısı anahtardan paket geçişini çizelgelemek için kullanılan bir “geriye

doğru çıkarma” tekniğidir. Herbiri bu tekniğe dayanan buluşsal çizelgeleme algo

ritmaları önerilmiş ve bu algoritmaların başarımları benzetimlerle örneklenerek

çalışılmıştır. Elde edilen sayısal sonuçlar algoritmaların başarımının daha

önceden kullanılan algoritmalara göre çok daha iyi olduğunu göstermektedir.

Deneysel sonuçlar ayrıca Philp ve Liu tarafından ileri sürülen bir sanıtı destek

lemektedir.

Anahtar Kelimeler: Giriş-kuyruklu paket anahtarları, ağırlıklı-dairesel-sıra, za

man çizelgeleme algoritmaları, en fazla eşleme, servis kalitesi.

IV

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my supervisor Assist. Prof. Dr. Murat

Alanyali for his guidance, suggestions and invaluable encouragement throughout

the development of this thesis.

I would like to thank Prof. Dr. Erdal Arikan and Assist. Prof. Ezhan Kara§an

for reading and commenting this thesis.

Contents

1 INTRODUCTION

2 BACKGROUND INFORMATION

2.1 Switching B ackground.. 4

2.2 Survey of Previous Work

2.2.1 Scheduling Algorithms for Pure FIFO switches.................. 9

2.2.2 Scheduling Algorithms for non-FIFO sw itch es.................. 10

2.2.3 Scheduling Traffic with Deadline Constraints..................... 13

2.2.4 Fluid Tracking Policies in Packet Sw itches......................... 15

3 PROBLEM FORMULATION 17

3.1 Weighted Round Robin Scheduling 18

3.2 Weighted Round Robin Scheduling in Input Queued Packet Switches 19

3.3 Analytical Problem Formulation... 21

3.4 Backward Extraction and Philp and Liu Conjecture..................... 25

VI

3.5 Delay Bounds for Periodic T raffic .. 29

3.6 Feasible Schedule for 2x2 Switch 30

3.7 Per-Port vs Per-VC Scheduling 31

4 HEURISTIC ALGORITHMS 33

4.1 Basic Algorithm... 33

4.2 Variations of Basic A lgorithm .. 37

4.2.1 Oldest Deadline First A pproach.. 37

4.2.2 Balancing Service Ratios A pproach 41

4.2.3 Deadline Relaxations.. 43

5 NUMERICAL RESULT 44

5.1 Traffic Matrix Generation 44

5.2 Discussion of Numerical R esu lts .. 45

6 SUMMARY 56

vn

List of Figures

2.1 A Generic Switch.

2.2 Output Queued Switch.

2.3 Input Queued Switch.

2.4 Virtual Output Queuing.. 8

2.5 Combined Input Output Queued switch.. 8

3.1 Input Queued Weighted Round Robin (IQ-WRR)........................... 20

3.2 Per-VC vs Per-Port Scheduling... 31

4.1 The Basic Algorithm.. 34

4.2 Oldest Deadline First Approach.. 38

4.3 Balancing Service Ratios Approach.. 42

4.4 Deadline Relaxation by 1 time slot... 43

5.1 Success rates of Basic Algorithm, Oldest Deadline First Approach

and Balancing Service Ratios Approach without deadline relax

ation for N = 4 and 10000 trials per schedule length. 47

vni

5.2 Success rates of Basic Algorithm, Oldest Deadline First Approach

and Balancing Service Ratios Approach without deadline relax

ation for N = 8 and 10000 trials per schedule length. 48

5.3 Success rates of Basic Algorithm, Oldest Deadline First Approach

and Balancing, Service Ratios Approach without deadline relax

ation for N = 16 and 5000 trials per schedule length. 49

5.4 Percentage of packets missing deadline by 1 time slot for Basic

Algorithm, Oldest Deadline First Approach and Balancing Service

Ratios Approach with one time slot deadline relaxation for N = 4

and 10000 trials per schedule length. 50

5.5 Percentage of packets which miss their deadlines for Basic Al

gorithm, Oldest Deadline First Approach and Balancing Service

Ratios Approach with one time slot deadline relaxation for N = 8

and 10000 trials per schedule length. 51

5.6 Percentage of packets which miss their deadlines for Basic Al

gorithm, Oldest Deadline First Approach and Balancing Service

Ratios Approach with one time slot deadline relaxation for N =

16 and 5000 trials per schedule length. 52

IX

To My Parents .

Chapter 1

INTRODUCTION

Rapid advances in optical communications, which has made the available trans

mission bandwidth to the tune of many gigabits per second seem to solve band

width problem. Advancements in optical technology however, also resulted in

the emergence of new applications such as real-time services. Broadband Inte

grated Services Digital Networks (B-ISDN) coupled with packet switching is one

of the techniques proposed to make network supports all existing and emerging

services in a unified fashion.

The advancement in transmission speed leaves switching as the barrier to

building high-performance networks. Switching is a task that basically involves

two separate tasks: 1) scheduling; choosing the eligible packet to be sent to the

output port if there are more than one in the same input port, and 2) data

forwarding; delivering the packet to its addressed output port.

Output queued switches have been widely used for packets scheduling. When

a packet arrives at an output-queued switch, it is immediately placed in a queue

that is dedicated to its outgoing line, where it waits until it departs from the

switch. This approach is known to provide 100% throughput [1]. Many queue

management policies are shown to provide various Quality of Service (QoS) fea

tures such as delay, bandwidth and fairness guarantees [2-6]. For pure output

queuing scheme to work, the speed of switching fabric and output buffer memory

is required to be N times the input line speed (where N is the switch size). As the

line speed increases to gigabits per second range and as the switch size increases

due to exponentially increasing demand, the required speed becomes infeasible.

To overcome these problems, switches which employ input queuing are being

extensively considered [7,8,8-15]. In this scheme an incoming packet is first

stored in queues at the input side and a slower fabric would transfer some of

packets to the output line immediately. A scheduling algorithm decides when

packets are transferred across the fabric. Input queued switches however, limit

the switch throughput to at most 56.8% due to head of line (HOL) blocking [1].

Two techniques proposed to improve the throughput of input queued switch are

Virtual Output Queuing (VOQ) and increasing the speedup of the switch fabric.

In VOQ, an input queue maintains a separate queue for all packets to be departed

to the same output queue while increasing speedup of switch fabric enables the

switch fabric to transfer more than one packet from the same input queue to

output ports in one time unit.

In this thesis work, the problem of scheduling deadline constrained traffic in

input-buffered packet switches using weighted round robin (WRR) servers was

studied. In the case of deadline constrained traffic, each packet is characterized

by its network life time before which it should be delivered to its destination. This

problem was earlier considered in single link (output queued switch) case where

in [16], an algorithm that always satisfies all deadlines is proposed. Multiple

link (input queued) case was studied in [17-19] where an efficient algorithm was

defined to be the one that minimized the number switching matrices (sets of

conflict free connections) and switching duration. The problem which considers

deadline guarantees was first presented in [20,21]. A schedule which satisfies all

deadlines is called/easiWe schedule. In [21], Philp and Liu conjectured that there

exists a feasible schedule to any periodic traffic if link utilization is no more than

unity.

In [22], Giles and Hajek showed that a feasible schcodule always exists if each

period is evenly divides all longer periods and if utilization at each link is no

larger than unity. Giles and Hajek proposed an algorithm which schedules an

arbitrary multi-periodic traffic if utilization at each link is less than In [23],

scheduling deadline constrained traffic was shown to be a tracking problem in

which scheduling algorithm tracks the deadlines of all packets so that they are

serviced before their deadlines. In [23], it is shown that a tracking policy always

exists for a 2x2 switch. Heuristic algorithm for a general switch size is proposed.

In this work, a new formulation of obtaining a set of connections to receive

service at each time slot is presented. This formulation is based on a tech

nique known as backward extraction. The formulation provides much insight

to the understanding the problem. In particular, it leads to analytical general

interpretation of Philp and Liu conjecture. A number of heuristic algorithms

are proposed and simulation results which show their success rates in finding a

feasible schedule are presented.

By guaranteeing deadlines, a switch actually satisfies various QoS measures

such as worst delay bound, and provides bandwidth and fairness guarantees.

In addition, by taking the advantages of simplicity of WRR servers hardware

implementation of algorithms is possible.

Thesis organization is as follows; in Chapter 2 switching background and

survey of previous works are presented. Next, scheduling problem is formulated

in Chapter 3. Heuristic algorithms are proposed in Chapter 4. In Chapter 5,

numerical results are presented and discussed and finally the thesis is summarized

in Chapter 6.

Chapter 2

BACKGROUND

INFORMATION

In this chapter, background information related to this thesis work is discussed.

Packet switching background is discussed in Section 2.1 and in Section 2.2 a

survey of scheduling algorithms for input queued packet switches is presented.

The chapter is finished by a discussion of fluid tracking policies.

2.1 Switching Background

A generic packet switch consists of input ports, a switch fabric and output ports.

The number of input ports and output ports determine the switch size. In gen

eral, the number of input ports is equal to the number of output ports and they

are connected to links of equal bandwidth. Figure 2.1 elaborates the architecture

of a generic switch. In this thesis a switch which transmits information in fixed

size entities called packets (cells) is assumed. Switch fabric is used to transmit

packets from input ports to output ports in the switch. Crossbar, for example,

is a very popular fabric used in building networks with input queued switches

Figure 2.1: A Generic Switch.

because of its low cost, good scalability and non-blocking property [9]. A Switch

fabric is non-blocking if it can transmit packets from different inputs to different

outputs simultaneously in a single time slot; otherwise, the fabric is termed as

blocking. Time slot is the time between packet arrivals at input ports.

A Switch fabric is characterized by its speedup which is defined as the ratio

of switch fabric speed to the line speed. Speedup, sometimes called switching

capacity, determines the number of packets that a switch can transmit to output

ports from the same input port in one time slot. If the speedup is equal to the

switch size, N, buffers/queues are required at the output ports and the switch

is called an output-queued switch. If the speedup is 1, buffers are required at

the input ports and the switch is called an input-queued switch. A switch is

called a combined input/output queued (CIOQ) switch if its switch fabric has a

speedup between 1 and N. The terms buffer and queue are used interchangeably

meaning memory device used to store packets before or after they are scheduled.

In the next few subsections, the basic mechanisms of these buffered switches are

discussed.

Output Queued Switches

In output queued switches, all buffers are maintained at the output ports as can

be seen in Figure 2.2. When a packet arrives at input port of output queued

(OQ) switch, it is immediately placed in a queue that is dedicated to outgoing

line, where it waits until departing from the switch. This approach is known to

maximize the switch throughput, it completely eliminates output blocking [1].

So long as no input or output is oversubscribed, i.e. link utilization of each link

is less than unity, the switch is able to support the traffic and the occupancies of

queues remain bounded. Furthermore, by controlling departure times of packets

belonging to different sessions, a switch can control latency of packets and hence

provides quality of service (QoS) guarantees such as bandwidth guarantee, delay

guarantees, fairness etc. Sophisticated but practical scheduling algorithms which

provide QoS in output queued switches are proposed [2-6,24,25], etc. Output

Input 1

Input N

Output 1

Figure 2.2: Output Queued Switch.

queuing is impractical for switches with high line rates and/or with large number

of ports. A switch fabric and output memory of switch of size N must run N

times as fast as the line rate. At high line rates, the switch memory and fabric

running at high speed are not available or very expensive. This major limitation

to output queued switches has diverted the attention in switching research to

input queued switches.

Input Queued Switches

In input queued switches, buffers are maintained at each input port of the switch

as seen in Figure 2.3. When a packet arrives at an input port, it is queued in the

buffer and waits for its time to be scheduled for departure to output port. When

First In First Out (FIFO) technique is used, a packet reaches the head of line of

the queue if all cells which arrived before it are scheduled. In contrast to output

Input 1
> □ □

Output 1

Input Nf □ □ ut N

Figure 2.3: Input Queued Switch.

queued switch, the fabric and the memory of the input queued switch needs only

to run as fast as the line rate. This makes input queuing very appealing for

switches with fast line rates or with large number of ports, hence, input queued

switches are increasingly being pursued by the research community.

The longstanding view has been that input-queued switches are impractical

because of their poor performance. If FIFO queues are used to queue packets

at each input, only the first cell in each queue is eligible to be forwarded. As a

result, FIFO input queues suffer from head of line (HOL) blocking. If a packet

at the front of the queue is blocked due to another packet contending the same

output port, it also blocks all the packets behind it in the queue even though

those packets may be destined for an output that is currently idle. HOL blocking

limits switch throughput to approximately 58.6% when FIFO service technique

is used under uniform traffic^ [1]. To make the input queued switches practical,

there are proposed strategies which completely eliminate HOL blocking [26,27] .

One of the techniques used to improve the throughput of input queued

switches is Virtual Output Queuing (VOQ) [27]. In VOQ, each input maintains

a separate queue for each output. With a suitable centralized scheduling algo

rithm, HOL blocking is completely eliminated and the throughput is increased

to 100% [12,13]. Figure 2.4 elaborates VOQ architecture. The other proposed

method to improve the input-queued switch performance is increasing speedup

^Tiaffic is uniform if all arrival processes have the same arrival rate, and if the destination
of packets are uniformly distributed over all outputs

Input 1

Input N

voQ u
□ □

I

□ □
VOQiH

VQQhi
□ □

□ □
VOQ

Output N
HN

Figure 2.4; Virtual Output Queuing.

of the switch fabric. This results in a combined input/output queued switch,

Figure 2.5. This switch has buffers at input and output ports, this is because

only one packet departs from an output port in each time slot and all packets

arriving at an input port may not be transferred to their addressed output ports

immediately after their arrivals. In this technique throughput is improved by

scheduling a number of packets from the same input queue at the same time

slot. A CIOQ switch is said to emulate output queued switch, if each packet

Output 1

Figure 2.5: Combined Input Output Queued switch.

departs from CIOQ switch at exactly the same time as it would depart from an

output queued switch, had the traffic been applied to the output queued switch.

In [9, 28] it is shown that for a CIOQ switch with appropriate scheduling al

gorithm, speedup of 2 is sufficient to guarantee the emulation of output queued

switch. Input-queued switches with improved throughput need very fast schedul

ing algorithms so that tlie switch can operate in very high-speed networks. A

brief survey for scheduling algorithms for input queued switches is presented in

Section 2.2.

2.2 Survey of Previous Work

Scheduling algorithms are sometimes called selection policies, contention resolu

tion mechanisms or head of line (HOL) arbitration mechanisms. The main task

of a scheduling algorithm is to select a set of contention free packets (cells) from a

set of input queues to be transmitted through the switch fabric. Contention free

set of packets is a set which has all packets from different inputs to be departed to

different outputs. Desirable properties of a scheduling algorithm are efficiency, it

should provide high throughput, fairness; it should not leave other input queues

starving, implementational simplicity; the algorithm should be simple to imple

ment in hardware, high speed; it should be fast, stability; the expected occupancy

of every input queue should remain finite for every admissible traffic pattern^

Scheduling algorithms for input queued switches can be classified as those using

pure FIFO queuing strategies and those which do not.

2.2.1 Scheduling Algorithms for Pure FIFO switches

Maintaining single FIFO queue for each input is the simplest approach to man

aging queues and scheduling cells. An arriving cell is stored in an input queued

switch if the cell arrived before which is not scheduled. Scheduling is done by

examining the cells at the head of each FIFO queue. A problem arises when

more than one packet of different input ports contend for the same output port.

In this case, the scheduler has to select only one among the contending cells

to transmit. The problem of FIFO scheduling algorithms then is to determine

'̂ A traffic pattern is said to be admissible when no input or output is oversubscribed.

which of the contending head of line packets are to be selected first. A number

of approaches are proposed in the literature, such as, maintaining fixed priority,

randomly selecting a cell among the contending inputs, rotating priorities, etc.

A classification of the proposed selection policies are as follows:

• Cyclic (Round Robin) selection and variants [29],

• Global FIFO selection [29],

• HOL FIFO selection [29-31],

• LIFO (Last-in First-out selection) [31],

• Longest Queue selection [29],

• Random selection [30,31].

The throughput of all above strategies is generally small, but other perfor

mance measures such as queuing delay, cell loss probability differ from one algo

rithm to another. In [29-31], the throughput is shown to be limited to 58.6% . In

some cases however, it is possible to increase the throughput to 63.2% [29,30], for

example in longest queue selection and random queue selection. Next, more com

plicated contention resolution algorithms aimed at removing the 58.6% barrier

of maximum achievable throughput are presented.

2.2.2 Scheduling Algorithms for non-FIFO switches

Most scheduling algorithms for non-FIFO switches make use of one or both

techniques for improving input-queue performance discussed in Section 2.1 and

matching algorithms. In this section, a brief survey of previous works of schedul

ing algorithms for non-FIFO switches is discussed.

10

Iterative Matching Algorithms [7,8,11]

These algorithms attempt to achieve maximal matching by iteratively adding

connections to fill the missing connections in the previous iteration in matching.

Examples of these algorithms are;

1. Parallel Iterative Matching (PIM) [8,11],

2. Iterative Round Robin Matching (IRRM) [11],

3. Iterative Round Robin Matching with SLIP(SLIP-IRRM) [7],

4. Least Recently Used (LRU) [8,11].

In these algorithms, it is important to decide how many iterations to be

performed in one time slot (i.e. the speedup). These algorithms are very similar,

except for the ordering of the entries in the schedule. In [8], simulation was

conducted and the performance of PIM, SLIP and LRU was compared for single

iteration in a time slot (speedup of 1). It is shown that, PIM, SLIP and RLU

achieve maximum offered load of 63%, 100% and 64% respectively. Simulation

results in [8] show that, SLIP can deliver throughput asymptotic to 100% of each

link and it is simple to implement in hardware, but it has much higher output

delay. It is also shown that, when four iterations are used, the above algorithms

are indistinguishable. IRRM is a simplified version of PIM [11], it is said to be

simpler to implement and its maximum achievable throughput is asymptotic to

100% in two iterations (speedup of 2). SLIP is identical to IRRM with a few

modifications [11].

Maximum Matching Algorithms for Input Queued Switches

Maximum matching algorithms find a match with maximum possible size. Max

imum matching achieves the highest possible throughput in each slot for an

11

input-queued switch but can result in starvation of an input-output connection

under certain traffic pattern [8]. The most efficient algorithm solves maximum

matching problem in time. Examples of scheduling algorithms which use

maximum matching algorithm is neural networks algorithms [27] and Longest

Port First(LPF) [8].

Weighted Matching Algorithms for Input Queued Switches

In maximum weight matching algorithm edges are characterized by their weights.

The algorithm then finds a match which maximizes total weight. As with maxi

mum size matching, bipartite maximum weight matching can be found by solving

an equivalent network flow problem. The most efficient known algorithm for solv

ing this problem converges in 0{N^ log A) [12]. In the context of cell scheduling,

weights are considered to be occupancies of queues and ports, and waiting times

of packets. Examples of weighted matching used in packet scheduling in input-

queued switches are;

1. Matrix Units Cell Scheduler (MUGS) [32],

2. Longest Queue First (LQF) [13,14],

3. Longest Port First (LPF) [12-14],

4. Oldest Cell First (OCF) [9],

5. Largest Output Occupancy First Algorithm(LOOFA) [9],

6. Gale-Shapley Oldest Cell First (GS-OCF), [26],

7. Gale-Shapley Longest Queue First (GS-LQF) [26].

MUCS resolves output contention by computing a traffic matrix which sum

marizes the status of queued cells in the inputs. It gives priorities to head of

12

queue cell which has least contending candidates from the same input to the

same output port. This weighting technique is claimed to offer maximum op

portunities to the remaining head of line cells in each iteration of MUGS [32].

The algorithm offers near-optimal throughput, approximately 100% [32] . Other

examples, as their names imply, are obtained by using different weights for the

underlined weighted matching algorithm. Some of the above algorithms are used

in conjunction with each other, for example LOOFA-OCF is used in to emulate

the performance of output-queued switch by input-queued switch with speedup

of 2 [28].

In [12-14], LQF and LPF are used to make input queued switch achieve

throughput of 100%. The difference between these algorithms is that, LPF

combines the benefits of maximum matching algorithm with those of maximum

weight algorithm while lending itself to simple implementation in hardware. LPF

effectively finds a set of maximum matches and chooses the one match from the

set with largest total weight. LPF achieves 100% throughput, fast with complex

ity improved to and is hardware implementable [14]. Similarly, in [12],

OCF algorithm was proposed to overcome the permanent starvation problem that

can result in LQF algorithm. It is also shown to achieve 100% switch through

put. GS-LQF and GS-LPF are examples of stable matching problem [26] which

is used for scheduling packets in input queued switches [28,33]. The interest in

using stable matching techniques in packet switch has increased recently. This

is due to its linear complexity of (i.e., linear in the number of edges) as

opposed to other weighted matching techniques which have higher complexity.

2.2.3 Scheduling Traffic with Deadline Constraints

Each packet of deadline constrained traffic is characterized by life time (deadline)

in the network. If a packet is not delivered to its destination by its deadline it

needs extra care from a network such as buffering or discarding. In IP networks.

13

for example, each packet has its deadline, and a message is sent to the source when

the packet is dropped for failing to reach its destination by that deadline [34].

Other examples of deadline constrained traffic are constant rate traffic and rnulti-

periodic traffic. An example of deadline constrained traffic mostly considered is

periodic traffic.

Scheduling periodic messages has extensively been studied in the context

of Satellite Switched Time Division Multiple Access SS/TDMA. Originally, the

problem was solved for output queued case [16]. It is known that Earliest Dead

line First (EDF) and Maximum Laxity First (MLF) algorithms provide optimum

results whenever the link utilization is less than or equal to 1.0 [16]. For input

queued case, scheduling multi-periodic traffic is generally known as Time Slot

Assignment (TSA) problem . In [17-19] for example, the optimal algorithm

was defined to minimize the number of switching modes and transmission time.

In [17], Inukai identified an optimal scheduling algorithm for NxN switch when

periods of all messages are equal and utilization of each input and output links

is less than or equal to 1.0.

Previous works for input queued case, did not consider the concept of deadline

of packets. This consideration was first introduced by Philp and Liu in [21] and

further explored in [20,22]. In these works, the problem was to find a conflict

free schedule which satisfies all deadlines of packets. This schedule is called a

conflict free feasible schedule. A number of heuristic time slot assignment (TSA)

algorithms are proposed in [21]. These algorithms are based on EDF and MLF,

and are named as Earliest Deadline First Row by Row (EDF-RR) and Maximum

Laxity First Row by Row (MLF-RR) respectively. Other algorithms are based

on System of Distinct Representatives (SDR); EDF-SDR and MLF-SDR. These

algorithms degrades as switch size increases.

In [21], simulations were performed to determine how often their algorithms

provide a feasible schedule for trafliic with link utilization less than or equal to

14

1.0. The simulation results led Pliilp and Liu to conjecture the existence of a

feasible schedule as introduced in Chapter 1. In [22], Multiple Period Time Slot

Assignment (MP-TSA) problem is explored and a number of heuristic algorithms

are proposed. Nested Period Scheduling (NPS) algorithm finds a feasible schedule

for evenly divided periods if switch utilization is less than or equal to 1.0. NPS

is shown to schedule traffic with arbitrary periods if the utilization is not larger

than 1/4. Other proposed algorithms in [22] are Slot-by-Slot, Earliest Deadline

First, Earliest Arrival First (SS-EDF-EAF). If utilization is less than or equal to

1/14, SS-EDF-EAF is shown to provide a feasible schedule.

In this work, a similar problem of scheduling deadline constrained traffic in

input queued packet switches as considered by these previous works was stud

ied. This work differs from the previous works in its more general formulation

the which contributes in giving more insight to the problem. The generality of

formulation as will be presented in the next chapter is the fact that previous

works assume that all packets have equal relative deadlines which are equal to

the period of their connection.

2.2.4 Fluid Tracking Policies in Packet Switches

Fluid Policy is an idealized scheduling policy governed by a server which does

not transmit information in the form of packets. It assumes that the server can

serve all backloged sessions simultaneously and the traffic is infinitely divisible.

This policy is defined for analysis purposes only, it can not be implemented in

real network. Generalized Processor Sharing (GPS) or Fluid-Flow Fair Queuing

(FFQ) is a fluid policy proposed for output queued switch in [2,-3].

A realistic packet system that tracks departure process of fluid policy is called

a tracking 'policxy. In a tracking policy, only one session can receive service at a

time and the entire packet must be served before another packet can be served.

15

A number of tracking policies which approximately mimic fluid policy are pro

posed in literature for output queued case. For example, Packetized Fair Queu

ing (PFQ), Weighted Fair Queuing (WFQ), Self-Clocked Fair Queuing (SCFQ)

schemes are considered [2, .3,5,6]. Hardware implementations of SCFQ and Dis

tributed Packet Fair Queuing (D-PFQ) are presented in [4] and [24] respectively.

Designing an optimal tracking policy for input-queued switches is still an open

problem. The first reference to deal with input queued switch tracking policies

noted is [23]. In this thesis work, a fluid model under constant-rate traffic is

considered instead of nonanticipative'^ traffic as defined in [23]. It is easy to note

that if a scheduling algorithm provides a feasible schedule, then it is a tracking

policy of the defined fluid policy. In [23], a tracking policy is shown to exist for a

2x2 input-queued switch and it is claimed that it also exists for a general switch

size.

■’’It is a traffic in which future link rate depends on future arrivals.

16

Chapter 3

PROBLEM FORMULATION

In this section, the problem of scheduling deadline constrained traffic is for

mulated. A traffic stream obtained by superposition of periodic streams, each

with possibly different period is called multi-periodic traffic. In this work, multi-

periodic traffic and an NxN switch with link utilizations of exactly 1.0 are con

sidered. Periodic traffic is defined to be the traffic which transmits the same

number of packets in one period and each packet arrives at the deadline of the

previous transmitted packet by the same connection. Packets of a connection

may have different deadlines less than the period of the connection. A packet

has its deadline equal to the period of a connection if and only if it is the only

packet to be transmitted by that connection in one period. The objective is to

devise a scheduling algorithm which guarantees that each packet is serviced from

its input queue before its deadline. Real-time messages fit the periodic traffic

model because they are generated by periodic processes [21] . This formulation is

also suitable to SS/TDMA systems because it is not usually possible to output-

queue packets in satellite switches [2.3]. This is due to the fact that the line speed

in satellite switches is very high.

17

By employing WRR service technique, the problem becomes guaranteeing a

specific number of services to each connection in specified duration under the

constraint that all packets are serviced before or at their deadlines. The problem

is analytically formulated by introducing WRR scheduling technique in the next

section.

3.1 Weighted Round Robin Scheduling

Round robin is a service discipline which services sessions sharing the same link

in a cyclic manner. It is the simplest technique to approximate GPS; an idealized

fiuid model for output queued packet switches. Weighted round robin (WRR) is

a round robin service discipline which services sessions according to their defined

weights [20,35,36]. In every round of service, the number of packets serviced

from a queue is proportional to its associated weight. WRR service discipline

has low complexity, schedules at constant rate and guarantees various QoS such

as minimum bandwidth and fairness. WRR is well studied in output queued case

where for a queue shared by N sessions each with weight rriji, WRR of queue j

is represented as:

W RRj = {mj i ,mj2, ■ ■ ■, mj^)· (3.1)

WRR schedule of queue j is the schedule which guarahtees that every connection

i in the queue j receives rriji services in every rriji time slots. In the next

section, an input queuing mechanism that uses WRR servers is presented.

18

3.2 Weighted Round Robin Scheduling in Input

Queued Packet Switches

In this work, an input buffered switch with Virtual Output Queuing (VOQ) strat

egy discussed in Section 2.1 is considered. VVRR servers at each input queue,

select a set of conflict free head of line cells of virtual output queues to be tran.s-

ferred to output ports of the switch. Input-queued VVRR (IQ-VVRR) service tech

nique is similar to output queued VVRR, each input queue has its VVRR server

to service sessions sharing the same queue. In contrast to output queued VVRR

servers however, input queued VVRR servers need to provide services to each ses

sion in a defined regular mechanism. In this discipline, each server should select a

packet from input queue to be transferred to a different output port. Moreover,

WRR servers should satisfy deadlines of all packets which is guaranteed by a

scheduling algorithm. In any time slot, exactly N packets are transmitted from

input queues to output ports such that their deadlines are all satisfied.

VOQ switch architecture has input queues whose status can be efficiently

represented by an NxN matrix. In this thesis, the status of this matrix represents

the number of packets each VOQ needs to transfer to output port in one schedule

length and the matrix is called traffic matrix defined as follows;

D efinition 1. Traffic matrix, M — is a non-negative integer matrix

such that for some integer P,
N

= p V i = l ,2 , . . . , iv ,

N

= P V i = 1,2,
J=1

where P is called the schedule length.

In general, each row(column) of a traffic matrix represents an independent

output-queued WRR scheduling discipline by definition in Equation 3.1. VVRR

19

of input queues i is then represented as;

W RRi = i = (3.2)

It is easy to see that Equation 3.1 is the same as Equation 3.2 which means that

output-queued VVRR is the same as input-queued WRR. The only difference

between output-queued VVRR and input-queued service disciplines is that the

service order in the former can be arbitrary while it is regulated among all servers

by scheduling algorithm in the latter discipline. In this work, weights of input-

queued WRR service discipline, rriij, are considered to be number of packets to

be transferred to output port j from input queue i in one schedule length, i.e.

P time slots. Figure 3.1 illustrates the input-queued WRR. The mechanism is

WE.R Servers

Virtual
Output
Queues Queues

Figure 3.1: Input Queued Weighted Round Robin (IQ-WRR).

made up of N input queues, one server for each input queue, a non-blocking

crossbar, and N output ports. Virtual output queuing is assumed to each input

queue. In this mechanisms, work conserving WRR servers are assumed, i.e. they

are never idle if there are packets to service. The synchronization of servers

and the choice of sessions to be transmitted at each time slot is commanded

by scheduling algorithms as seen in Figure 3.1. Analytical formulation of the

problem is presented in the next section.

20

3.3 Analytical Problem Formulation

In this section, definitions and some combinatorial background required in prob

lem formulation are presented. Scheduling algorithms take as input a traffic

matrix defined in the previous section. The ratio ^ represents the rate of ser

vice required between input i and output j , and it is denoted by pij. First, WRR

schedule is defined.

D efinition 2. W R R schedule is a schedule such th a t the serv ice to connec

tio n (i , j) is p ro v id ed by the tim e-s lo t fo r an y k — 1 , 2 , 3 , . and fo r

each con n ection (i ,j) , w here [a:] is defined as the m in im u m in teg er grea ter than

o r equal to x .

WRR schedule is a feasible schedule because it satisfies all deadlines. By

definition, deadline of the k*'̂ service is [^ ^ 1 · Next, the notion of permutation

matrix is presented.

D efinition 3. P e rm u ta tio n m a tr ix is a b in ary m a tr ix w ith exactly one nonzero

e lem en t in each row a n d each colum n.

This matrix shall repeatedly be used in the next sections such that nonzero

entries represent N conflict free set of connections to be simultaneously serviced

in any time slot. A proposition based on permutation matrices which is of use

in this work is presented. The proof of this proposition can be found in several

books in combinatorial analysis. Particularly see Theorem 2.2.6 in [37].

P roposition 1. A n y n on -n eg a tive in teg er m a tr ix M w ith row and colum n sum s

equal to P > 0 can be rep resen ted as a sum o f P p e rm u ta tio n s m a trices

fii, fÏ2,. ■., rip.·

M = 111 T fi2 -l-. . . -f- iip.

21

1 1 2 3 4 5
dt(i j) 0 1 0 1 1

Table 3.1: Computation of deadline sequence vector for pij = 3/5.

Note that the above proposition implies that a traffic matrix can be repre

sented as a sum of P permutation matrices. Next, a binary deadline sequence is

defined;

D efinition 4. Deadline sequence for connection (i,j) is a one-sided binary se

quence di(i,j), d2 {i,j), ■ ■ ■ such that for any k > 1, di{i,j) is the minimum

number of services that should be received by the connection (i,j) by time slot k.

Note that, the entries di are obtained as follows;

f 1, if / = ¡k-^] , k > 1
d i { i j) = l -

[0, else.

Table 3.1 illustrates computation of deadline sequence vector d{i,j) =

{di{i,j),d2 {i , j) , . . . ,dp{i,j)) for a connection with service rate pij = 3/5.

Is in deadline sequence represent deadlines of services in a connection. In

addition, since di{i,j) = di+p{i,j) , the vector {di{i, j), . . . ,dp{i,j)) suffices to

represent the deadline sequence.

WRR schedule for a traffic matrix M exists if and only if there exists a

sequence of P permutation matrices Hi, II2 , · · ■, Rp such that VA: = 1 ,2 ,... P

and for each connection (i,j),

k k
> ' ^ d i { i , j) . (3.3)

/= 1 /=1

To see this, let ni(z, j), Il2 (f, j) , . . . ,Uk{i,j) indicate services received by a con

nection (i,j) by any time k. Equation 3.3 then states that, the number of

services received by connection {i,j) in WRR schedule is greater than or equal

to the number of packets of the connection that reached their deadlines by that

22

time. This is a necessary and sufficient condition for satisfying deadlines and

so the existence of WRR schedule. Since Equation 3.3 is satisfied by equality if

A; = 1 , the following equation follows;

p p

(3.4)
l=k l=k

For each I = 1,2, . . . , P, deadline matrix is a binary matrix defined as follows;

Di = [di{i,j)]NxN-

Equation 3.4 is then equivalent to

p p
Vi = 1,2,...,P . (3.5)

l=k l=k

where the matrix inequality is componentwise. From the above definitions and

basic concepts, the problem of guaranteeing specified services to any connection

of deadline constrained traffic represented in a traffic matrix, M, can be expressed

as finding P permutation matrices (ITi, 112,..., flp) such that Equation 3.5 is

satisfied. Proposition 1 guarantees that Equation 3.5 is satisfied by equality if

lower bound of summation is A: = 1. To provide VVRR schedule the main task of

the problem is then to devise a scheduling algorithm that will satisfy Equation

3.5 for all k.

A permutation matrix is said to be extractable from an integer matrix if the

matrix obtained by subtracting the permutation matrix from the given matrix

results in a positive matrix. The extraction process is performed by maximum

matching algorithm which results to the extraction of full permutation matrices.

Next, a submatrix is defined as follows.

Definitions. A n n x m su b m a tr ix S = [sĵ lnxm o f Q = [çjj]AfxAf is iden tified

by a row se t (r i , . . . , r„} an d a colum n s e t {ci,. . . , c„i} such that;

Oij — (¡TiCj) 1 , . . . ,n an d j — 1 , . . . , m .

23

Illustrating the notion of submatrix, consider an integer matrix Q as follows;

Q =

3 4 2

0 2 9

2 8 2

An example of 2x1 submatrix, S, of Q is then provided in Equation 3.6 which is

identified by {1,2} and (I); row and column sets of the matrix Q respectively.

5 =
3

0
(3.6)

The necessary and sufficient conditions for extractability of a permutation matrix

is then presented by the following proposition.

Proposition 2. A p erm u ta tio n m a tr ix can be ex tra c ted fro m a nonn egative,

N x N in teg er m a tr ix Q i f an d on ly i f Q has no zero su b m a tr ix o f s ize n x m

w here m + n > Â .

The proof of the above proposition can be found in many combinatorics books,

particularly see Theorem 2.4.3 in [37]. Noting that a switch with line utilization

equal to 1 is considered, exactly N conflict free packets should be transmitted in

each time slot. This is achieved by employing a full permutation matrix whose

ones represent connections to receive service at that time slot. Therefore, for a

scheduling algorithm to provide a VVRR schedule it should guarantee extraction

of the right order of full permutation matrices. By Proposition 1, P permutation

matrices can always be extracted from a traffic matrix. The consistence of the

problem formulated and Philp and Liu conjecture is analytically discussed in the

next section.

24

3.4 Backward Extraction and Philp and Liu

Conjecture

Philp and Liu conjecture states that a feasible schedule for periodic traffic always

exists whenever links have utilizations less than or equal to 1.0. This conjecture

was a result of exhaustive numerical experiments for searching feasible schedules

of periodic messages whose results did not provide a counter example for small

switch size [21]. Philp and Liu defined periodic traffic as a packet stream in

which the number of time slots between packet arrivals (i.e. time to deadline)

of a connection is constant. So, Philp and Liu formulation is a special case of

the formulation in this work because this work considers services with possibly

different deadlines less than or equal to periods of their connections. In partic

ular, the situation considered by Philp and Liu arises in the current formulation

if each connection {i,j) has service rate pij = ^ for some integer pij < P. In

this section, it is shown that the results of the formulated problem in this thesis

work is consistent with Philp and Liu conjecture. This is illustrated by proving

the following lemma and corollaries.

Lem m a 1. For any connection {i,j) and k = 1 ,2 ,.. . , P,

l=k
(3.7)

Proof. Note that.

= q i f \q—] < k < \ { q + l) ^] .
TTlj· m.

(3.8)

Using the left inequality in Equation 3.8 and the relation that [a;] > x. Equation

3.8 implies that

But

E A (! . i) < k
1-1

P

m j
p

(3.9)

X ^ A (b i) = rnij,
l =l

25

which is equivalent to,

7П.13' (3.10)
/=1 l-k+l

Putting Equation 3.9 in Equation 3.10, the following relation directly follows;

l=k
(3.11)

Since is an integer then the following relation also true;

Y ; , D , { i , j) > \ (p - k + r) ’̂] ,
l=k

which completes the proof of the lemma.

(3.12)

□

The lemma above provides a lower bound to elements of a matrix obtained by

the backward summation of any k deadline matrices. The following corollary

directly follows from Lemma 1.

Corollary 1.

N P

> P - k + l, j = l,2 ,...,iV ,
z=l l = k

N P

> P - k ^ l , i = 1,2,...,JV.
l = k

Proof. Summing Equation 3.12 over a column {j = 1,2, . . . , N) and using the

relation fa;] > x and the fact 'rriij = P imply that,

N P

J 2 Y ^ D , (i . i) > P - k + l.
i= l l=k

Proceeding with similar procedures by considering sum over any row {i

1,2, . . . , N), Equation 3.12 yields,

N p

Di{i, j) > P - k + 1.
j = l l=k

which completes the proof. □

26

Extraction of permutation matrices is said to be backward oriented if the

first permutation matrix, lip, is extracted from deadline matrix Dp and the

permutation matrix is extracted from Y^'iL^Di — for any k —

1 ,2 ,. . . , P — 1. Backward oriented extraction is the backbone approach used in

the proposed algorithms in Chapter 4. Corollary 1 reveals that the row sums and

column sums of any k deadline matrices is at least P — k + 1 if the summation

is done in backward oriented manner. In general, if permutation matrices are

extracted in backward oriented manner, at any time k, VVRR schedule needs

exactly P — k + 1 permutation matrices. Hence, Corollary 1 provides some insight

on the existence of permutation matrices by any time k if backward extraction

is adopted. However, the corollary does not guarantee the existence of at least

P — k + 1 permutation matrices at any time k. For example, the following matrix,

Q, satisfies the corollary but a permutation matrix can not be extracted from it.

1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

However, it can be shown that the above form of matrix is never encountered in

the backward extraction process. This is illustrated by the following corollary.

Corollary 2. For any nxm submatrix, S, Di such that n + m > iY and

any k = 1 ,2 ,.. . , P,
p

E ' £ D i { i , j) > (P - k + l) { m + n - N) .
(i , j) e s i = k

Proof. Summing Equation 3.12 over all connections (i,j) G S and using the

relation [a·] > x imply that,

(P - k + 1)

Q = (3.13)

P E mij. (3.14)

Defining

M{S) â rriij,

27

and complementary submatrix, S, of J2iik A to submatrix 5 as a submatrix

identified by rows and columns complement to the rows and columns of the

submatrix S, i.e.,

l=k

s

S

then it follows that;

M{S) = M{S) -\- {n -{■ m — N)P, where M is the traffic matrix.

But M{S) > 0, therefore

M{S) >{n + m - N)P.

Equation 3.14 then becomes,

E E a(İ,İ) >
{iJ)£S l=k

Putting Equation 3.15 in Equation 3.16 results to,

p
1 3 ' ^ D i { i , i) > { P - k + l) { n P m - N),

i=k

(3.15)

(3.16)

this completes the proof.

(3.17)

□

Corollary 2 states that the sum of elements in any large submatrix S of

a matrix obtained by backward summation of any k deadline matrices has a

defined lower bound greater than zero. This rules out the possibility of having

the a matrix of the form of Equation 3.13. It is interesting to note that if all rows

and columns satisfy Corollary 1 by equality at any k then required permutation

matrices always exists and can be extracted but it is not obvious if the corollary

is satisfied by inequality as seen in Equation 3.13. However, Corollary 2 provides

further insight in the possible existence of VVRR schedule. This is the main reason

of proposing heuristic algorithms as will be seen in Chapter 4. This argument is

28

also consistent with Philp and Liu conjecture as far as the existence of feasible

schedule in this thesis work is concerned. Numerical analysis of the proposed

algorithms discussed in Chapter 5 show that they are very close to satisfying the

conjecture.

3.5 Delay Bounds for Periodic Traffic

It was mentioned in Section 3.3 that VVRR schedule satisfies deadlines of all

packets in a deadline constrained traffic. However, service times in WRR are out

of phase with the arrival times of packets. This incurs some delay to a packet

in a network. Satisfying deadline of a packet is equivalent to satisfying its worst

delay bound in the network. In this section, the worst delay bound guaranteed

by any WRR schedule under periodic traffic is derived.

Claim 1. The delay o f a n y p a ck e t in W R R schedule o f p er io d ic traffic is bounded

by tim e slo ts.

Proof. Proving the above claim, is equivalent to proving the claim that there

is at least one service between any two deadlines of a connection in a feasible

schedule, or equivalently;
t i l /

1, if mij > 0

0, else.

This is true if and only if any packet in a connection is serviced between its

deadline and the deadline of the previous service (inclusive) which is the case for

any WRR schedule. But, any two deadlines are separated by at most time

slots hence, any packet can be delayed by at most this amount of time in WRR

schedule. This argument completes the proof of the claim. □

Deadline relaxation by n time slots is the term used when a packet can be

further delayed by n time slots after its deadline is reached. If deadline of any

E n ,(! , j)>
r—1' Kij '

29

service is relaxed by n time slots, then the delay bound becomes f—1 + n.
Pij '

Delay bounds guarantees also results to fairness among the connections, as no

connection can make other connections starving in any WRR schedule.

3.6 Feasible Schedule for 2x2 Switch

The notion of tracking policy was introduced in Section 2.2.4 where it was men

tioned that tracking policy is a packetized policy designed to track generalized

processor sharing (GPS) scheme [2,3]. A tracking policy services each packet

by the time it finishes its service under fluid policy. The number of packets

transmitted under tracking policy should be at least the integer amount of infor

mation transmitted under fluid policy by that time and it should not exceed the

information transmitted under fluid policy by more than one packet. This is the

necessary and sufficient condition for the existence of tracking policy [23]. As a

result, any scheduling algorithm which satisfies delay bounds of all packets of a

given traffic (feasible schedule) is a tracking policy. In this section, the existence

of a feasible schedule 2x2 switch is proven. The same results as provided in this

section has been recently available in terms of tracking policy [23]. This result

however, is immediate by using the formulated problem in this chapter. This is

elaborated by proving the claim below.

Claim 2. A feasible schedule for any 2x2 switch always exists.

Proof. Proposition 2 reveals that a permutation matrix can not be extracted

from any 2x2 matrix if it contains either a 2x1, 1x2 zero submatrices or if

2x2 matrix is a zero matrix. From Corollary 1, there exists enough elements in

deadline matrices to extract the required number of permutation matrices at any

time slot if the extraction is backward oriented. That is, there is at least one

nonzero element in each row and column at any time slot. This argument rules

out any possibility of having zero row(column) and so the whole matrix at any

30

time slot if a traffic matrix is 2x2. Therefore, permutation matrix can always

be extracted. □

The existence of tracking policy (feasible schedule) for a general switch size

is still an open problem. However, in [23], it is claimed that tracking policy for

a general switch size always exists. This is strongly supported by Corollary 1

and Corollary 2.

3.7 Per-Port vs Per-VC Scheduling

So far, the problem formulated and its analysis assumed that there is only one

connection or virtual circuit (VC) in each VOQ. This scheduling mechanism is

called p e r -p o r t scheduling or tra n sm iss io n scheduling. In more realistic scenarios,

a single VOQ can accommodate more than one VC.

This work considers VCs scheduling technique as proposed in [38] in which

the scheduling mechanism is separated into two stages, V C scheduling and P er-

P o r t scheduling. The VC scheduling schedules packets from VCs to transmission

queues of a switch; while port scheduling is responsible for resolving the potential

conflict among packets from different VOQs. This mechanism is said to achieve

scalability and flexibility of the scheduling process. The flexibility rises from the

fact that scheduling algorithms from each stage can be designed independently;

they can be the same or different. More important to note, VC scheduling is

like output queue scheduling and so more sophisticated scheduling algorithms

which provide advanced QoS requirements can be used if required. In this work.

Per-VC Scheduling
WRR Servers

Per-Port Scheduling
W I ^ Servers

□□ n EDC=lO

Figure 3.2: Per-VC vs Per-Port Scheduling.

31

a switch mechanism which uses simple WRR seiwers for both, VC and Port

scheduling mechanisms as seen in Figure 3.2 is considered. There is no need

of sophisticated scheduling algorithms for VC scheduling because constant rate

traffic is assumed which can be efficiently scheduled by VVRR servers. Once

a packet is scheduled by a VVRR server at VC buffer, it is transmitted to its

VOQ where it waits to be scheduled. When VOQ is shared by more than one

session, the elements of a traffic matrix represent the sum of number of packets

of all sessions in that queue. Therefore, problem formulation and analysis as

performed for per-port case only is the same when more than one session exists

in the same VOQ. For example, the deadline of the session with m packets

to be transferred from input i to output j is at time [A; ^ 1. In particular, a

similar claim as was proved for per-port only case in section 3.5 is also presented

for general scheduling (per-VC and per-port) case. The proof of the claim easily

follows from the proof of per-port only scheduling version of the claim presented

in Section 3.5.

Claim 3. The delay of any packet of VC, (n,i , j), in WRR schedule of periodic

traffic is bounded by time slots, where, mn,i,j is the number of packets

of the VC to be destined to output port j from input port i in one schedule

length.

In the next chapter, scheduling algorithms for solving the formulated problem

in this section are proposed.

32

Chapter 4

HEURISTIC ALGORITHMS

In this chapter, basic scheduling algorithm for scheduling deadline constrained

traffic is proposed. The basic algorithm is incorporated with some heuristics to

increase its performance. These heuristics are based on Oldest Deadline First

(ODF) and Balancing Service Ratios (BSR) approaches to be defined later in this

chapter. Deadline Relaxation (DR) heuristic is also employed to basic algorithm

and its variants for further performance improvement. These algorithms are all

backward oriented as presented in Section 3.4. The backward orientation of the

problem is easier to analyze and provides more insight to the problem as noted

in Chapter 3. This chapter is organized as follows; basic algorithm is presented

in Section 4.1, and variants of the basic algorithm are discussed in Section 4.2.

4.1 Basic Algorithm

Given a traffic matrix, M, deadline matrix, D, is first computed. The algorithm

then selects eligible sets of connections to be scheduled at each time slot from the

deadline matrix in backward oriented technique introduced in Section 3.4. This

is realized by fixing an NxN empty matrix and shifting the deadline matrices

33

from Dp to Di, one submatrix at each time slot, into the window matrix. The

fixed matrix is called a w indow m a tr ix denoted by W^. The state of the window

matrix at any time slot k is an N x N matrix whose elements are the sum of ones

representing the deadlines of unserviced connections of deadline matrices already

entered the window and Dk] binary deadline matrix which entered the window

matrix at time k. A permutation matrix is arbitrarily extracted if no priority

measure is associated to existing permutation matrices during extraction. At any

time slot k, the basic algorithm arbitrarily extracts a permutation matrix from a

window matrix, by using m axim u m m atch in g techniques. Maximum matching is

necessary in all algorithms proposed in this work because only successful extrac

tion of full permutation matrix in each time slot k from window matrix provides

WRR schedule. When P permutation matrices are successfully extracted the

order of permutation matrices as extracted by scheduling algorithm is reversed

to get the service order. The basic algorithm is summarized in Figure 4.1.

Initialization:
Given a traffic matrix, M, compute the deadline matrices, Di, for each I =
1 ,2 , . . . ,P .

Main Loop :
for k = P : 1 do

Compute the current window’s state:

(D p , ÏÎ k = P
l E « A - E L + i n „ else.

Extract a full permutation matrix, fl̂ ., by applying m a xim u m m atch ing
algorithm to the window matrix, Wk-
if n o su ch p e r m u ta t io n m a tr ix e x is t s then

The algorithm fails,
end if

end for
Use service order of permutation matrices as: ITi, 112,. · ·, Up.

Figure 4.1: The Basic Algorithm.

The basic algorithm results in a WRR schedule if at any time slot Â: in a

schedule length, P, it is possible to extract a full permutation matrix from a

34

window matrix W^. If a WRR schedule is obtained, then the same service or

der of connections sets is repeated during service in the next schedule lengths.

Numerical results show that small percentage of trials fail when it is possible to

extract full permutation matrices over all schedule length.

Arbitrary extraction of permutation matrices in basic algorithm however,

does not always provide a feasible schedule. In all observed failures of basic

algorithm, failures occur at time slot equal to half of the schedule length where

the condition stated by Proposition 2 is satisfied, i.e. an nxm zero submatrix

in a window matrix exists such that n m > N. A critical set exists if some

connections sharing the same port have equal deadlines, i.e. when n connections

at time k each with deadline equal to n + /c. Critical set can be detected in

traffic matrix or it can form at any time. Once it forms, a critical set needs to

receive service in each time slot until all connections of the set are serviced. One

or more critical sets were observed in all failures of the basic algorithm and in

general, it is believed to be the cause of most failures. Detecting all critical sets in

advance however, is a difficult task and involves much computational complexity.

Heuristic algorithm which detects critical sets in advance in presented in [23].

Basic algorithm without critical set detection however, offers very promising

performance as will be seen in in Chapter 5. An example of failure of basic

algorithm is illustrated by Table 4.1.

By observing the states of window matrix and the sum of previous service

matrices (Hp, Hp_i , . . . , H^-i) if the basic algorithm fails at time k, the following

observations are noted:

1. Critical sets (e.g. rows and columns whose all elements are 4 in the example

above) are detected in the traffic matrix or at the failure.

2. There are enough number of positive elements in window matrix to form a

permutation matrix but fail to make a permutation pattern.

35

■ 5 4 4 3 “ ■ 3 2 2 2 ■ 3 1 1 2

M =
4
4

4
4

4
4

4
4 E l i , D , =

2
2

2
2

2
2

2
2

=
2

2
2
2

2
2

1
1

3 4 4 5 2 2 2 3 _ 0 2 2 3

Dt Wi n.

1 1 1 1 • 1 1 1 1 - 1 0 0 0 -
16 1 1 1 1 1 1 1 1 0 1 0 01 1 1 1 1 1 1 1 0 0 1 0

1 1 1 1 - 1 1 1 1 - _ 0 0 0 1 -

■ 0 0 0 0 1 ■ 0 1 1 1 -1 ■ 0 1 0 0
15 0 0 0 0 1 0 1 1 1 0 0 0

0 0 0 0 1 1 0 1 0 0 0 1
0 0 0 0 1 1 1 0 _ 0 0 1 0

■ 0 0 0 0 ■ 0 0 1 1 ■ 0 0 1 0 ■
14 0 0 0 0 0 0 1 1 0 0 0 1

0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 1 1 0 0 _ 0 1 0 0 _

1 0 0 0 ■ 1 0 0 1 1 0 0 0 ■
13 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 _ 1 0 0 1 _ 0 0 0 1

■ 0 1 1 0 ■ ■ 0 1 1 1 ■ ■ 0 0 0 1
12 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 0 0 1 0
_ 0 1 1 0 J 1 1 1 0 _ _ 0 1 0 0 _

■ 0 0 0 1 ■ 0 1 1 1 ■ 0 0 0 1 ■
11 0 0 0 0 0 1 1 1 0 1 0 0

0 0 0 0 1 1 0 1 1 0 0 0
1 0 0 0 _ 2 0 1 0 _ 0 0 1 0 _

1 0 0 0 ■ 1 1 1 0 ■ r 1 0 0 0 ■
10 0 0 0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 1 0 1 0 1 0 0
■0 0 0 1 - 2 0 0 1

-
0 0 0 1

r 0 0 0 0 ■ r 0 1 1 0 ■
9 0 0 0 0 0 0 0 1 ERRO R0 0 0 0 0 0 0 1

0 0 0 0 2 0 0 0

Table 4.1: Example of Failure of Basic Algorithm.

36

3. Next deadline matrix of Dk~\ to enter into window matrix has many ones

waiting,

5. There is at least one connection not serviced,

6. Inspection indicates that the algorithm might yield a feasible schedule by

exercising different options for matrix extraction.

These are only the observed cases in all failures of basic algorithm, they may

not be general. It is also important to note that the observed failures in ba

sic algorithm are not complete failures in the sense that, there exists a set of

permutations that can provide a feasible schedule. This is supported by the ob

servation number 6 presented above. The driving intuition of this work is that,

more sophisticated permutation selection measures may always provide a feasible

schedule. Numerical results of the proposed algorithms are to be discussed in

the next chapter.

4.2 Variations of Basic Algorithm

Heuristic algorithms proposed to improve the performance basic algorithm are

motivated by observing failures of the basic algorithm. These heuristics basically

induce priority measures to a permutation matrix to be selected or relaxing

deadlines of services of some connections only when this is necessary to avoid

failure.

4.2.1 Oldest Deadline First Approach

This algorithm is motivated by the fact that there exists at least one unserviced

active connection whenever the basic algorithm fails. The algorithm imposes

priorities to permutation matrices to be selected from a window matrix in case

37

more than one choice exists by favoring tiie one with maximum number of old

deadline connections possible. And so the name Oldest Deadline First Approach

implies. This heuristic algorithm is the same as the basic algorithm except that

this algorithm selects all po.ssible permutation matrices from the current window

matrix before new deadline matrix enters. If connections with new deadlines exist

in the window matrix the algorithm tries to select a permutation matrix with

the most number of connections possible whose deadlines are due the soonest.

This algorithm is summarized in Figure 4.2.

Initialization:
Given a traffic matrix, M, compute the deadline matrix, Di, for each I =
1,2 , . . . , P .
Set ki = P.
Set /¡/’2 = P T 1.

Main Loop :
while it is possible to extract n,k2- i f^m Di -

Extract n^2_i,
A;2 ·<— 2̂ ~ 1)

end while
k\ i— ki — 1
if ki < k 2 — 1 then

The algorithm fails,
else

Go to the while loop,
end if
Use service order of permutation matrices as; Hi, 112,..., Up.

Figure 4.2; Oldest Deadline First Approach.

By imposing oldest first priority measure, the algorithm actually adopts Ear

liest Deadline First (EDF) approach, since the service order of permutation ma

trices is the reverse of their extracted order by the algorithm. Many failures under

basic algorithm are resolved by this algorithm (e.g. example illustrated in Table

4.1) and as will be discussed in the Chapter 5, the performance is improved. The

improvement in this algorithm asserts that if more sophisticated priority mea

sures in selecting permutation matrix are applied to basic algorithm, a feasible

38

schedule may always be obtained. The algorithm however, may not always max

imize the number of oldest deadline connections at each time slot, some of them

may not be serviced in order to extract a full permutation matrix. Observation

6 as mentioned to basic algorithms failures also cipplies to ODF algorithm. An

example of failure in oldest deadline first approach is presented in Table 4.2;

Observing the above example, one can see that the failure occurs at A: = ^

as observed for basic algorithms. In contrast to the observed failures for basic

algorithm however, this is not always the case for the failures observed for the

oldest deadline first approach. At the failure of the above example, it can be

easily verified that the service opportunities are not fairly distributed among

connections. Connections with 11,8 and 7 packets to be serviced in a schedule

length have equal number of packets successfully scheduled before the failure.

Similarly, a connection with 4 packets has successfully scheduled 1 packet the

same as number of packets serviced by a connection with only 1 packet to be

transmitted in a schedule length. This reveals that, although it improves the

performance of basic algorithm, oldest deadline first approach does not provide

services to connections relative to their service rates.

This observation motivates that, some service measures relative to service

rates of each connection could be encorporated to basic algorithm and possibly

results in better performance. That is, service opportunities could reflect service

rates of connections. This observation leads to proposing another heuristic algo

rithm based on balancing service ratios of connections at any time slot which is

discussed in the next section.

39

11 1 2 2 " ■ 6 1 1 1 " 4 1 1 1 ■

M =
1
2

7
4

4
8

4
2 E l i o -

1
1

4
2

2
4

2
1

E ! ^ n , =
1
1

4
1

1
4

1
1

2 4 2 8 1 2 1 4 1 1 1 4

D, Wt n,

1 1 11 1 1 1 1 1 0 0 0

16 1 1 1 1 1 1 1 1 0 1 0 0
1 1 1 1 1 1 1 1 0 0 1 0
1 1 1 1 1 L 1 1 _ 0 0 0. 1

1 0 0 0 ■ 0 1 1 1 ■ 0 1 0 0 ■

15 0 0 0 0 1 0 1 1 1 0 0 0

0 0 0 0 1 1 0 1 0 0 0 1

0 n 0 0 1 1 1 0 _ 0 0 1 0 _

1 0 0 0 ■ 0 0 1 1 ■ 0 0 1 0 ■

14 0 1 0 0 0 0 1 1 0 0 0 1

0 0 1 0 1 1 0 0 1 0 0 0

_ 0 0 0 1 1 1 0 0 _ 0 1 0 0 _

' 0 0 0 0 ■ “ 0 0 0 1 ■ 0 0 0 1 ■

13 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1 0 0

_ 0 0 0 0 _ 1 0 0 0 _ 1 0 0 0 _

1 0 0 0 ■ ■ 2 0 0 0 ■ 1 0 0 0 ■

12 0 1 1 1 0 1 0 0 0 1 0 0

0 1 1 0 0 0 1 0 0 0 1 0

_ 0 1 0 1 _ _ 0 0 0 1 _ _ 0 0 0 1 _

1 0 0 0 ■ ■ 2 0 0 0 ■ 1 0 0 0 ■

11 0 0 0 0 0 1 1 1 0 1 0 0

0 0 0 0 0 1 1 0 0 0 1 0

0 0 0 0 _ 0 1 0 1 0 0 0 1

■ 0 0 0 0 ■ ■ 2 0 0 0 ■ 1 0 0 0 ■

10 0 1 0 0 0 1 1 1 0 1 0 0

0 0 1 0 0 1 1 0 0 0 1 0

0 0 0 1 0 1 0 1 0 0 0 1

r
1 0 0 0 ■ 2 0 0 0 ■

9 0 0 0 0 0 0 1 1 ERRO R
0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

Table 4.2: Example of Failure of Oldest Deadline First Algorithm.

40

4.2.2 Balancing Service Ratios Approach

In this section another heuristic algorithm based on balancing service ratios of

connections is presented. Service ratio of a connection {i,j) at time slot k is

defined as the ratio of number of service received by connection (i,j) by time k

to total services required by the connection in a schedule length, i.e.,

Sk{i,j)S e r v ic e R a tio —
rUij

k = 1 ,2 , . . . ,P, (4.1)

where Sk{i,j) is the number of services received by connection (i,j) by the k̂ ̂

time slot. Service ratios of all connections are zeros at the beginning of switch

operation, they are all ones at the end of schedule length for any feasible schedule.

A traffic matrix whose all elements are equal, for example, results to a WRR

schedule if and only if a certain connection receives service again after each

connection in the same input (output) port has received exactly one service op

portunity. The number of services received by any connection never exceeds the

other by more than 1. This elucidates the importance of keeping services received

by each connection corresponds to its service rate. Another obvious example is a

connection with service rate equal to 1.0, i.e. p = 1.0. This connection is the only

active connection of its input and output ports (by definition of traffic matrix,

it is the only nonzero element in its row and column). It therefore needs to be

serviced at each time slot. Doing so, the Equation 4.1 is related to ^ by equal

ity. This example is assumed to be the ideal case in which services are directly

related to the service rate of a connection in all time slots. Balancing serving

ratios approach tries to make service ratios of all other connections mimic this

ideal service ratio and so the ratio ^ at any time slot k.

When elements of a traffic matrix in the same row(colurnn) are not equal,

balancing their service ratios is not obvious and can not be maintained at a

constant bound over all schedule length. That is, Eciuation 4.1 and ratio ^ is

not always related by equality. Since service ratios are equal before scheduling

41

and at the end of schedule length of any feasible schedule, intuitively, making all

connections emulate the ideal service ratio would balance service ratios in some

sense. This is achieved by servicing as many connections possible with smallest

service ratios in their corresponding input ports. The algorithm is summarized

in Figure 4.3.

Initialization:
Given a traffic matrix, M, compute the deadline matrix, Di, for each I =

Main Loop :
for k = P : 1 do

Compute the current window’s state:

Dp, iî k = P
E L A - E r = M i n „ else.

for j = 1 : A: do
By applying maximum matching algorithm to window matrix Wk, extract
the first full permutation matrix, 11̂ , which satisfies;

< i (4.2)

end for
if no such permutation matrix exists then

The algorithm fails,
end if

end for
Use service order of permutation matrices as: 111, 112,. · · j Hp.

Figure 4.3: Balancing Service Ratios Approach.

Equation 4.2 is called eligibility condition. This algorithm tries to improve

service fairness among backloged connections. Just like previously proposed al

gorithms in this thesis, this algorithm also fails to provide WRR schedule for

some traffic matrices. However, it successfully schedules many failures of basic

algorithm (e.g. example in Table 4.1) and some failures of oldest deadline first

approach (e.g. example in Table 4.2). The performance of this algorithm is better

than the performance of the basic algorithm but closely the same as the oldest

42

deadline first approach. Its improvement over the basic algorithm elaborates

that inducing extra fairness measures to the basic algorithm results in perfor

mance increase. The quantitative comparison of these algorithms is presented in

Chapter 5.

4.2.3 Deadline Relaxations

When analyzing failures of basic algorithm and its variants, it is noted that

there are always some packets just to enter into the window matrix whenever

algorithms fail. This motivates the proposal of other heuristic algorithms which

are based on relaxing deadlines. In contrast to the previous work in [21] whereby

deadline relaxation means relaxing deadlines of all packets in a traffic, in this

heuristic, deadlines are relaxed by one time slot only if this is necessary to avoid

failure of the algorithm. This heuristic is applied to basic algorithm, oldest

first approach and balancing service ratios approach. This heuristic results to

nearly perfect performance for all algorithms. As will be seen in the discussion of

simulation results in the next chapter, in almost all cases this heuristic provides

WRR schedule. Deadline relaxation however, results in an increase in buffer size.

Deadline Relaxation heuristic is adopted to the basic algorithm and its variants

by adding the condition presented in Figure 4.4 whenever they fail.

R un the algorithm ; BA, ODF, or BDR:
if the algorithm fails at time k then

Modify the window matrix as;

Wk<-Wk + Dk-i.

Extract lift and ITfc+i from Wk
if either Ilyt or ITyt+i does not exist then

Deadline relaxation by 1 time slot fails,
end if

end if

Figure 4.4: Deadline Relaxation by 1 time slot.

43

Chapter 5

NUMERICAL RESULT

5.1 Traffic Matrix Generation

Given the required switch size N and schedule length P, traffic matrix generation

starts by generating P, NxN random permutation matrices, Hi, II2 , · · ·, ftp· By

Proposition 1, the sum of these permutation matrices is a random traffic matrix.

Let Mo is the initial random traffic matrix generated among an infinite number

of possible NxN matrices with row(column) sums P, i.e.,

M q —■ Hi + N2 + nsd-, · · ·, + r i p .

It is assumed that Mq is the initial state of an infinite states Markov Chain (MC)

with states Mq, Mi, M2 , . . . , which are NxN integer matrices with row (column)

sums P. At any step, two random elements whose rows and columns enclose

a square submatrix in the current traffic matrix are selected. Another traffic

matrix is obtained by subtracting 1 from the selected elements and adding one

to two other elements which are at the intersection of columns and rows of two

randomly selected elements. Equation 5.1 elaborates this where A and B in the

first matrix are the randomly selected elements. It is assumed that rows and

columns of A and B enclose a square matrix. Unity is subtracted from A and

44

N P Number o f trials per (N, P)
4 8,16, ... , 160 10,000
8 16,32,, 320 10,000
16 32,64, ...,, 640 5,000

Table 5.1: Matrix parameters used in simulations.

B and added to C and D to obtain another random matrix. This is equivalent

to moving from one state of the underlined MC to another. In equilibrium, M

is uniformly distributed over all traffic matrices with same N and P parameters

and is chosen as;

M = liin Mk-k->oo

There exist finitely many traffic matrices with the same N and P parameters.

A very small set is actually considered in the simulations of this work. The

randomly looking traffic matrix is considered so as to provide a good sample of

traffic matrices to be used in simulations.

Mk =

C ■■■ в

, Mfe+i =

: c + i ■·· B - i :

: A ■■• D : ; A - i ··■· D + l .·

■ (5.1)

The parameters used in simulations for all algorithms are tabulated in Table 5.1.

5.2 Discussion of Numerical Results

The simulations were done using MAT LAB programming in which a builtin

function which solves a maximum matching problem dm perm () is used. The

same set of traffic matrices is used to all algorithms for any {N, P) parameter

45

set. Succe.ss rate determines how often a scheduling algorithm provides VVRR

schedule. The simulations involve three experiments.

The first experiment was to determine success rates of algorithms without

deadline relaxation. By observing the tabulated results in Tables 5.2, 5..3, and

5.4 and Figures 5.1, 5.2 and 5.3, one can easily deduce that success rates of all

algorithms are above 95%. As expected, heuristic algorithms perform better than

basic algorithm. The performance seem to increase as switch size and schedule

length increase, the possible reason behind this phenomenon is to be discussed

later in this section. Oldest deadline first approach and balancing service ratios

have about the same performance.

The second experiment was performed to determine the success rates of pro

posed algorithms when deadline relaxation based heuristic is used. Simulation

results can be seen in Tables 5.2, 5.3, and 5.4. They are all ones for A' = 4 for all

algorithms. For N = 8,16 the success rates of basic algorithms are above 99.9%

for all values of schedule lengths. Success rates are all ones for oldest deadline

first and balancing service ratios approaches with the exception of very few cases

for A’ = 8 where the algorithms result success rates of above 99.9%.

The third experiment was to determine the percentage of number of packets

that miss their deadlines when deadline relaxation is used. Figures 5.4, 5.5

and 5.6 and Tables 5.5, 5.6, and 5.7 show the numerical results. In all cases the

percentage of packets that miss their deadlines is less than 0.5%, the performance

is noted to increase as schedule length and switch size increase. In general,

percentage of packets which miss their deadlines seems to be reasonably small

for all algorithms. This percentage is much smaller for oldest deadline first and

balancing service ratios, and it decreases as switch sizes and schedule length

increase.

46

P BA ODF B SR BA(DR) ODF{DR) BSR{DR)
8 0.9857 0.9870 0.9872 1.0000 1.0000 1.0000
16 0.9772 0.9783 0.9800 1.0000 1.0000 1.0000
24 0.9666 0.9669 0.9675 1.0000 1.0000 1.0000
32 0.9744 0.9764 0.9763 1.0000 1.0000 1.0000
40 0.9676 0.9730 0.9710 1.0000 1.0000 1.0000
48 0.9671 0.9695 0.9709 1.0000 1.0000 1.0000
56 0.9712 0.9760 0.9763 1.0000 1.0000 1.0000
64 0.9732 0.9746 0.9764 1.0000 1.0000 1.0000
72 0.9742 0.9787 0.9765 1.0000 1.0000 1.0000
80 0.9755 0.9792 0.9797 1.0000 1.0000 1.0000
88 0.9775 0.9799 0.9805 1.0000 1.0000 1.0000
96 0.9723 0.9748 0.9753 1.0000 1.0000 1.0000
104 0.9796 0.9838 0.9834 1.0000 1.0000 1.0000
112 0.9798 0.9866 0.9860 1.0000 1.0000 1.0000
120 0.9776 0.9830 0.9844 1.0000 1.0000 1.0000
128 0.9790 0.9867 0.9875 1.0000 1.0000 1.0000
136 0.9765 0.9904 0.9898 1.0000 1.0000 1.0000
144 0.9800 0.9860 0.9864 1.0000 1.0000 1.0000
152 0.9870 0.9902 0.9906 1.0000 1.0000 1.0000
160 0.9862 0.9923 0.9925 1.0000 1.0000 1.0000

Table 5.2: Success rates for N = 4 and 10000 trials per P: BA = Basic algorithm,
ODF = Oldest deadline first approach, BSR= Balancing service ratios approach,
DR = Deadline relaxation.

Figure 5.1: Success rates of Basic Algorithm, Oldest Deadline First Approach

and Balancing Service Ratios Approach without deadline relaxation for N = 4

and 10000 trials per schedule length.

47

P BA ODF B S R BA{DR) ODF{DR) BSR{DR)
16 0.9610 0.9712 0.9677 1.0000 0.9998 0.9997
32 0.9510 0.9794 0.9795 0.9996 1.0000 0.9999
48 0.9509 0.9834 0.9834 0.9998 0.9999 0.9999
64 0.9623 0.9865 0.9872 0.9998 1.0000 1.0000
80 0.9676 0.9912 0.9914 0.9999 1.0000 1.0000
96 0.9633 0.9912 0.9934 0.9998 1.0000 1.0000
112 0.9722 0.9946 0.9953 0.9998 0.9999 0.9999
128 0.9787 0.9948 0.9965 0.9998 1.0000 1.0000
144 0.9756 0.9968 0.9958 0.9998 1.0000 1.0000
160 0.9787 0.9961 0.9968 0.9998 1.0000 1.0000
176 0.9825 0.9968 0.9978 0.9999 1.0000 1.0000
192 0.9766 0.9961 0.9970 1.0000 1.0000 1.0000
208 0.9819 0.9978 0.9971 1.0000 1.0000 1.0000
224 0.9813 0.9982 0.9982 1.0000 1.0000 1.0000
240 0.9822 0.9983 0.9980 0.9999 1.0000 1.0000
256 0.9846 0.9985 0.9986 1.0000 1.0000 1.0000
272 0.9847 0.9982 0.9989 0.9999 1.0000 1.0000
288 0.9843 0.9984 0.9986 1.0000 1.0000 1.0000
304 0.9849 0.9987 0.9990 0.9999 1.0000 1.0000
320 0.9849 0.9986 0.9988 1.0000 1.0000 1.0000

Table 5.3: Success rates, N = 8 and 10000 trials per P : BA = Basic algorithm,
ODF = Oldest deadline first approach, BSR= Balancing service ratios approach,
DR = Deadline relaxation.

Figure 5.2: Success rates of Basic Algorithm, Oldest Deadline First Approach

and Balancing Service Ratios Approach without deadline relaxation for N = 8

and 10000 trials per schedule length.

48

P BA ODF B S R BA{DR) ODF(DR) BSR{DR)
32 0.9638 0.9816 0.9814 1.0000 1.0000 1.0000
64 0.9690 0.9942 0.9948 0.9998 1.0000 1.0000
96 0.9854 0.9996 0.9994 1.0000 1.0000 1.0000
128 0.9918 0.9996 0.9998 1.0000 1.0000 1.0000
160 0.9928 1.0000 1.0000 1.0000 1.0000 1.0000
192 0.9942 1.0000 1.0000 0.9998 1.0000 1.0000
224 0.9966 1.0000 1.0000 1.0000 1.0000 1.0000
256 0.9980 1.0000 1.0000 1.0000 1.0000 1.0000
288 0.9966 1.0000 1.0000 1.0000 1.0000 1.0000
320 0.9988 1.0000 1.0000 1.0000 1.0000 1.0000
352 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000
384 0.9978 1.0000 1.0000 0.9998 1.0000 1.0000
416 0.9976 1.0000 1.0000 1.0000 1.0000 1.0000
448 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000
480 0.9988 1.0000 1.0000 1.0000 1.0000 1.0000
512 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000
544 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000
576 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000
608 0.9992 1.0000 1.0000 1.0000 1,0000 1.0000
640 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5.4: Success rates, N = 16 and 5000 trials per P: BA = Basic algorithm,
ODF = Oldest deadline first approach, BSR= Balancing service ratios approach,
DR = Deadline relaxation.

Figure 5.3: Success rates of Basic Algorithm, Oldest Deadline First Approach

and Balancing Service Ratios Approach without deadline relaxation for N = 16

and 5000 trials per schedule length.

49

P BA{DR) ODF{DR) BSR(DR)
8 0.0591 0.0513 0.0513
16 0.0492 0.0469 0.0419
24 0.0470 0.0464 0.0447
32 0.0295 0.0267 0.0266
40 0.0289 0.0225 0.0229
48 0.0248 0.0218 0.0196
56 0.0187 0.0148 0.0144
64 0.0158 0.0145 0.0129
72 0.0183 0.0128 0.0134
80 0.0113 0.0089 0.0088
88 0.0094 0.0080 0.0077
96 0.0107 0.0093 0.0091
104 0.0076 0.0055 0.0059
112 0.0069 0.0042 0.0045
120 0.0071 0.0052 0.0044
128 0.0073 0.0037 0.0034
136 0.0038 0.0026 0.0027
144 0.0055 0.0032 0.0032
152 0.0033 0.0023 0.0023
160 0.0035 0.0019 0.0018

Table 5.5: Percentage of packets missing their deadlines by 1 time slot, N =
4 and 10000 trials per P; BA = Basic algorithm, ODF = Oldest deadline first
approach, BSR= Balancing service ratios approach, DR = Deadline Relaxation.

Figure 5.4: Percentage of packets missing deadline by 1 time slot for Basic Algo

rithm, Oldest Deadline First Approach and Balancing Service Ratios Approach

with one time slot deadline relaxation for N = 4 and 10000 trials per schedule

length.
50

P BA{DR) ODF{DR) BSR{DR)
16 0.1188 0.0795 0.0909
32 0.0850 0.0325 0.0323
48 0.0567 0.0172 0.0178
64 0.0348 0.0114 0.0103
80 0.0249 0.0060 0.0059
96 0.0232 0.0031 0.0037
112 0.0163 0.0025 0.0021
128 0.0111 0.0014 0.0017
144 0.0107 0.0015 0.0016
160 0.0086 0.0010 0.0011
176 0.0065 0.0011 0.0007
192 0.0080 0.0012 0.0009
208 0.0060 0.0006 0.0008
224 0.0056 0.0004 0.0005
240 0.0050 0.0004 0.0005
256 0.0041 0.0004 0.0005
272 0.0039 0.0004 0.0002
288 0.0038 0.0004 0.0004
304 0.0033 0.0003 0.0002
320 0.0033 0.0002 0.0003

Table 5.6: Percentage of packets which miss their deadlines for N = 8 and 10000
trials per schedule length; BA = Basic algorithm, ODF = Oldest deadline first
approach, BSR= Balancing service ratios approach.

Figure 5.5: Percentage of packets which miss their deadlines for Basic Algorithm,

Oldest Deadline First Approach and Balancing Service Ratios Approach with one

time slot deadline relaxation for N = 8 and 10000 trials per schedule length.

51

P BA{DR) ODF{DR) BSR{DR)
32 0.0473 0.0236 0.0238
64 0.0285 0.0045 0.0042
96 0.0100 0.0002 0.0003
128 0.0048 0.0002 0.0001
160 0.0033 0.0000 0.0000
192 0.0021 0.0000 0.0000
224 0.0012 0.0000 0.0000
2.56 0.0006 0.0000 0.0000
288 0.0008 0.0000 0.0000
320 0.0003 0.0000 0.0000
352 0.0004 0.0000 0.0000
384 0.0004 0.0000 0.0000
416 0.0004 0.0000 0.0000
448 0.0002 0.0000 0.0000
480 0.0002 0.0000 0.0000
512 0.0002 0.0000 0.0000
544 0.0002 0.0000 0.0000
576 0.0001 0.0000 0.0000
608 0.0001 0.0000 0.0000
640 0.0001 0.0000 0.0000

Table 5.7: Percentage of packets which miss their deadlines for N = 16 and 5000
trials per schedule length: BA = Basic algorithm, ODF = Oldest deadline first
approach, BSR= Balancing service ratios approach.

Figure 5.6: Percentage of packets which miss their deadlines for Basic Algorithm,

Oldest Deadline First Approach and Balancing Service Ratios Approach with one

time slot deadline relaxation for N = 16 and 5000 trials per schedule length.

52

BA(DR)

N = 4
ODF(DR) BSR(DR) BA(DR)

N = 8
ODF(DR) BSR(DR) BA(DR)

N = 16
ODF(DR) BSR(DR)

2N 0 0 0 10 0 12 0
4N 17

1 0

ION

12N 11
14N

1 1

20 N 11
22N

24N 14
26N

34 N

36 N

38N

40N

Table 5.8; Number of packets which miss deadline by 2 time slots when deadline
relaxation is used.

Finally, the number of packets which miss their deadlines by two time slots

was determined. In most cases no packet misses deadline by more than 2 time

slots even for basic algorithms, see Table 5.8. Tabulated results in Table 5.8 also

show that no packet misses its deadline by more than 1 time slot for N = 4. In

few experimented cases for = 8 and = 16 small number of packets miss their

deadlines by two time slots. The number of packets which miss their deadlines

by one time slots is higher for basic algorithm than oldest deadline first approach

and balancing service ratios approach. No packet misses deadline by more than

one time slot when deadline relaxation is used.

It was noted before that the performance of algorithms increases as sched

ule length and switch size increase. By Proposition 2, it is can be verified that

53

sparseness of a matrix can reduce the likelihood of extracting a permutation

matrix. This is very difficult to quantify since the most sparse possible traffic

matrix is the matrix with all nonzero elements in a single permutation pattern

and all equal to P. All proposed algorithms provide a feasible schedule under

this traffic matrix. For small schedule lengths, the possibility that a traffic ma

trix is more sparse is higher than when the schedule length is larger according to

traffic matrix generation procedure discussed in Section 5.1. This is a possible

reason behind the increase in performance as schedule length increases. Simi

larly, number of possible permutation patterns for a switch with size N is N\.

Obviously it is a huge number for switches with large switch sizes. The increase

in the number of permutation patterns as switch size increases is also a possible

reason for the increase in performance for large N.

It is difficult to compare oldest first approach to balancing service ratios

approach. Numerical results show that success rates and percentage of number

of packets which miss deadlines in these algorithms are almost equal. In most

cases balancing service ratio approach shows slightly better performance. Their

major difference however lies on the fact that balancing service ratios distributes

service opportunities to connections more fairly.

Simulation results of this work are much more promising than the results of

the previous works in [20,21,23]. This thesis work considers switch working at full

capacity in contrast to all noted previous works. In [20,21], link utilization of 0.85

for all simulations was used . Simulation results in [20] show peak success rate

of 0.6 for = 4, it is worse for larger N values. Generally, algorithms proposed

in [20,21] perform inversely proportional to the schedule length, switch size and

link utility. Heuristic algorithms proposed in [20] seem to give better success rates

but the performance deteriorates as P^N and link utilization increase. Finally,

these algorithms and their heuristics are based on the fact that the switch utility

54

used is strictly less than 1.0, if link utilization is exactly 1.0, some heuristics are

not applicable.

Similarly, the simulation results in [23] used links utility around 0.92. The

percentage of number of packets missing their deadlines by the proposed tracking

policy is larger compared to the proposed algorithms in this thesis. Moreover, the

computational complexity is very high because the algorithm involves detecting

critical sets in each time slot.

55

Chapter 6

SUMMARY

In this thesis work, the problem of scheduling packets in input queued packet

switches is explored. In particular, scheduling multi-periodic traffic using in

put queued weighted round robin (WRR) servers is considered. Basic algorithm

and its variants are proposed. These heuristics are balancing connections service

ratios and servicing oldest deadline connection first. The other heuristic is dead

line relaxation which can be adopted to any of the above algorithms whenever a

failure is about to occur.

Proposed algorithms can be offline which are commonly used to exploit the

flexibility and simplicity while maintaining reliability requirement. In these al

gorithms, complexity of operation is eliminated and so they can suit high speed

networks better. The algorithms can also be online, whereby extraction of per

mutation matrices is desired to be forward oriented and storage units to store

permutation matrices are unnecessary. Online algorithms however, must have low

complexity so that they can suit high speed networks. In general, the proposed

algorithms are simple and efficient because they do not involve much computation

such as detecting critical sets.

56

Numerical experiments of this work are not exhaustive, limited subsets of

infinitely many possible traffic matrices are considered. However, by randomly

generating each traffic matrix, it is believed that healthy sample of traffic matri

ces is used. Simulations show that success rates of all algorithms are improved

(close to 1.0) compared to previous works. Moreover, the performance of pro

posed algorithms is not negatively affected by the increase of switch dimension

and schedule length and it is independent of link utilization. The performance

increases as switch size and schedule length increase for all proposed algorithms.

The percentage of number of packets which miss their deadlines by 1 time slot

is small without deadline relaxations heuristic. In most cases the percentage of

packets which miss their deadlines by 1 time slot is zero if deadline relaxation is

employed. This can be an acceptable performance in some applications.

The result of exhaustive searches of feasible schedules presented in [20,21]

led Philp and Liu to conjecture that there always exists a feasible schedule for

periodic traffic if switch utilization is less than or equal to 1.0. The analysis of the

formulated problem and simulation results in this thesis are consistent with Philp

and Liu conjecture and support the existence tracking policy for a general switch

size as claimed in [23]. In contrast to this thesis work, despite assuming links

with utilizations strictly less than 1.0, previously proposed algorithms provide

low success rates. The performance worsens as switch dimension, schedule length

and/or link utilization increase.

The hardware implementation of algorithms is possible and simple by making

use of simplicity of WRR servers, no speedup is required and buffer size can

be minimized to the size of one packet if no deadline relaxation is employed.

Moreover, this work contributes to providing a better insight of the problem by

presenting a new formulation. Simulation results and analyses of the problem

are consistent with Philp and Liu conjecture and assert the existence tracking

policy for a general switch size as claimed in [23].

57

Future works are in the directions of determining if Philp and Liu conjecture

is true and if tracking policy for a general switch size exists. Particularly, the

approach of devising better scheduling algorithms will be followed.

58

Bibliography

[1] J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks.

Boston/Dordrech/London: Kluwer Accidernic Publishers, 1990.

[2] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-

proch to flow control in integrated services networks: Single node case,”

lEEE/ACM Trans, on Networking, vol. 1, pp. 344-357, June 1993.

[3] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-

proch to flow control in integrated services networks: Multiple node case,”

lEEE/ACM Trans, on Networking, vol. 2, pp. 137-150, Apr. 1994.

[4] J. L. Rexford, A. G. Greenberg, and F. G. Bonomi, “Hardware-eificient fair

queueing architectures for high-speed networks,” Proc. IEEE INFOCOM,

pp. 638-646, 1996.

[5] J. C. R. Bennet and H. Zhang, ^WF'^Q: Worst-case Weighted Fair Queue

ing,” Proc. IEEE INFOCOM, pp. 120-128, Mar. 1997.

[6] J. C. R. Bennet and H. Zhang, “Hierarchical packet fair queueing algo

rithms,” lEEE/ACM Trans, on Networking, pp. 675-689, Oct. 1997.

[7] N. McKeown, “iSLIP: A scheduling algorithm for input-queued switches,”

lEEE/ACM Trans, on Networking, vol. 7, Apr. 1999.

59

[8] N. McKeown and T. E. Anderson, “A quantitative comparison of schedul

ing algorithms for input-queued switches,” Computer Networks and ISDN

Systems, vol. .30, pp. 2309-2326, Dec. 1998.

[9] P. Krishrna, N. S. Patel, A. Charny, and R. J. Simcoe, “On the speedup

required for work-conserving crossbar switches,” IEEE Journal on Selected

Areas in Communications, vol. 17, pp. 1057-1065, 1999.

[10] M. A. Marsan, A. Bianco, and E. Leonardi, “RPA: A flexible scheduling

algorithm for input buffered switches,” IEEE Trans, on Communications,

vol. 47, pp. 1921-1933, Dec. 1999.

[11] N. McKeown and P. Varaiya, “Scheduling cells in an input-queued switch,”

Electronics Letters, pp. 2174-2177, Dec. 1994.

[12] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm to

achieve 100% throughput in input-queued switches,” Proc. IEEE INFO-

COM, vol. 2, pp. 792-799, 1998.

[13] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100% through

put in an input-queued switch,” Proc. IEEE INFOCOM, vol. 1, pp. 296-302,

Mar. 1996.

[14] N. McKeown, A. Mekkittikul, V.Anantharam, and J. Walrand, “Achieving

100% throughput in an input-queued switch,” IEEE Trans, on Communi

cations, vol. 47, Aug. 1999.

[15] R. Ahuja, B. Prabhakar, and N. McKeown, “Multicast scheduling for input-

queued switches,” IEEE Journal on Selected Areas in Communications,

vol. 15, pp. 885-866, June 1997.

[16] C. L. Liu and J. Wayland, “Scheduling algorithms for multiprogramming

in a hard-real-time envirornent,” IEEE Trans, on Communications, vol. 20,

pp. 46-61, Jan. 1973.

60

[17] T. Inukai, “An efficient SS/TDMA time slot assignment algorithm,” IEEE

Trans, on Communications, pp. 14491455-, Oct. 1979.

[18] I. S. Gopal and C. K. Wong, “Minimizing the number of switchings in

an SS/TDMA system,” IEEE Trans, on Communications, vol. COM-3.3,

pp. 497-501, June 1985.

[19] A. Ganz and Y. Gao, “Efficient algotithm for SS/TDMA scheduling,” IEEE

Trans, on Communications, vol. 40, pp. 1367-1374, Aug. 1992.

[20] I. R. Philp, Scheduling Real-Time Messages in Packet-Switched Networks.

PhD thesis, University of Illinois at Urbana-Champaign, 1996.

[21] I. R. Philp and J. W. S. Liu, “SS/TDMA scheduling of real-time periodic

messages,” Telecommunications Systems Journal, pp. 244-251, Mar. 1996.

[22] J. Giles and B. Hajek, “Scheduling multirate periodic traffic in a packet

switch,” Master’s thesis. Department of Electrical and Electronics Engi

neering University of Illinois at Urbana-Champaig, 1997.

[23] V. Tabatabaee, L. Georgiadis, and L. Tassiulas, “QoS provisioning and

tracking fluid policies in input queueing switches,” Proc. IEEE INFOCOM,

2000.

[24] D. C. Stephens and H. Zhang, “Implementing distributed packet fair queue

ing in a scalable switch architecture,” Proc. IEEE INFOCOM, pp. 282-290,

Mar. 1998.

[25] D. Stiliadis and A. Varma, “Efficient fair queueing algorithms for packet-

switched networks,” lEEE/ACM Trans, on Networking, pp. 175-185, 1999.

[26] N. McKeown, Scheduling Algorithms for Input-Queued Switches. PhD thesis.

University of Carlifornia at Berkeley, May 1995.

61

[27] A. M. All and H. T. Nguyen, “A neural network implementation of an input

access scheme in a high-speed packet switch,” Proc. of Globecom, vol. 17,

pp. 1040-1055, June 1989.

[28] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output

queueing with a combined input/output-queued switch,” IEEE Journal on

Selected Areas in Communications, vol. 17, pp. 1030-1039, June 1999.

[29] H. F. Badran and H. T. Mouftah, “ATM switch architecture with input-

output buffering: effect of input traffic correlation, contention resolution

policies, buffer allocation strategies and delay in bakpressure signal,” Com

puter Networks and ISDN Systems, vol. 26, pp. 1187-1213, 1994.

[30] R. E. Del and R. Fantacci, “Performance evaluation of input and output

queueing techniques in ATM switching systems,” IEEE Trans, on Commu

nications, vol. 41, pp. 1165-1775, 1993.

[31] J. S. Chen and T. E. Stern, “Throughput analysis,optimal buffer allocation,

and traffic imbalance study of a generic nonblocking packet switch,” IEEE

JSAC, vol. 49, pp. 439-449, 1991.

[32] H. Duan, J. W. Lockwood, and S. M. Kang, “Matrix cell scheduler (MUGS)

for input-buffered ATM switches,” Journal of IEEE Communications Let

ters, vol. 2, pp. 20-23, 1998.

[33] A. C. Kam and K.-Y. Siu, “Linear-complexity algorithms for QoS support

in input-queued switches with no speedup,” IEEE Journal on Selected Areas

in Communications, vol. 17, pp. 1040-1055, June 1999.

[34] A. S. Tanenbaum, Computer Networks. New Jersey: Prentice-Hall Interna

tional,Inc., 1996.

[35] B. Kim, “Simulation of weighted round-robin queueing system,” Master’s

thesis, Chungnan National University, 1991.

62

[36] H. S. Hideyiku Schimonishi, “Performance of weighted round robin cell

scheduling and its improvement in ATM switches,” Trans. lEICE, vol. EBl-

B, pp. 919-929, May 1998.

[37] V. N. Sachkov, Combinatorial Methods in Discrete Mathematics. Cambridge

University Press, 1996.

[38] B. Li and Y. Qin, “Traffic scheduling with per VC QOS guarantee in WDM

networks,” Proc. IEEE INFOCOM, pp. 339-344, 1998.

63

