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Abstract

A major drawback of the traditional output queuing technique is that it requires a
switch speedup of N, where N is the size of the switch. This dependence on N makes
the switch non-scalable at high speeds. Input queuing has been suggested instead.
The introduction of input queuing creates the necessity for developing switching al-
gorithms to decide which packets to keep waiting at the input, and which packets to
forward across the switch. In this thesis, we address various algorithmic aspects of
switching.

We prove in this thesis, that many of the practical switching algorithms still
require a speedup to achieve even a weak notion of throughput. We propose two
switching algorithms that belong to a family to which we refer in this thesis as priority
switching. These two algorithms overcome some of the disadvantages in existing
priority switching algorithms, such as the excessive amount of state information that
needs to be maintained. We also develop a practical algorithm that belongs to a
family to which we refer in this thesis as iterative switching. This algorithm achieves
high throughput in practice and offers the advantage of not requiring more than one
iteration, unlike other existing iterative switching algorithms which require multiple
iterations to achieve high throughput. Finally, we address the issue of using switches
in parallel to accommodate for the need of speedup. We study two settings of parallel
switches, one with standard packet switching, and one with flow scheduling, in which
flows cannot be split across multiple switches.

Thesis Supervisor: Kai-Yeung Siu
Title: Associate Professor

This research was supported by: NSF Award 9973015 (chapters 2, 3, and 6), Alcatel Inc.

(chapter 4), and Tellabs Inc. (chapter 5, patent filed).
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Chapter 1

Introduction

Switching entails the forwarding of packets in a network towards their destinations.

The switching operation occurs locally at a node in the network, usually viewed

as a router. A switch is therefore the core component of a router, and hence a

packet arriving on a link to the switch has to be forwarded appropriately on another

link. In this thesis we look at the issues that arise when we consider high speed

switching. These issues are not necessarily apparent from the high level description

of the problem above, since the router can determine where to forward a packet by

simply looking at the packet header and obtaining the required information. At high

speed however, the detailed implementation of this task becomes an important aspect.

Intuitively speaking, we can assume that the switch operates in successive time slots

where in each time slot some packets are forwarded. Later we will see what packets

can be forwarded simultaneously during a single time slot, depending on the switch

architecture. We will assume that all packets have the same size and will take the

same amount of time to be forwarded. If this is not the case, then we can assume that

packets are divided into equal sized chunks that we traditionally call cells. However,

we will use the term packet in this document keeping in mind that these packets

might represent chunks of a real packet. The length of the time slot is determined

by the speed at which the switch can forward packets, and as the time slot becomes

shorter, the switch speed becomes higher and the problem of switching becomes more

apparent, as we will see next in our first attempt to implement this task.
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1.1 Output Queuing

Output queuing is the most intuitive and ideal way of implementing the switching

operation. The idea behind output queuing is to make a packet available at its

destination as soon as it arrives to the switch. The switch is modeled as a black

box with input and output ports. We can assume without loss of generality that the

number of input ports and the number of output ports are equal to N.

N input ports

0

0

0

N output ports
with 1 output
queue each

Figure 1-1: Output queued switch

In each time slot, packets arrive at the input ports and are destined to some

output ports. At most one packet can arrive to an input port during a single time

slot. At each output port, there is a FIFO queue that holds the packets destined to

that output, hence the name output queuing. When a packet destined to output j

arrives to the switch, it is immediately made available at output j by storing it in

the appropriate output queue. At the end of the time slot, at most one packet can

be read from each output queue. This is very idealistic and no scheme can do better

since each packet is made available at its destination as soon as possible. However,

as we will see in the following section, this scheme is very problematic at high speed.
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1.2 The Speedup Problem

It is possible that during a single time slot, the output queued switch will forward

multiple packets to the same output queue. For instance, if during a time slot, packets

at different inputs arrive to the switch and they all need to go to a particular output

j, then the switch has to store all these packets in the output queue corresponding to

output j. Therefore, up to N packets can go to a particular output queue during a

single time slot. This implies that the memory speed of that queue has to be N times

more than the line speed, which is limited to one packet per time slot. At a moderate

line speed, this does not constitute a problem. However, output queuing becomes hard

to scale at high speed. The line speed can be high enough to make the speedup factor

N impractical to achieve. Therefore, the use of output queuing becomes unfeasible at

high speed. We need a way to eliminate the undesired speedup. In order to overcome

the speedup problem, we restrict the number of packets forwarded to an output port

to one per time slot. As a result, an alternative architecture in which packets are

queued at the input is suggested. The architecture, called Input Queuing, will make

it possible to forward at most one packet to each output port and thus eliminates the

need for a speedup.

1.3 Input Queuing

In input queuing, FIFO queues are used at the input ports instead of the output ports

as depicted in the figure below.

A packet that cannot be forwarded to its output port during a time slot will

be kept in its queue at the input. Note that no output queues are needed in this

architecture since at most one packet will be forwarded to an output port during a

single time slot. This packet will be consumed by the output port by the end of the

time slot, and hence there will be no need to store any packets at the output. In order

not to recreate the same speedup problem at the input side however, only one packet

will be forwarded from an input port during a single time slot as well. Therefore, the

19



N input ports
with 1 input N output ports
queue each

Figure 1-2: Input queued switch

set of packets that are forwarded during a particular time slot satisfies the condition

that no two packets will share an input or an output. In other terms, among the

forwarded packets, no two packets originate at the same input and no two packets

are destined to the same output. We will see later how we can formally abstract this

notion. Before doing so, let us examine a phenomenon that arises with input queuing

known as Head Of Line blocking.

1.3.1 HOL Blocking

Head Of Line (HOL) blocking occurs when a packet at the head of the queue blocks

all the packets behind it in the queue from being forwarded. This phenomenon can

occur with input queuing when at a given time slot, two (or more) packets at different

input ports need to be forwarded to the same output port, say output port j. Only

one of these two packets can be forwarded; therefore, the one that will remain at the

head of its queue will block other packets in the queue (which are possibly destined to

outputs other than output j) from being forwarded. The HOL blocking phenomenon

usually limits the throughput of the input queued switch [17]. One way to eliminate

HOL blocking is by virtually dividing each input queue in to N queues, called Virtual

Output Queues VOQs. A VOQ at an input will hold packets that are destined to

one of the N outputs. Therefore, these VOQs can be indexed by both their input

20
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and output ports. We denote by VOQg3 the VOQ at input i holding packets destined

to output j. In this way, two packets that are destined to different output ports

cannot block each other since they will be stored virtually in two different queues.

The architecture is depicted below:

N input ports
with N VOs
each

ITDN

--- IN

I IJN

N output ports

0

0

0

Figure 1-3: Input queued switch with VOQs

In the next section, we provide a formal abstraction for the operation of the input

queued switch. We will see that the operation of the input queued switch can be

modeled as a computation of a matching (definition below) in every time slot.

1.3.2 Formal Abstraction

We address in this section the question of how to formally abstract the operation of

the input queued switch. We know that we can forward at most one packet from

an input port and at most one packet to an output port during a single time slot.

What is the theoretical framework that will give us this property? It is going to be

the notion of a matching. Intuitively speaking, the switch will match input ports to

output ports during each time slot. We start with few simple definitions:

Definition 1.1 (graph) A graph G = (V, E) consists of two sets V and E where V

is a set of nodes and E is a set of edges. Each edge in E connects two nodes in V.
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The above is the standard definition of an undirected graph. Next we define a

special type of graphs called a bipartite graph.

Definition 1.2 (bipartite graph) A bipartite graph G= (L, R, E) is a graph in

which the set of nodes V = L U R is such that L and R are disjoint and every edge

in E connects a node in L to a node in R.

We now define the matching.

Definition 1.3 (matching) A matching in a graph G = (V, E) is a set of edges in

E that are node disjoint.

Given the above definitions, we can now formally describe the operation of the

input queued switch. In every time slot, the switch performs the following:

Formal Abstraction

let VOQij be the Jth queue at input i

construct a bipartite graph G = (L, R, E) as follows:

an input port i becomes node i in L

an output port j becomes node j in R

a non-empty VOQij becomes edge (i, j) in E

compute a matching M in the bipartite graph G = (L, R, E)

Figure 1-4: Formal operation of the input queued switch

Since each edge represents a non-empty VOQ, the matching represents a set of

packets (the HOL packet of each VOQ). Furthermore, since a matching is a set of

edges that are node disjoint, the matching guarantees that these packets do not share

any input or output ports, and hence they can be forwarded with no speedup.

1.4 Input-Output Queuing

Although we developed our theoretical framework for an input queued switch based

on the idea that the switch has no speedup, it is possible to consider an input queued

switch with speedup. In fact, it has been shown that a limited speedup (independent

of N) is useful for providing certain guarantees in an input queued switch [6], [7], [18].
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However, as before, this requires the use of output queues at the output ports as well

since more than one packet can be forwarded to an output port during a single time

slot. We call such an architecture an input-output queued switch. Below we present

an input-output queued switch with VOQs.

N input ports Noutput ports
with N VO s with 1 output
each queue each

-aN

-- 01

-N

ZoN

Figure 1-5: Input-Output queued switch with VOQs

Our theoretical framework based on matchings can still be used. However, an

input-output queued switch with speedup will be able to compute matchings at a

rate higher than one matching per time slot. For instance, with a speedup of 2, an

input-output queued switch will compute two matchings per time slot. In general, the

speedup needs not be necessarily an integer. We will model the input-output queued

switch with continuous time as follows: With a speedup S> 1, the switch computes

a matching every I time units, keeping in mind that S needs not be an integer. The

line speed will be one packet per time unit and hence S is, as before, a speedup with

respect to the line speed. Therefore, the switch will have successive matching phases

where each matching phase takes I time units. When S = 1, i.e. a matching phase

takes exactly one time unit, we get back our previous model of input queuing with

no speedup. Note that in this case, no queues are necessarily required at the output.

To summarize what has been presented so far, we eliminated the speedup of N

required with the idealistic output queuing using input queuing, by replacing the

output queues with input queues instead. Moreover, we eliminated the phenomenon
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known as HOL blocking by virtually splitting each input queue into N VOQs. We

formally modeled the operation of the input queued switch as a computation of a

matching in every time slot. Finally, we generalized our model to an input-output

queued switch with a continuous time framework and a possible speedup S, where

the switch computes a matching every I time units.

The question to ask now is why aren't we done with the problem of switching. The

answer to this question is the following: what we did so far is reduce the problem of

switching into a problem of computing a matching in a bipartite graph. A graph con-

tains possibly many matchings and, therefore, we need to decide on which matching

to choose. This decision problem is at the heart of performing the switching operation

in input queued switches. As it will be seen in Chapter 2, if we are not careful on

which matchings to choose, it is possible for some VOQs to become starved and grow

indefinitely. Therefore, some algorithms have been suggested in order to compute the

matchings (one every I units with a speedup S) without starving the VOQs (more

formal definitions of this guarantee appear in Section 1.6). Before we look at some

of these algorithms, we need to understand some aspects pertaining to the traffic of

packets at the input. For this, we assume the existence of a traffic model.

1.5 Traffic Models

In this thesis, we will present three traffic models. A traffic model describes the arrival

of packets to the switch as a function of time. A traffic model can be probabilistic

or deterministic as it will be seen shortly. Before we proceed to the different traffic

models, we need to define a quantity that tracks the number of packets arriving to

the switch. Let Ai(t) be the number of packets arriving to the switch by time t that

originate at input i and are destined to output j.

1.5.1 SLLN Traffic

This traffic is a probabilistic model that obeys the Strong Law of Large Numbers,

hence its name SLLN. The Strong Law of Large Numbers says that if we have indepen-
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dent and identically distributed (i.i.d.) random variables X, then Pr[lim- Li =

E[X]] = 1, where E[X] is the expected value of the random variable X,. We say that

L",iX"converges to E[X] with probability 1. In our context, regardless of whethern

packet arrivals are i.i.d. or not, we assume that lim. A 1(t) - A with probabilityt

1, for some A 5. In simpler terms, this means that it is possible to define a rate Aij

for the flow of packets from input i to output j.

SLLN:

* lim- , A At) = i with probability 1

" XX Aik <(a

*"XX Ak j - a

S <1

The second and third conditions of the SLLN model constrain the sum of rates

at every input and output port to be less than or equal to a, which we will call the

loading of the switch. Finally, we require that a < 1. The reason behind this last

constraint is that the traffic cannot exceed the line speed at any port, which is limited

to one packet per time unit. Another reason behind this constraint is that a switch

with no speedup cannot access more than one packet per time unit at any port, and

hence a switch with no speedup will be overloaded if a > 1. This constraint on the

loading of the switch will be present in all the traffic models presented hereafter.

With the above probabilistic traffic model, it is possible to define a rate for the

flow of packets from input port i to output port j. Next we define two traffic models

where this rate does not necessarily exist; however, the models will characterize the

traffic burst.

1.5.2 Weak Constant Burst Traffic

In some sense, the weak constant burst traffic is a stronger model than SLLN because

it is deterministic. However, it does not define a rate for the flow of packets from
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input i to output j. Alternatively, it provides a bound on the burst of packets at

input i and output j. This bound is a constant independent of time. Nevertheless,

the model does not constrain the flow of packets from input i to output j in any way,

hence the use of the term weak in the burst characterization of this traffic model.

Weak Constant Burst

* Vt1  t2, EkAik(t2) - Ak(tl) a(t2 -t 1) + B

* Vt1 5 t2, EkAkJ(t2) - AkJ(tI) (t2 -- tI) + B

e a < 1

The model simply says that for any time interval [t,7t 2 ], the maximum number of

packets that can arrive at an input i or destined to an output j is at most a(t2 -ti ) +B,

where B is a constant independent of time and, as before, a is the loading of the

switch.

Note that a is not necessarily the rate of packets at input i or output j. In fact,

such a rate might not be defined. Thus, a is just an upper bound on the rate if it

exists. Next we define a stronger traffic model that also satisfies this constant burst

property.

1.5.3 Strong Constant Burst Traffic

The following model implies the previous model and hence is stronger (more con-

strained).

Strong Constant Burst

* Vt 1  t2 , Aij(t 2 ) - Ass(ti) A(t 2 - t1) + B

* Ek Aik a

* EkAkj< a

* a<I
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The model basically says that during any time interval [t 1 , t 2 ], the number of

packets from input i to output j is at most Aj(t 2 - t 1) + B, where B is a constant

independent of time. As before, although A is not necessarily the rate of the flow

of packets from input i to output j (and such a rate might not exist), it is an upper

bound on the rate if it exists. We have the same constraints as before on the sum

of Ajjs at any input or output port. This model of course implies the weak constant

burst model.

Note that both the weak constant burst and the strong constant burst models do

not necessarily imply the SLLN model because limt,, 7" ! might not exist. However,

if that limit exists, then the strong constant burst model satisfies the SLLN model.

1.6 Guarantees

There are various service guarantees that one might want a switching algorithm to

provide. In this thesis, we will address two basic guarantees. These are throughput

and delay guarantees.

1.6.1 Throughput

Throughput basically means that as time evolves, the switch will be able to forward

all the packets that arrive to the switch. There are many definitions of throughput

and some definitions depend on the adopted traffic model. One possible definition of

throughput under a probabilistic traffic model is for the expected length of each VOQ

to be bounded. Therefore, if Xij(t) denotes the length of VOQjj at time t, we require

that E[Xij(t)] ; M < oo [21], [23], [24]. One can show that this implies that for any

E > 0, there exists a time to such that for every t > to, Pr[ ] _ c. We call this

type of convergence, convergence in probability. Therefore, Xi 1 (Q converges to 0 int

probability. Convergence in probability is weaker than convergence with probability

1 (see previous section). Other definitions of throughput require that under an SLLN

traffic, himt", Dij(t) = with probability 1 [8], where Di 1(t) = A 1(t) - Xii(t).

Therefore, if limt+'i ') = A in probability, the previous definition of throughput
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implies that lim=A D (t) Ai in probability. It is possible to show that if E[XJ (t)]

is bounded, then lim = 0 with probability 1, which in turn implies that

limiteDi()=Aij with probability 1 if limt, , *,, =Aiwith probability I.

In this thesis, we will use two definitions of throughput. A weak definition and a

strong definition.

Definition 1.4 (weak throughput) Let Xij(t) be the length of VOQj, at time t.

Then limte, 0 x 3(t) =0

The above definition can be also expressed as follows: for every e > 0, there exists

a time to such that for any time t > to, XI(t) < c.
t -

Note that in the above definition, the throughput does not rely on the fact that

lim> " (t) exists. Note also that the definition does not impose any strict bound

on the size of the VOQs. Below we provide a stronger definition of throughput.

Definition 1.5 (strong throughput) Let Xij(t) be the length of VOQjj at time t.

Then there exists a bound k such that Xij(t) < k for all t.

Obviously, strong throughput implies weak throughput.

It is useful to ensure that the queue size is bounded at any time since this will

provide an insight to how large the queues need to be in practice. Most of the time

however, this notion of strong throughput can be superseded by the delay guarantee

described below. We will rely on the notion of weak throughput in Chapter 2 for

proving some negative results on speedup, namely that some switching algorithms

cannot achieve weak throughput without speedup.

If we have a throughput guarantee and the loading of the switch is a, we usually

refer to this as a throughput. This notion is useful if we would like to observe the

throughput guarantee as we change the loading of the switch. If there is a value a

of the loading beyond which the switching algorithm cannot guarantee throughput,

then we say that the algorithm guarantees a throughput.
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1.6.2 Delay

Delay is a stronger guarantee than throughput and it basically means that a packet

will remain in the switch for at most a bounded time.

Definition 1.6 (delay) Every packet remains in the switch for at most a bounded

time D.

Obviously, delay implies strong throughput. To see why this is true, define k =

[SD1 where S is the speedup of the switch. If the length of VOQjj exceeds k, then

at least one packet will remain in VOQjj for more than D time units since the switch

can forward at most [SD] packets during an interval of time D from VOQ2j, hence

violating the delay bound. Therefore, the length of VOQjj cannot exceed k.

1.7 Existing Switching Algorithms

Now that we have defined some traffic models and possible guarantees, we can enu-

merate some of the existing switching algorithms. Recall that these will determine

how to compute a matching every - time units with a speedup S. So we will first

consider some properties of matchings in general.

Definition 1.7 (maximal) A matching M is maximal if there is no edge (i, J) M

such that M U (i, J) is a matching.

In simpler terms, a maximal matching is a matching such that no edge can be

added to it without violating the property of a matching. Therefore, any edge outside

the matching shares a node with at least one edge in the matching.

Definition 1.8 (maximum size) A matching M is a maximum size matching if

there is no other matching M' such that jM'| > |M|.

In simpler terms, a maximum size matching is a matching with the maximum

possible number of edges. As a generalization to the maximum size matching we

have the following definition.
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Definition 1.9 (maximum weighted) In a weighted graph where edge (i, J) has

weight wij, a matching M is a maximum weighted matching if there is no other

matching M' such that Z(ij)cM' Wij > E(ij)M i.

In simpler terms, a maximum weighted matching is a matching that maximizes

the sum of weights of its edges.

The following sections describe some of the existing switching algorithms and the

ways by which they compute the matchings.

1.7.1 Maximum Weighted Matching

This algorithm has been known for a while and is one of the first switching algorithms

suggested in the literature. It is based on computing a maximum weighted matching

as follows. In every matching phase, the weight of edge (i, j), w, is set according to

some scheme. Then a maximum weighted matching based on these weights is com-

puted. When wiy is the length of VOQjj (or the time the oldest packet of VOQj 1 has

been waiting in VOQij) it has been shown that the expected length of any VOQ (or

the expected wait for any packet) is bounded, with no speedup (S = 1) under an i.i.d.

Bernoulli traffic in which a packet from input i to output j arrives to the switch with

probability 2 j (this satisfies SLLN) [21], [23]. In [28], which addresses a more general

setting than an input queued switch, similar (but more elaborate) guarantees are pro-

vided using wij as the length of VOQij, without assuming that arrivals are Bernoulli

arrivals, but requiring the arrival process to have a finite second moment. When wj

is the length of VOQij, another result shows that this algorithm guarantees weak

throughput with probability 1 under any SLLN traffic with no speedup (S = 1)[81.

Unfortunately, this switching algorithm has a time complexity of O(NM logp(2+±) N),

where M is the number of non-empty VOQs (i.e. edges in the bipartite graph, which

could be O(N 2 ) making the required time O(N 3)). This is the best known time re-

quired to compute a maximum weighted matching in a bipartite graph [27]. This is

not very practical at high speed. A variation on the definition of the weights can

reduce the problem of computing a maximum weighted matching to computing a
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maximum size matching [24]. This will have a time complexity of 0(v/M), which

is the best known time required to compute a maximum size matching in a bipar-

tite graph [27]. Unfortunately, O(N 2-) time complexity is still not practical at high

speed. Therefore, alternative switching algorithms have been suggested.

1.7.2 Priority Switching Algorithms

In order to overcome the complexity of the above switching algorithms, which are

based on computing a maximum weighted matching, a family of algorithms that com-

pute a matching based on a priority scheme emerged. Below is the general framework

by which these algorithms compute their matchings.

Priority Switching Algorithm

start with an empty matching M = 0
prioritize all VOQs
repeat the following until M is maximal

choose a non-empty VOQij with a highest priority
if M U (i, j) is a matching, then M = M U (ij)
discard VOQij

Figure 1-6: Priority switching algorithms

Obviously, the time required to compute the priorities has to be efficient (for

instance, it has to be o(N 3)); otherwise, the use of such an algorithm is not justified.

As an example, we can think of an algorithm that operates as follows: it computes

a maximum weighted matching M as described in Section 1.7.1, and then assigns

high priorities to all VOQij such that (i, J) C M. Finally, it performs the algorithm

outlined in Figure 1-6 based on these priorities. This is a priority switching algorithm

that provides the same guarantees as the maximum weighted matching algorithm.

However, the use of this algorithm is not justified because it requires O(N 3) time to

compute the priorities. Therefore, a requirement for the use of a priority switching

algorithm is that the priority scheme itself is efficient to obtain.

Many priority schemes have been suggested. One algorithm called Central Queue

[16] assigns higher priority to VOQs with larger length (the way the algorithm is

presented here is slightly different than how it was originally presented in [16]). This
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algorithm can be shown to guarantee strong throughput with no speedup when a < I

if Aj (t) does not exceed Ajt by more than a constant for any time t. Moreover, if

Aij (t) is always within a constant from it, it was proved to provide a delay guarantee

with no speedup when a < 1. This algorithm, of course, requires the switch to be

less than half loaded.

Another algorithm called Oldest Cell First [6] assigns higher priority to VOQs

with older HOL packet, where the age of the packet is determined by the time it has

been waiting in its VOQ. This was proved to provide a delay guarantee under a weak

constant burst traffic with a speedup S > 2. It also provides strong throughput under

a strong constant burst traffic with a speedup of 2.

Yet another algorithm called Lowest Occupancy Output Queue First LOOFA [18]

assigns higher priority to a VOQj 1 for which output queue j contains smaller number

of packets (recall the architecture of an input-output queued switch). A special version

of this algorithm, where ties are broken among equal priority VOQs using the age of

their HOL packets, provides a delay guarantee under a strong constant burst traffic

with a speedup of 2.

In Chapter 3, we are going to describe two priority switching algorithms that

we propose. Both algorithms provide strong throughput with a speedup S = 2 and

a delay guarantee with a speedup S > 2 under appropriate traffic models. The

advantage of these two algorithms is that they require a considerably smaller amount

of state information to compute the priorities than the previous priority switching

algorithms.

Obviously, regardless of what the priority scheme is, the time complexity of a

priority switching algorithm is Q(N 2 ). Although this is still considered impractical

at high speed, as discussed above these algorithms provide delay guarantees with

appropriate traffic models and speedup. In Chapter 2, we will have a more general

look at these algorithms and prove that the speedup requirement is inherent for

these algorithms to provide even a weaker guarantee, like throughput, under a very

restricted traffic model.
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1.7.3 Iterative Switching Algorithms

So far, all the switching algorithms mentioned above require the need for a centralized

global computation of matchings, which is the reason behind their high computational

complexity. To overcome this requirement, a family of algorithms, called iterative,

has been suggested. In these algorithms, the matching is computed in a distributed

fashion where input and output ports interact independently in a simultaneous way.

Such algorithms exploit some degree of parallelism in the switch that is acceptable,

and in fact they were found to be very practical to implement in hardware.

As the name indicates, an algorithm belonging to this family works in multiple

iterations within every matching phase, where in each iteration a partial matching

is computed according to the following RGA (stands for Request, Grant, Accept)

protocol. In each iteration, inputs and outputs interact independently in parallel:

each unmatched input requests to be matched by sending requests to some outputs.

Then each unmatched output grants at most one request. Finally, each unmatched

input accepts at most one grant. If input i accepts a grant from output j, i and j
are matched to each other. It is obvious that the outcome of the RGA protocol is

a matching since each output grants at most one request and each input accepts at

most one grant.

Since multiple inputs can request the same output, and similarly, multiple outputs

can grant the same input, the matching computed in one iteration is not necessarily

maximal. For instance, an input receiving multiple grants has to accept only one of

them and reject the others. This implies that some of the granting outputs could have

granted other requests, but since there is no direct communication among the output

ports themselves, this cannot be anticipated. Nevertheless, the size of the matching

may grow with more iterations. As we will see in Chapter 4, these iterative switching

algorithms do not provide high throughput (i.e. throughput for high values of ca)

unless multiple iterations are allowed. The general framework of these algorithms is

outlined in Figure 1-7 '.

'Some iterative switching algorithms allow for an input and an output to be unmatched in a
future iteration in favor of another matching, based on priorities at the input and output ports.
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Iterative Switching Algorithm

start with an empty matching M = 0
repeat for a number of iterations

R: unmatched input i Requests some outputs

G: unmatched output j Grants at most one request

A: unmatched input i Accepts at most one grant

if input i accepts a grant from output j
M = M U (i,j)

Figure 1-7: Iterative switching algorithms

Iterative switching algorithms differ by how requests are prepared and how grants

and accepts are issued. Examples of these algorithms are PIM (parallel iterative

matching) [1], iSLIP [22], iPP (iterative ping-pong) [13], DRR (dual round robin)

[20], and pDRR (prioritized dual round robin) [9]. In PIM, an unmatched input i

sends requests for all outputs j such that VOQp is non-empty. An output grants a

request at random. Similarly, an input accepts a grant at random. This algorithm was

proved to attain a maximal matching in O(log N) expected number of iterations and

provides high throughput in practice. However, the impracticality that randomness

brings at high speed lead to the development of the alternative algorithm iSLIP.

iSLIP replaces randomness with the round robin order. As a result, each output

maintains a pointer to the inputs, and grants a request by moving the pointer in a

round robin fashion until it hits a requesting input. The accepts are issued in a similar

manner at the inputs. Other iterative algorithms (except for iPP) are variations on

this idea. The time complexity of these algorithms is dominated by the complexity

of one iteration, which basically consists of the RGA protocol. Depending on the

algorithm, this could be 0(logN) or O(N), keeping in mind that ports operate in

parallel. These algorithms provide a better alternative at high speed; however, they

do no provide strong theoretical guarantees as we will see in Chapter 4.

Figure 1-7 does not reflect that possibility. Such algorithms are usually based on computing what is

knows as stable marriage matchings [12] where input and output ports change their match repeatedly

in successive iterations until the matching is stable and no more changes occur. Stable marriage

matching algorithms require in general N2 iterations to stabilize. For an example, see [7] which

presents an emulation of output queuing using an input queued switch with a speedup of 2.
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1.8 Thesis Organization

The thesis is organized as follows. Chapter 2 will establish some lower bounds on the

speedup required for different classes of switching algorithms to guarantee throughput.

In Chapter 3, we propose two priority switching algorithms. The two algorithms

will provide strong throughput with a speedup S = 2 and a delay guarantee with a

speedup S> 2 under appropriate traffic models. They offer the advantage of requiring

a smaller amount of state information than other priority switching algorithms. In

Chapter 4, we propose an iterative switching algorithm that provides high throughput

in practice with one iteration only. The algorithm will also provide, with only one

iteration, a delay guarantee with a speedup S5> 2 as well as strong throughput with

a speedup of 2. The property of requiring one iteration only makes it possible to

scale the switch at higher speeds since one matching phase will need to fit only one

iteration of the RGA protocol described above. Chapter 5 will investigate the use of

multiple input-output queued switches with no speedup in parallel in order to achieve

a delay guarantee while eliminating the speedup requirement imposed on the switch.

Chapter 6 continues with the idea of using parallel switches (not necessarily input-

output queued) and exploits a setting in which flows cannot be split across multiple

switches. Finally, we conclude the thesis in Chapter 7.
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Chapter 2

Some Lower Bounds on Speedup

In this chapter, we establish some lower bounds on the speedup required to achieve

throughput with different classes of switching algorithms. We will use the notion

of weak throughput defined in Chapter 1. This will strengthen the results since an

algorithm that cannot achieve weak throughput, cannot achieve strong throughput

as well. We show a lower bound on the speedup for two fairly general classes of

priority switching algorithms: input priority switching algorithms and output priority

switching algorithms. These are to be defined later in the chapter, but for now, an

input priority scheme prioritizes the VOQs based on the state of the VOQs while an

output priority scheme prioritizes the VOQs based on the output queues. For output

priority switching algorithms, we show that a speedup of 2 is required to achieve

weak throughput. We also show that a switching algorithm based on computing a

maximum size matching in every matching phase does not imply weak throughput

unless S > 2. The bound of S > 2 is tight in both cases above based on a result in [8].

The results states that when S> 2, a switching algorithm that computes a maximal

matching in every matching phase, achieves weak throughput with probability 1 under

an SLLN traffic. Finally, we show that a speedup of is required for the class of input

priority switching algorithms to achieve weak throughput.

Our model of a switch will be essentially the same general model of an input-

output queued switch depicted in Figure 1-5. As before, the switch operates in

matching phases, computing a matching in every phase. We will assume that the
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switch computes a maximal matching in every phase. A switch with speedup S takes

1 time units to complete a matching phase before starting the next phase. Therefore,

if S > 1, output queues are also used at the output ports since packets will be

forwarded to the output at a speed higher than the line speed. We review below

some of the known results regarding the speedup of the switch.

Charny et al. proved in [63 that any maximal matching policy (i.e. any switching

algorithm that computes a maximal matching in every matching phase) achieves a

bounded delay on every packet in an input queued switch with a speedup S> 4 under

a weak constant burst traffic. We will prove that the simple policy of computing any

maximal matching does not imply weak throughput for a speedup S < 2. In fact,

as mentioned earlier, we prove that even a maximum size matching policy does not

imply weak throughput for S < 2.

Since switches with speedup are not desired due to their manufacturing cost and

impracticality, it is very legitimate to look at what loading a a switch with no speedup

(i.e. S = 1) can tolerate. The first work that addresses this issue appears in [16].

They provided a switching algorithm (called Central Queue algorithm) that computes

a i-approximation of the maximum weighted matching, where they used the length

of VOQjj as the weight for edge (i, J) (recall the required restrictions on the traffic

described in Section 1.7.2 for this algorithm to provide throughput and delay guar-

antees). This work is a generalization of the result described in [28] applied to the

special setting of a switch. The i-approximation algorithm used in [16] is a priority

switching algorithm where VOQs with larger length are considered first as candi-

dates for the matching. The Central Queue algorithm achieves strong throughput

when a < -. The results obtained in this chapter will prove that it cannot achieve

weak throughput unless S> 2a, and hence with no speedup (S = 1) it cannot achieve

weak throughput for a > 2

In [6], the authors provide an algorithm called Oldest Cell First that guarantees

a bounded delay on every packet with a speedup S > 2 under a weak constant

burst traffic. The same algorithm can be proved to achieve strong throughput with

a speedup of 2 under a strong constant burst traffic. This switching algorithm is a
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priority switching algorithm and assigns higher priority to VOQs with older HOL

packets. We will similarly prove that this algorithm cannot achieve weak throughput

unless S > .
- 2'

In another work [18], Krishna et al. provide an algorithm called Lowest Occupancy

Output Queue First LOOFA that guarantees a bounded delay on every packet with

a speedup of 2 and a strong constant burst traffic, and uses a more sophisticated

priority scheme. This algorithm has also a work conservation property that we are

not going to address here. The same lower bound of S> 1 applies for this algorithm

as well in the sense that LOOFA does not imply weak throughput unless S>

2.1 Traffic Assumptions

We define a restricted model of traffic under which we are going to prove our lower

bound results on S. Note that a more restricted traffic yields stronger results.

Definition 2.1 An a-shaped traffic is a traffic that satisfies the following:

* VtI t2 , Aij(t 2 ) - Aij(t 1) = j(t2 - t1 ) ± 0(1), where A is a constant

" Vt1 <t2, Ek Aik(t 2 ) - Aik(tl) = Ek Aik(t 2 - ti) ± 0(1)

* Vt1 _<t 2 , Ek Ak (t2) - Akj(t) = Ek Ak(t 2 - t1 ) ± 0(1)

* Yk Aik _ a

e k Ak j a

a < I

The above conditions state that the rate of the flow from input i to output j exists

and is equal to At). Moreover, the burst B = 0(1) of the flow from input i to output

j, as well as the aggregate flow at any input and any output, is independent of the

size of the switch N. Note that this traffic satisfies the SLLN model as well as the

strong constant burst model.
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The a-shaped traffic is the model under which we are going to prove the various

lower bound results. As a consequence, the results will hold for all traffic models

defined in Chapter 1, namely the SLLN traffic, the weak constant burst traffic, and

the strong constant burst traffic.

2.2 Priority Scheme

In this section, we formally define a priority scheme. Recall from Chapter 1 that a

priority scheme imposes an order on the VOQs by which they are considered for the

matching. We first define an active VOQ to be a non-empty VOQ.

Definition 2.2 An active VOQ is a non-empty VOQ.

Definition 2.3 A priority scheme 7r defines for every matching phase m a partial

order relation lrm on the active VOQs.

We will use the notation VOQij rm.VOQkl to denote that VOQjj has higher

priority than VOQkL during matching phase m. We will also use the notation

VOQiJgwmVOQkl to denote that VOQ 2j does not have higher priority than VOQkl

during matching phase m.

Note that since 7rm is a partial order relation, two VOQs might be unordered

by 7r. In order for this to cleanly reflect the notion of equal priority, we define a

well-behaved priority scheme as follows:

Definition 2.4 A well-behaved priority scheme ,r is a priority scheme such that for

every matching phase m, if VOQjj and VOQk, are unordered by T-,, and VOQkL and

VOQmn are unordered by 7r, then VOQjj and VOQ~n are unordered by rr.

The above condition on the priority scheme reflects the notion of equal priority.

Hence if during a particular matching phase, VOQjj and VOQkL have equal priority,

and VOQkI and VOQmn have equal priority, then VOQj 1 and VOQnn will have equal

priority. This condition defines an equivalence relation on the VOQs which will help
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us later to explicitly extend the partial order relation to a total order relation by

which all VOQs are ordered.

In practice, a priority switching algorithm breaks ties among the VOQs with

equal priorities. We will assume that ties are broken using the indices of the ports,

and hence we assume the existence of a total order relation on the (i, j) pairs which

is used for breaking ties. Adopting the assumption that breaking a tie among two

VOQs involves only the two VOQs in question and no other information, this is

the most general deterministic way of breaking ties, since anything else that is more

sophisticated can be incorporated into the priority scheme itself. The definition below

captures the idea.

Definition 2.5 Let wv be a well-behaved priority scheme and 0 be a total order relation

on the (i, j) pairs. We define the q extension of ir to be the priority scheme iro as fol-

lows: For any matching phase m, if VOQij-<,VOQkI, then VOQijg< rVOQkl. For

any matching phase m, if VOQjj and VOQk, are unordered byirm, then VOQiJ-<0VOQkl

iff (Z', j) (k,31).

It can be shown that if ir is a well-behaved priority scheme, then 7r' is a priority

scheme such that for every matching phase m, r orders all active VOQs. The fact

that 7r is well-behaved means that 7rm induces the equal priority equivalence relation

on the active VOQs. This in turn implies that we can extend 7r as described above

without violating the property of an order relation. We omit the proof of this fact.

Note that our definition of a priority scheme is general enough to tolerate changing

the definition of the partial order relation in every matching phase. Therefore, it is

possible to prioritize the VOQs based on their lengths in one matching phase, and

based on the age of their HOL packets in another.

Recall that a priority switching algorithm computes its matchings based on the

given priority scheme (see Figure 1-6). We now define, for a given priority scheme 7r,

a matching that describes the outcome of a priority switching algorithm.

Definition 2.6 For a given priority scheme ,x, a matching computed in matching

phase m is 7r-stable iff it satisfies the following condition: if an active VOQjj is not

41



served by the matching, then either an active VOQik is served by the matching and

VOQj 7/rmVOQik, or an active VOQkJ is served by the matching and VOQiJ7AnVOQkJ*

The notion of a 'r-stable matching is more general than the process depicted in

Figure 1-6 by which a priority switching algorithm for priority scheme w computes

its matchings. In other terms, a priority switching algorithm for the priority scheme

7r will always compute a it-stable matching. Although the most intuitive and straight

forward way of computing a 7r-stable matching is as depicted in Figure 1-6, Definition

2.6 does not impose any restriction on how the it-stable matching is computed.

In the next section, we prove lower bound results on the speedup under an a-shaped

traffic.

2.3 Lower Bounds

We will start by stating, without proof, the following simple lemma:

Lemma 2.1 If an event E occurs every -t -7 0 time units, then the number of times

Egt, tthe event occurs in the interval [t 1, t2 ], satisfies the following:

t 2 - tl1 t2 -1
-.1I< Egt,t,<T +1

We will later use this lemma to argue a lower bound on the number of packets

arriving from a particular input i during an interval of time, and an upper bound on

the number of matching phases during the same interval of time. Using these bounds,

we will prove our different results by showing that the number of packets arriving to

the switch at a particular input is more than the number of times that input is served

by the matching phases. In order to obtain such a scenario for a given algorithm, we

make use of an adversary. The adversary will supply the switch (the algorithm) with

an a-shaped traffic that will force the algorithm to fail in achieving weak throughput

unless the speedup is high enough.

We will denote by a matching policy a switching algorithm that computes a match-

ing that satisfies the policy in every matching phase. For instance, a it-stable matching
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policy denotes a priority switching algorithm for the priority scheme ir. We will also

use loosely the notion of reducibility. For instance, when we say that weak throughput

is not reducible to some matching policy, we mean that a switching algorithm that

computes a matching that satisfies the matching policy in every matching phase, does

not necessarily imply weak throughput. As an example, a matching policy could be

merely any maximal matching with no other conditions on the matching. Therefore,

if we say that weak throughput is not reducible to a maximal matching policy, we

mean that an algorithm that computes a maximal matching in every matching phase

does not necessarily imply weak throughput.

2.3.1 Output Priority Switching Algorithms

In this section, we establish a lower bound on the speedup for a class of priority

switching algorithms that employ an output priority scheme defined below:

Definition 2.7 An output priority scheme iris a priority scheme that satisfies the

following: for every matching phase m, there exists a partial order relation 7r' on the

output ports such that VOQijg<rm VOQkL iff]i -<, r .

Note that according to this definition, VOQjj and VOQkJ are unordered by an

output priority scheme (because j -/g j for any matching phase m), reflecting the

fact that neither has priority over the other because they share the same output. An

example of an output priority scheme is lowest output occupancy where a VOQjj for

which there are less packets in output queue j has higher priority. This scheme was

used in LOOFA [18].

Below we describe the first adversary that we are going to use:

The q-Adversary:

Let q be any total order relation on the (i],j) pairs. We will assume, without

loss of generality, that (1, 1) is the highest ranked according to #. Similarly, after

discarding (1, k) and (k, 1) for all k = 1...N, we assume that (2, 2) has the highest

rank according to q among the remaining pairs. We continue until we obtain pairs
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(3, 3)...(N - 1, N - 1) in the same way. The adversary produces an a-shaped traffic

as shown in Figure 2-1.

N-2

N-- -I

N-

N-2 a

0

N-2

N-a

Figure 2-1: The 4-Adversary

At input N, the flow of rate a is divided equally among the N - 1 outputs in

a round robin fashion. The adversary produces a packet at input N every time

units. Similarly, the adversary produces a packet at input i, where i = 1...N - 1,

every N1 a time units. It can be shown that this traffic is a-shaped. More precisely,

using Lemma 2.1 and the fact that the adversary uses a round robin order to generate

packets for the first N - 1 outputs, we can show that during any time interval [t 1 , t2 ],

the number of packets from input N to any of the first N - 1 outputs satisfies the

following:
aT-1 aT+1
N-1 N-1

where T= t2 - i. This confirms with the first condition of an a-shaped traffic. The

condition is also true for all other flows. We can show that the rest of the conditions

are also satisfied. Note also that no overloading occurs since at any port, the sum of

the rates of all flows is at most:

a N-2
+- +- a=aN - IN- I
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Lemma 2.2 For any well-behaved output priority scheme r and any total order rela-

tion q on the (i, j) pairs, a r"-stable matching policy, under the h-Adversary, cannot

serve inputs 1 and N during the same matching phase.

Proof: By the property of an output priority scheme 7r, for any matching phase

m, VOQjj and VOQNj are unordered by 7rm. Therefore, we have that VOQ 1 1 -7r

VOQNj for any matching phase m, by the definition of the b-Adversary. Hence, the

ir 0-stable matching policy will choose the matching {(1, 1), (2, 2), ..., (N - 1, N - 1)}

whenever possible. Since the q-Adversary provides the same traffic for flows (1, 1),

(2, 2), ..., and (N - 1, N - 1), the matching policy will always be able to pick the

corresponding edges together. In other words, it is not possible that VOQjj is active

and VOQjj is not for i, j = 1...N - 1. As a result, inputs 1 and N cannot be served

during the same matching phase. U

Theorem 2.1 For any well-behaved output priority scheme 7r and any total order re-

lation q on the (i, j) pairs, a ,r'-stable matching policy cannot achieve weak throughput

under an a-shaped traffic unless S> 2a.

Proof: Consider the O-Adversary. Pick a time t. By Lemma 2.1, we have at

most tS +1 matching phases by time t, each of which is forwarding at most one packet

from inputs 1 and N by Lemma 2.2. By Lemma 2.1, the number of packets arriving

to input 1 and N by time t is at least:

N - 2
at -1+ at - I

N-1

Therefore, at time t, the number of packets remaining at inputs 1 and N is at least:

2N - 3
( _ a - S)t - 3

N - I

For S < 2a, there exists a large enough N, say No, such that NN-3 a - S = > 0.
N0 -1

If weak throughput is to be achieved, then for every c > 0, there must exist a large

enough t, say to, such that for every VOQij, Xt) < c for any t > to. Assume that
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weak throughput is achieved and let c < ± and to be as defined above. Let t > to be

such that 6 - > c. Since at inputs 1 and No we have 1+ (No - 1) = No active
No Not

VOQs, there exists a VOQjj such that the number of packets remaining in VOQjj at

time t is at least 6g3 . Therefore,

Xjj (t) >6- 3
t No  No t

Since t> to, we have a contradiction.

We have proved that any switching algorithm based on an output priority scheme

that breaks ties using the indices of the ports cannot achieve weak throughput under

an a-shaped traffic unless S > 2. The implication of this result is that a speedup of at

least 2 is required for an output priority switching algorithm to provide throughput

with a full loading of the switch. Below we prove a corollary.

Corollary 2.1 For any output priority scheme 7, weak throughput is not reducible

to a r-stable matching policy unless S> 2.

Proof: There exists an output priority scheme 7r' such that for any matching

phase m, 7r' is a total order relation on active VOQs. Hence, 7r' is a well-behaved

output priority scheme. Note that tr'O = 7r' for any total order relation b on the (i, J)

pairs. Moreover, VOQij-V ,m-VOQkutVOQi§ j-< VOQk1. Therefore, since a it'-stable

matching policy is a 7r-stable matching policy, the result is immediate from Theorem

2.1 using a =1. U

The basic version of LOOFA, described in [18], considers first the VOQs with the

lower output queue occupancy as candidates for the matching. As a consequence,

it only guarantees that some it-stable matching policy will be used, where 7r is the

lowest output occupancy priority scheme. Therefore, we proved that this switching

algorithm does not imply weak throughput for S < 2. LOOFA assumes that at most

one packet arrives to any input per time unit. The q-Adversary satisfies this condition

(see Figure 2-1).
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2.3.2 Maximum Size Matching

Consider the switching algorithm that computes a maximum size matching in every

matching phase. N. McKeown et al. proved in [21] that such an algorithm, with

probability 1, will not achieve weak throughput unless S > 1.037a, when arrivals

to the switch are i.i.d. Bernoulli arrivals and a random maximum size matching

is computed. We are going to consider the lower bound on S when this switching

algorithm is deterministic. Consider the -Adversary described earlier. Note that

for any priority scheme 7r and any total order relation # on the (i, j) pairs, a ir-

stable matching policy is a maximum size matching policy under the q-Adversary. To

see this, note that the maximum possible size for a matching is N - 1 when the first

N -1 outputs are matched. Note also that, whenever possible, the tr-stable matching

policy will choose the matching {(1, 1), (2, 2), ... , (N - 1, N - 1)} where VOQjj for

i = 1...N - 1 are either active together or non of them is. As a consequence, we have

the following result:

Corollary 2.2 Weak throughput is not reducible to a maximum size matching policy

unless S> 2.

Proof: Immediate from Theorem 2.1 using a = 1 since, as argued above, for

any priority scheme 7r and any total order relation 0 on the (i, j) pairs, under the

q-Adversary, a rV-stable matching policy is a maximum size matching policy. U

2.3.3 Maximal Matching

Since a maximum size matching is also a maximal matching, we have the following

result:

Corollary 2.3 Weak throughput is not reducible to a maximal matching policy unless

S > 2.

Proof: Immediate from Corollary 2.1 U
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In a recent paper [8], Dai et al. proved that with S > 2, any maximal matching

policy guarantees weak throughput with probability 1 under an SLLN traffic. We just

proved that this is not true when S < 2. Therefore, since both a -stable matching and

a maximum size matching are maximal matchings, the lower bound results obtained

so far are tight.

Charny et al. proved in [6] that a delay guarantee, and therefore strong throughput

also, is reducible to a maximal matching policy if S > 4 under any weak constant burst

traffic. It can be shown that strong throughput is reducible to a maximal matching

policy if S = 4 under a strong constant burst traffic. The question of achieving strong

throughput with any maximal matching policy under constant burst traffic models

for S c [2,4] remains to be answered.

2.3.4 Input Priority Switching Algorithms

In this section, we will prove a lower bound on the speedup for another class of priority

switching algorithms that use input priority.

We can define an input priority scheme in a similar way to the output priority

scheme by reversing the role of input and output ports, and hence obtaining the

same results above. However, we choose to define an input priority scheme more

intelligently to take into account the input and output ports of each packet.

Before we do so, we introduce a definition of the state of a VOQ.

Definition 2.8 For a matching phase m, let Aijm be a function of time such that

Aijm(t) = Aij(t) if t E [0, K]1, and Aim(t) = A j() otherwise. Similarly, let Dijm be a

function of time such that Dijm(t) = Dij(t) if t e [0, j, and Dijm(t) = Di(E) other-

wise. The state of a VOQi 1 during matching phase m, Sijm, is the tuple (Aij,,Dijm).

In other terms, the state of VOQij during matching phase m is the history of

packet arrivals and departures to and from VOQij up to the beginning of matching

phase m.

Definition 2.9 An input priority scheme 7r is a priority scheme that satisfies the
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following: for every matching phase m, there exists a partial order relation r' on the

states of the VOQs such that VOQij-mVOQk if Sm<7r' Ski..

According to the definition of an input priority scheme, VOQs with equal VOQ

states are unordered and therefore have equal priority. An example of an input

priority scheme is largest queue length where VOQs with more packets have more

priority. This scheme was used in the Central Queue algorithm [16] as mentioned

earlier. Another example is oldest packet where the VOQs with the older HOL packets

have more priority. This scheme was used in the Oldest Cell First algorithm [6] as

mentioned earlier.

Next we will prove a similar lower bound result for the speedup required by priority

switching algorithms with an input priority scheme. Before we do so, we start with

few definitions and lemmas.

Definition 2.10 A q-ordered KN,N is an N x N complete bipartite graph with a total

order relation q on its edges.

Definition 2.11 In a #-ordered KN,N, an -symmetric cycle is a cycle n 1, n2 , ... , n2e,

n, that satisfies the following: (n_1 ,ni) -<0 (ni, ni+1) iff (ni-+ ,ni+e) -<$ (ni+e, ni++)

for i = 1...f, where no is the same as n2e and n21 +1 is the same as n1 .

Lemma 2.3 For any C > 2 and a large enough N, any q-ordered KN,N contains an

-symmetric cycle.

Proof: Let L and R be the two disjoint sets of nodes of KN,N. Consider the

bipartite graph induced by any kL = (C-1)C!+i nodes in L and any kR = (C-1)kL!±+1

nodes in R. Let U and V be the two disjoint sets of nodes of the new bipartite graph.

Every node v in V orders the kL nodes of U according to the order of their respective

edges to node v. Since there are at most kL! possible orders, we can find at least C

nodes in V that define the same order 0,, on U. Let these nodes be vI, v2 , ... ,or

and let V be the set {vi, v2 ,-..., v}. Now every node u in U orders the C nodes of V

according to the order of their respective edges to node u. Since there are at most f!
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possible orders, we can find at least f nodes in U that define the same order 0, on

V. Let these nodes be a1, a2 , ... , u and let Ut be the set {a1, U 2, ... , ae}. Therefore,

we obtain two ordered sets Ut and V that satisfy the following properties:

(Ui,v) -<i0 (ajv) iffa U -s a VUaa j(E Uj, VV E V

(U,v ) -<O (u, vg) iffvi - vj VU E U, Vvi, jE V

Without loss of generality, let a1, a2, ..., u be the ordered elements of Uf and let vi,

V2, ... , v be the ordered elements of V. We can verify that the two cycles of Figure

2-2 are 1-symmetric cycles. U

U21 VC

v [t12

>n Vd

fU21ad d

U1  V

U3  V3

ut Vt

0

U4 V4

tf> 2 and even

Figure 2-2: 1-symmetric cycles

We define the following adversary:

The 3-symmetric q-Adversary:

Consider a 3-symmetric cycle in the q-ordered KN,N as shown in Figure 2-3. The

adversary generates a packet for every flow shown in Figure 2-3 every j time units

producing an a-shaped traffic.

Note that the traffic of the 3-symmetric q-Adversary is a theoretic one where two

packets from the same input can arrive to the switch simultaneously. This is possible
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Figure 2-3: The 3-symmetric O-Adversary

if the VOQs at an input can be accessed independently. For instance, each VOQ

is a physically separate queue. In any case, the use of such a theoretic traffic can

be justified by the following reasoning: in practice, time is discretized to fixed size

intervals of length 6, and hence as long as packets arrive during the same interval,

they will have the same time-stamp. Therefore, we can consider a discrete version

of the 3-symmetric O-Adversary. The discrete adversary will write the two packets

in parallel to the memory of the input queued switch by writing a bit of each in

an alternating fashion. Since any two write operations to the memory will complete

in a particular order, specifically the last two write operations, we still have that

one packet will arrive before the other. However, we can prove that for any rational

aS, there exists a line speed (equivalently, a packet size) beyond which any two

simultaneous packets in the 3-symmetric O-Adversary will arrive during the same

interval of length 6 in the discrete adversary. Similarly, we can prove that for any

rational 2, there exists a line speed beyond which any two simultaneous packets in

the 3-symmetric 4-Adversary cannot straddle the beginning of a matching phase in

the discrete adversary. Therefore, if a6 and 2 are both rational, there exists a lineS

speed beyond which any two simultaneous packets in the 3-symmetric 4-Adversary

will appear to arrive simultaneously in the discrete adversary. The proof of this fact

relies on the following two lemmas:

Lemma 2.4 If an event E 1 occurs every T1 $ 0 time units and an event E2 occurs

every T2 $ 0 time units and LZ is rational, then there exists 0 < c < T2 such that772

for any time t, if event E 1 occurs at time t, event E2 cannot occur in the interval

(t, t + 6).
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Proof: Since 1- is rational, there exist two integers a and b such that " =.T2 -2 b

Define Y = {y is an integer 0 < y < b and['y] - ly > O}. If Y =0, define e <T 2 .

Otherwise, if Y #0, define c < minyey([Fy] -- y)T2.

Assume event El occurs at time L1 for the mth time and event E2 occurs at time

t2 for the nth time. This means that ti = mri and 2 = nT2 , where m and n are both

integers. Therefore,

Tia
t2 - tL1 = nT 2 - mT1 = (n - [-m)T2 = (n - --m)T 2

T2 b

We can express m as m = xb + y where x and y are integers such that x > 0 and

0 < y < b. Therefore,

t2 - t1 = (n - ax -- y)T2
b

We are interested in the case where 2 -Li 0, so assume without loss of generality

that n - ax - y 0.

We distinguish between two cases. If ;y is an integer, then t2 - ti E {0, T2, 27 2 , .-

and the lemma is true since 0 < e < T2. If gy is not an integer (and hence Y $ 0),

then

t2 - tl = (n - ax - a y)T 2  , (ja b y) 2  
bmin([ y] -ay) 2  = E

b b yEY b b

and the lemma is true.

Lemma 2.5 Let c be as defined in Lemma 2.4. If event E1 is delayed by E' time units

such that 0 < c' < c, then if event E1 occurs at time t, event E2 cannot occur in the

interval [t, t + e - E').

Proof: From Lemma 2.4, we know that if event El occurs at time t, then event

E2 cannot occur in the interval (t, t+ c). It is possible, however, for event E2 to occur

at time t. Therefore, delaying event E e' time units such that 0 < c' < e, guarantees

that if event Ei occurs at time t, event E2 cannot occur in the interval [t, 1 + e - E').

U
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Now back to our previous argument. Let E 1 be the event that the first packet

arrives and let E2 be the event that a matching phase begins. From Lemma 2.4, there

exists an c such that if the first packet arrives at time t, a matching phase cannot

begin in (t, t + E). Furthermore, the adversary can delay the arrival of packets by

CE < e time units, and by Lemma 2.5, we get that if the first packet arrives at time t,

a matching phase cannot begin in [t, t + 6-6'). We can set the line speed (equivalently,

the packet size) such that the last bit of a packet can be written to the memory of

the input queued switch in less than c - c' time units. Therefore, since the last bit of

a packet requires less than 6 - E' time to be written, and both packets are written in

parallel, when the first packet arrives at time t, the next packet will arrive before the

matching phase begins. As a result, when the matching phase begins, both packets

are present. A similar argument can be made to prove that both packets arrive during

the same discrete interval of length 6.

Next we prove a lemma similar to Lemma 2.2 for the case of the 3-symmetric

q-Adversary.

Lemma 2.6 For any well-behaved input priority scheme 7r and any total order re-

lation $ on the (i, j) pairs, a PrO-stable matching policy, under the 3-symmetric 4-

Adversary, serves at most 2 packets in each matching phase.

Proof: We will prove that if there are packets at the input side during a match-

ing phase, the PrO-stable matching policy will choose one of the following matchings:

{(1, 3), (3, 1)}, {(1, 2), (2, 1)}, or {(2, 3), (3, 2)}. We will prove this by induction on

the number of matching phases:

Base case: The claim in trivially true at a fictitious matching phase before the

beginning of the first matching phase.

Inductive step: We assume that the claim is true up to matching phase m - 1.

We need to prove that it remains true for matching phase m. First, we denote by

(i, j) and (j, i) two edges belonging to one of the above three matchings. Since the

claim is true up to matching phase m - 1 and the adversary assigns the same traffic

to all flows, VOQj 1 and VOQjj will have the same state by the beginning of matching
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phase m. Secondly, we can see from Figure 2-3 that if (k, 1) is adjacent to (i, j) i.e.

either i = k or j 1, then (1, k) is adjacent to (j, i); moreover, by the property of the

3-symmetric cycle we have: (i, J) -co (k, 1) iff (j, i) --< (1, k).

If there are no packets at the input side during matching phase m, then we are

done. Otherwise, let (i, J) be the edge in the graph such that there is no other edge

(k, 1) in the graph that satisfies (k, 1) -< (i,J). Therefore, by the property of the

tr-stable matching, (i, j) will be in the matching during matching phase m. We will

prove that (j, i) is also in the matching.

Consider an edge (1, k) in the graph during matching phase m that is adjacent to

(J, i). By equality of VOQ states, we know that (k, 1) is in the graph during matching

phase m (VOQLk active implies VOQkI active). We also know that (k, 1) is adjacent

to (i, j).

case 1: If VOQij-&mVOQkl, then by equality of VOQ states, VOQjis<wmVOQk.

case 2: Otherwise, it must be that VOQij ffmVOQkl and (i, J) -<0 (k, 1) by our

choice of (i, j). By equality of VOQ states and the property of the 3-symmetric cycle,

VOQij $,V OQlk and (J, i) -t<0 (1, k).

Therefore, in both cases, VOQji -<70VOQlk for any active VOQik such that (1, k)

is adjacent to (j, i), and hence (j, i) is in the matching during matching phase m by

the property of the irV-stable matching. U

Theorem 2.2 For any well-behaved input priority scheme r and any total order rela-

tion # on the (i, J) pairs, a rt-stable matching policy cannot achieve weak throughput

under an a-shaped traffic unless S >> a.

Proof We will use the 3-symmetric #-Adversary. Consider a time t. By Lemma

2.1, we have at most tS + 1 matching phases by time t, each of which forwards at

most 2 packets by Lemma 2.6. Therefore, the number of packets forwarded by time t

is at most 2(tS + 1). By Lemma 2.1, the number of packets arrived by time t to the

switch is at least:

6(-t -1)
2
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Therefore, at time t, the number of packets remaining at the inputs is at least:

(3a - 2S)t - 8

For S < a, (3a - 2S) = 6 > 0. If weak throughput is to be achieve, then for every

f > 0, there must exist a large enough t, say to, such that for every VOQij, Xjj(t) <;

for any t > to. Assume that weak throughput is achieved and let Ec< A and to be

as defined above. Let t > to be such that - c. Since at the inputs we have6 6t

6 active VOQs, there exists a VOQjj such that the number of packets remaining in

VOQjj at time t is at least 6t8. Therefore,

Xij(t) 6 8
t 6 6t

Since t > to, we have a contradiction.

We have proved that any switching algorithm based on an input priority scheme

that breaks ties using the indices of the ports cannot achieve weak throughput under

an a-shaped traffic unless S> 2a. For instance, the Central Queue and the Oldest

Cell First switching algorithms cannot achieve weak throughput unless S> 2, under

the assumption that indices of the input and output ports are used to break ties

when two VOQs have the same priority (i.e. same VOQ length and same age of HOL

packet respectively). We can prove that the Oldest Cell First switching algorithm

cannot achieve weak throughput even without the above tie breaking assumption, by

adding a minor change to the adversary. The adversary will keep the same traffic

for flows {(1, 3), (3, 1)}; however, it will delay the traffic for flows {(1, 2), (2, 1)} by

one time unit, and it will delay the traffic for flows {(2, 3), (3, 2)} by two time units.

In that case, the Oldest Cell First algorithm will have to choose matchings in a way

similar to before, forwarding only two packets per matching phase, because the VOQs

that will have the oldest HOL packets are the ones that belong to one of the three

matchings listed above.

Theorem 2.2 suggests that a speedup of at least 1 is required for an input priority2

switching algorithm to provide throughput with a full loading of the switch.
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Below we prove a corollary.

Corollary 2.4 For any input priority scheme it, weak throughput is not reducible to

a it-stable matching policy unless S > 2

Proof: There exists an input priority scheme i' such that for any matching

phase m, 7r' is a total order relation on active VOQs. Hence, '' is a well-behaved

input priority scheme. Note that w' = i' for any total order relation 0 on the (i, J)

pairs. Moreover, VOQij-- rVOQkeVOQij-'%VOQk. Therefore, since a ir'-stable

matching policy is a ir-stable matching policy, the result is immediate from Theorem

2.2 using a = 1. U

Now we discuss the enhanced version of the LOOFA algorithm presented in [18]

which uses a combined input-output priority scheme. Although LOOFA assumes that

only one packet can arrive to an input port per time unit (which is not true with the

3-symmetric q-Adversary), we will show that the priority scheme of LOOFA does not

imply weak throughput under an a-shaped traffic if S < 2

LOOFA computes a matching in the following way: it finds the port with the

smallest output queue and selects an input to match it with, then repeats until the

matching is maximal. In the deterministic version of LOOFA, the input selection

criterion can be either the input with the oldest HOL packet, or it can be performed

in a round robin fashion. We can show that this combined input-output priority

scheme also suffers the same limitations. We will not go into the details, we will just

illustrate a sketch of the proof.

Consider the example of Figure 2-3. Let S < la, which means that < -. Since

every VOQ accumulates packets at a rate 2, every three matching phases, a VOQ will

receive a new packet. This means that a policy can continuously select the following

matchings in that order:

{(1, 3), (3, 1)}, {(1, 2), (2, 1)}, {(2, 3), (3, 2)}

Once can show, irrespective of the speedup of the switch, that this order in choosing

the matching satisfies the smallest output queue criterion, assuming that forwarded
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packets arrive at the same time to their output queues and that output queues are

served as soon as possible (there is no restriction on the order in which packets are

delivered at the output). This assumption can be justified by an adversary that

controls the timing of the algorithm. Moreover, this order in choosing the matching

satisfies three selection criteria: round robin, oldest packet, and largest length. Since a

matching of size two is computed in every matching phase, weak throughput cannot

be achieved as proved in Theorem 2.2.

2.4 Summary

We proved lower bounds on the speedup required by several classes of switching

algorithms to achieve weak throughput. By doing so, we showed that most of the

practical switching algorithms suffer the same theoretical limitation, which is the fact

that speedup cannot be avoided for throughput to be guaranteed. An algorithm based

on a Birkhoff-von Neumann decomposition of the rate matrix that provides a delay

guarantee with no speedup under a strong constant burst traffic has been suggested

in [4]. This algorithm, however, requires an explicit knowledge of the rates Aijs and

is therefore sensitive to the values of the Aijs. Moreover, it requires a pre-processing

step of O(N 4 -5) time complexity (but it runs after that in 0(log N) time). Therefore,

given that speedup cannot be avoided practically, we consider in Chapter 5 the use of

multiple switches with no speedup in parallel in order to employ some of the practical

switching algorithms, while eliminating the speedup requirement they impose on the

switch.
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Chapter 3

Two Priority Switching Algorithms

In this chapter, we present two simple priority switching algorithms. The general

operation of a priority switching algorithm is depicted in Figure 1-6. In principle, a

priority switching algorithm prioritizes the VOQs and computes a matching based

on the priority scheme in the following way: it chooses the highest priority non-

empty VOQjj and adds (i, i) to the matching if possible. Then it discards VOQjj

and repeats until a maximal matching is obtained. Therefore, to fully describe a

priority switching algorithm, it suffices to determine what the priority scheme is. We

are going to present two priority schemes called Earliest Activation Time and Latest

Activation Time. For this, we need to recall the definition of an active VOQ as

stated in Definition 2.2. Basically, an active VOQ is a non-empty VOQ. We define

the activation time of a VOQ as follows:

Definition 3.1 (activation time) The activation time of a VOQ is the last time

at which the VOQ transitioned from being inactive to active.

Recall the formal definition of a priority scheme from Chapter 2 (Definition 2.3).

We define the two priority schemes that we mentioned above as follows:

Definition 3.2 (earliest activation time) If 7r is the Earliest Activation Time

priority scheme, then for every matching phase m, VOQij-7.VOQkl iff VOQjj has

an earlier activation time than VOQkL.
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Definition 3.3 (latest activation time) If wF is the Latest Activation Time prior-

ity scheme, then for every matching phase m,, IVOQijj-'<,VOQk1 iff VOQjj has a

later activation time then VOQkI.

The motivation behind the above priority schemes is to reduce the state informa-

tion needed by the switching algorithm to compute the priorities. As we have seen in

the previous chapter, most of the priority switching algorithms suggested in the lit-

erature require a considerable amount of state information. For instance, Oldest Cell

First and LOOFA require packets to be tagged by their arrival times because their

priority schemes rely on the age of packets. Moreover, the Central Queue algorithm

requires to maintain the length of each VOQ. Although this is considerably less than

keeping ages of packets, the algorithm requires the traffic to be constantly backlogged

in order to achieve a delay guarantee. This means that for every VOQij, the number

of packets that arrive to VOQj 1 by time t, has to satisfy Ag (t) > At - k, where Aij

is the rate of flow of packets from input i to output j, and k is a constant. The two

priority schemes defined above will eliminate the need to maintain the ages of packets

as well as the need for the traffic to be constantly backlogged.

3.1 Earliest Activation Time

We start with the Earliest Activation Time switching algorithm. We will prove that

it provides, under a strong constant burst traffic, strong throughput with a speedup

S = 2 and a delay guarantee with a speedup S > 2. In the results below, we state

S as a function of a which is the loading of the switch. Setting a = 1 gives us the

claims above.

Theorem 3.1 Under a strong constant burst traffic, the Earliest Activation Time

switching algorithm achieves strong throughput with a speedup S = 2a, where 0z is the

loading of the switch.

Proof: We will prove that the length of every VOQ is bounded. For a VOQ, if

Aij = 0, then by the definition of a strong constant burst traffic, Aj(t) < Ast+B = B
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for any time t. Therefore, the length of VOQjj cannot exceed B. So let us assume

that Aj 5 # 0. We will prove that VOQjj cannot remain active for more than a

bounded time D. Consider the VOQjj with A $00 that is the first to remain active

for a time D (if more than one VOQ satisfy the property, we choose one arbitrarily).

Therefore, if VOQjj became active at time t, it will remain active during [t, t + D].

Recall that the switching algorithm will compute a 'r-stable matching (Definition 2.6)

in each matching phase, where 7r is the Earliest Activation Time priority scheme.

As a result, in every matching phase m during [t, t + D], either VOQjj is served, or

an active VOQik is served and VOQiJ7wmVOQik for some k, or an active VOQkJ is

served and VOQiJ7rmVOQkj for some k. In other terms, either a packet from VOQjj

is forwarded, or a packet from VOQik with an activation time no later than VOQj 5 is

forwarded, or a packet from VOQkJ with an activation time no later than VOQjj is

forwarded. Therefore, by Lemma 2.1, at least SD - 1 packets that satisfy the above

criterion were forwarded from input i or to output j during [t, t + D]. Moreover, since

by the choice of VOQij, at time t + D, all active VOQs have been active for at most

a time D, the number of these packets can be bounded as follows:

A1jD + B + Z(AikD + B) +((AkJD + B) _< (2a - \ij)D + (2N - 1)B
kj kfi

The bound above is obtained by the property of the strong constant burst traffic and

by the fact that all VOQs up to time t + D have been active for at most a time D

(except possibly for some VOQik with Asi = 0 or some VOQkj with AkJ = 0, which in

that case implies that the length of those VOQs is always at most B as argued above).

We reach a contradiction if SD - 1 > (2a - A)D + (2N - 1)B or if D > (2Nil)B+1 f

we define AO = min,\JAko , then D < (N-1)B+. If S = 2a, D is at most (2N1)B±1

and VOQjj cannot be the first one to remain active for more than D. As a result,

the length of VOQjj cannot exceed Aij (2N-1)B+1 + B by the property of the strongAO

constant burst traffic.

Theorem 3.2 Under a strong constant burst traffic, the Earliest Activation Time

switching algorithm achieves a delay bound on every packet with a speedup S > 2a,
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where a is the loading of the switch.

Proof We proved in Theorem 3.1 that VOQjj cannot remain active for more

than a time D = (2N-1 B+l Therefore, for any S> 2a, D is a well defined bound. As

a consequence, a packet cannot remain in its VOQ for more than a time D; otherwise,

its VOQ will remain active for more than a time D, a contradiction. We still need

to bound the time a packet remains in its output queue (recall that an input queued

switch with a speedup S> 1 has output queues). Note that for a given output j, no

more than SD + 1 packets destined to output j can be present at the input side of

the switch at any time. The reason behind this fact is that at most SD + 1 packets

can be forwarded to output j during an interval of time D (Lemma 2.1), and hence if

more than SD + 1 packets destined to output j are present at the input side at some

point in time, at least one packet will remain in its VOQ for more than a time D.

Consider a time interval [t 1, t2 ] such that the queue at output j becomes non-

empty at time t1 and remains so during [ti, t 2 ]. Since output j delivers a packet from

its output queue whenever possible (one per time unit at line speed), it delivers at

least t2 - t1 - 1 packets during [t, t 2 ] (again, Lemma 2.1). Therefore, the number of

packets in output queue j at time t 2 cannot exceed SD + 2 + NB because at most

a(t 2 - ti) + NB < (t2 - ti) + NB packets destined to that output can arrive to the

switch during [t 1, t2J, by the property of the strong constant burst traffic. Therefore,

the number of packets in output queue j cannot exceed SD + 2 + NB at any time.

This is true for any output j. Since the packets at the output are delivered in a FIFO

manner, a packet cannot remain in its output queue for more than SD + 2 + NB

time, resulting in a total delay of (S+1)D + 2+ NB.

3.2 Latest Activation Time

The Earliest Activation Time switching algorithm achieves strong throughput with

a speedup S = 2; however, the theoretical bound obtained on the length of a VOQ

depends highly on the traffic, namely A0 which is the minimum non-zero A j. We will

eliminate this dependence with the Latest Activation Time switching algorithm by
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making the length of a VOQ depend on the traffic only through the burst constant

B. As before, we express S as a function of the loading of the switch a.

Theorem 3.3 Under a strong constant burst traffic, the Latest Activation Time

switching algorithm achieves strong throughput with a speedup S = 2ct, where a is

the loading of the switch.

Proof: We will prove that the length of every VOQ is bounded. For a VOQij, if

Aij = 0, then by definition of a strong constant burst traffic, Ai (t) <; A-tt+B = B for

any time t. Therefore, the length of VOQjj cannot exceed B. So let us assume that

Aij J 0. We will prove that VOQjj cannot remain active for more than a bounded

time D. Consider a VOQj4 with Aj 1 # 0 that remains active for a time D. Hence,

if VOQjj became active at time t, it will remain active during [t, t + D]. Recall that

the switching algorithm will compute a ir-stable matching (Definition 2.6) in each

matching phase, where r is the Latest Activation Time priority scheme. As a result,

in every matching phase m during [t, t + D], either VOQjj is served, or an active

VOQik is served and VOQij-,$ffmVOQik for some k, or an active VOQkJ is served

and VOQiJrmVOQkj for some k. In other terms, either a packet from VOQjj is

forwarded, or a packet from VOQkJ with an activation time no earlier than that of

VOQ 2j is forwarded, or a packet from VOQkJ with an activation time no earlier than

that of VOQjj is forwarded. Therefore, by Lemma 2.1, at least SD - 1 packets that

satisfy the above criterion were forwarded from input i or to output j during [t, t +D].

Moreover, by definition of the Latest Activation Time priority scheme, these packets

arrived to the switch no earlier than time t. The number of these packets can be

bounded as follows using the property of a strong constant burst traffic:

AiJD + B+ E(AikD + B)+Z1(AkJD + B) < (2a - Az)D+ (2N - 1)B
kAj kAi

We reach a contradiction if SD - 1> (2a - A)D + (2N - 1)B or if D > (2N-1)B+li

If S = 2a, D is at most (2N-)B+1. Therefore, VOQjj cannot remain active for more

than (2N-1)B+1. As a result, the length of VOQj cannot exceed Aij(2N-1)B+1 + B =
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2NB + 1 by the property of the strong constant burst traffic. U

As it can be seen from the proof of the above theorem, the bound on the length of

a VOQ depends on the traffic but only through its burst constant B. Next we state

a delay result similar to Theorem 3.2 but with weaker conditions on the traffic.

Theorem 3.4 Under a weak constant burst traffic, the Latest Activation Time switch-

ing algorithm achieves a delay bound on every packet with a speedup S > 2a, where

a is the loading of the switch.

Proof: We will prove that a VOQ cannot remain active for more than a time

D, which in turn will imply a delay bound of (S +1)D + 2 + B on every packet for

a weak constant burst traffic, as argued in the proof of Theorem 3.2. The proof is

identical to that of Theorem 3.3 except that, by the property of a weak constant burst

traffic, the number of packets arriving to the switch during [t, t + D], which originate

at input i or are destined to output j, can be bounded as follows:

aD + B + aD + B = 2aD + 2B

As argued in the proof of Theorem 3.3, we reach a contradiction if SD -1 > 2aD + 2B

or if D > 2B+1. Therefore VOQjj cannot remain active for more than 2B+.i 0

3.3 Implementation Issues

In this section, we look at the implementation details of both algorithms. The nature

of the priority schemes used will make the implementation of both algorithms very

practical. For instance, in both cases, the algorithm can maintain a queue that holds

indices of VOQs. Whenever a VOQ becomes active, its index is added to the tail

of the queue. Whenever a VOQ becomes inactive, its index is removed from the

queue. In every matching phase, the Earliest Activation Time switching algorithm

will consider the VOQs starting from the head of the queue. In other terms, the

highest priority VOQ will be at the head of the queue. On the other hand, the

Latest Activation Time switching algorithm will consider the VOQs starting from
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the tail of the queue. In other terms, the highest priority VOQ will be at the tail of

the queue. In doing so, each algorithm will guarantee that a matching based on its

specific priority scheme is computed in every matching phase.

3.3.1 Time and Space Complexity

The time complexity of both algorithms is clearly O(N 2 ) using the RAM model of

computation. The space complexity is the amount of memory needed to maintain

the queue of VOQ indices. This is O(N 2 log N) since there are at most N2 indices

each of which can be represented using 0(log N2 ) = 0(log N) space. Note that both

algorithms do not require packets to be tagged by their arrival time, nor do they

require to keep any information about the length of the VOQs or the output queues.

3.3.2 Communication Complexity

In this section we consider the amount of communication needed between the switch-

ing algorithm and the switch. Note that the switching algorithm obtains its input

from the switch itself in order to compute a matching. Therefore, the switching al-

gorithm can be considered as being performed on a central scheduler in the switch.

The scheduler needs to obtain information about the VOQs in every matching phase

to compute a matching. Moreover, it needs to communicate back some information.

For instance, the matching itself needs to be communicated back to the switch so

that the input and output ports are configured appropriately.

In our case, a VOQ that becomes active needs to be communicated to the sched-

uler so that our algorithm can add its index to the queue. Moreover, a VOQ that

becomes inactive needs to be communicated to the scheduler as well so that our al-

gorithm can drop its index from the queue. By the property of a matching, we know

that at most one VOQ can become inactive at an input during a single matching

phase, since at most one VOQ can be served at that input during a single matching

phase.

If at most one VOQ can become active at a given input during a single matching
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phase, then the communication requirement needed from the switch to the scheduler

is O(N log N), since each input will have to communicate at most two indices (the

index of the VOQ that becomes active at that input and the index of the VOQ that

becomes inactive at that input). Note that this communication complexity is optimal

if we consider the Q(N log N) amount of communication needed from the scheduler

to the switch to specify a matching for the switch.

Depending on the implementation of the VOQs however, it might be possible that

more than one VOQ can become active at a given input during a matching phase.

This will bring the communication complexity to O(N 2 ) since up to N VOQs can

become active at a given input. We suggest a modification to the Earliest Activation

Time and the Latest Activation Time switching algorithms in order to reduce the

communication complexity back to 0(N log N).

As mentioned above, the high communication complexity comes from the fact that

multiple VOQs at an input can become active during the same matching phase. We

will restrict every input to communicate at most one active VOQ in the following

way: every input will communicate active VOQs in the order they become active,

only one VOQ at a time. This means that when a VOQ is declared active, it could

have been active for at most w time; therefore, it will have at most a bounded number

of packets, which can be added to the burst constant of the traffic (whether the weak

or the strong constant burst traffic is being used). Hence, a VOQ will not remain

active for more than j time in addition to the bound obtained with the adjusted

burst constants.

3.4 Summary

We presented two priority switching algorithms that provide strong throughput with

a speedup S = 2 and a delay guarantee with a speedup S > 2, under appropriate

constant burst traffic models. Both algorithms offer the advantage of not requir-

ing extensive state information like the age of packets (as in the Oldest Cell First

algorithm [6] and LOOFA [18]), the length of the VOQs (as in the Central Queue
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algorithm [16]), or the length of the output queues (as in LOOFA [18]). Moreover,

they do not require the traffic to be constantly backlogged as it is the case for the

Central Queue algorithm [16]. The running time of both algorithms is O(N 2 ) in

the RAM model of computation and their memory requirement is O(N 2 log N). The

communication complexity of both algorithms is O(Nlog N) which is optimal if we

consider the Q (N log N) amount of communication required to specify a matching for

the switch in order to configure the input and output ports appropriately. Therefore,

both algorithms offer a better communication requirement compared to the previous

algorithms for which more information needs to be communicated, like the age of

packets for instance.
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Chapter 4

An Iterative Switching Algorithm

We present in this chapter an iterative switching algorithm that we call 7r-RGA. As

described in Chapter 1, an iterative switching algorithm operates in iterations within

a single matching phase, where in each iteration some input and output ports are

matched. Examples of these algorithms are PIM 1 [1], iSLIP [22], iPP [13], DRR

[20], and pDRR [9]. For a brief description of some of these algorithms, see Section

1.7.3. For a comparison among these different algorithms, see [2], [9], and [13]. In

all of these algorithms, the matching computed in one iteration is not necessarily

maximal as described in Chapter 1. In other terms, more input and output ports can

still be matched. The reason for this is the following. Each iteration is composed of

three stages: Request, Grant, and Accept (hence the name of the algorithm presented

here). In the Request stage, inputs send matching requests to the outputs. In the

Grant stage, each output grants at most one request. Finally, in the Accept stage,

each input accepts at most one granted request. Since different inputs might request

the same output, and similarly, different outputs might grant the same request, the

resulting matching might not be maximal. This situation cannot be avoided in general

because there is no direct communication among the input ports themselves or among

the output ports themselves, as this would lead to a more complicated hardware.

Nevertheless, with additional iterations in which previously matched inputs and

'PIM uses randomness and reaches a maximal matching with O(log N) iterations on average. A
variation on PIM, also presented in [1] and called statistical matching, achieves theoretically 72%
throughput with 2 iterations.
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outputs do not participate in the RGA protocol, more inputs and outputs will be

matched, thus leading to a larger size matching. A larger size matching will generally

imply higher throughput of the switch; however, from the theoretical point of view,

the required additional iterations limit the speed of the switch, since more iterations

will be performed in one matching phase of the switch. The work on ir-RGA is

motivated by the following observations:

* All proposed iterative algorithms practically achieve 90%-95% throughput with

multiple iterations and no speedup 2. The number of iterations is experimentally

found to be O(log N) iterations.

* Some of the iterative algorithms can be proved to achieve theoretically 100%

throughput with one iteration but only when the traffic is uniform, i.e. the rate

of packets from an input to an output is the same all over the switch.

Therefore, we would like to limit the number of iterations to one iteration only

and still provide high throughput for an arbitrary traffic pattern 3 even with that one

iteration.

Limited to one iteration only, the -RGA switching algorithm attempts to main-

tain parts of the previously computed matching in order to grow the size of the match-

ing with successive matching phase. Therefore, instead of restarting the computation

of a matching from scratch in every matching phase, r-RGA uses information about

the previous matching. In doing so, the ir-RGA algorithm differentiates between two

kinds of requests: Strong and Weak requests. For instance, requests that were granted

and accepted become Strong requests in the following matching phase. Precedence

is given to the Strong requests, and hence the matching will tend to stabilize with

successive matching phases towards a matching that grants the Strong requests. By

2A lower bound on the speedup required to achieve throughput can be proved for a number of

iterative algorithms. For instance, using a traffic like the one in Figure 2-3, we can prove that iSLIP

and DRR require a speedup S > a to achieve weak throughput. Therefore, with no speedup, these

algorithms cannot achieve more than 66.67% throughput.
3The traffic may be other than uniform, unlike the analysis provided in [20] for DRR, which is

also a one iteration algorithm.
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not competing with requests at other inputs, Weak requests will help the stabiliza-

tion process to grow the size of the matching with successive matching phases. A

priority scheme 7r is used in conjunction with the Strong and Weak modifiers in order

to ensure that the stabilization process favors connections with high priority. The

priority scheme 7r, therefore, serves like a parameter to the algorithm as suggested in

the name wr-RGA. The properties of the priority scheme 7r will be discussed later in

the chapter.

We will show that with an appropriate priority scheme 7r, the r-RGA switching

algorithm achieves strong throughput with a speedup of 2 and a delay guarantee with

a speedup S> 2, under a strong constant burst traffic.

The ir-RGA algorithm was developed initially with a particular theoretical frame-

work in mind (the standard switch model presented in Figure 1-5). Note however,

that later in the chapter, we will present adaptations of r-RGA for a burst switch

(will be explained later) as well as for a multiple server burst switch, an architecture

described in [9] (will be presented later as well).

4.1 The r-RGA Switching Algorithm

As mentioned earlier, the ir-RGA arbitration algorithm works in three stages: Request,

Grant, and Accept. We will use Definition 2.2 of an active VOQ and define a VOQ

transition to be a transition of the VOQ from being inactive to active or vice-versa.

We will also use Definition 2.3 of a priority scheme. We will further assume the

following: For any matching phase m, if VOQij and VOQik are active, then either

VOQij -<7m VOQik or VOQik,rmVOQij. Similarly, for every matching phase m, if

VOQij and VOQkJ are active, then either VOQij-<,mVOQkj or VOQk1--.,rVOQij.

In simpler terms, during matching phase m, active VOQs that share either an input or

an output must be ordered by 7rm. During a matching phase m, a ir-highest VOQij

for a set of VOQs Q is such that there is no VOQkLE Q with VOQkl<rnmVOQij;

furthermore, if VOQijE Q, we say VOQi 1 is 7r-highest in Q.

Figure 4-1 shows the ir-RGA switching algorithm for matching phase m.
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Algorithm Tr-RGA

start with an empty matching M = 0
repeat for a number of iterations (possibly only once)

R (at unmatched input i): if no VOQ was served in matching phase m -1, send

Strong requests for all active VOQs; otherwise, if there is an active VOQi 1 0 that

was served in matching phase m - 1, send Strong requests for all active VOQij

such that VOQij, $ffmVOQij, and Weak requests for all other active VOQs.

G (at unmatched output): with R being the set of requests received, if there are

Strong requests in R, grant the ir-highest Strong request in R; otherwise, grant

the ir-highest Weak request in R if any.

A (at unmatched input): with G being the set of grants received, if there are

granted Strong requests in G, accept the ir-highest granted Strong request in G;
otherwise, accept the 7r-highest granted Weak request in G if any.

if input i accepts a grant from output j
M = M U (i, j)

Figure 4-1: The ir-RGA switching algorithm

As a side remark, the sequence input-output-input where the three stages of an

iteration are performed can be alternatively changed to output-input-output. But

since information about VOQs is more naturally obtained at the input side, we adopt

the sequence shown above.

The most crucial aspect of the -RGA algorithm is the way requests are prepared.

Every input sends Strong requests for active VOQs that have high priority, where

the threshold of high priority is the priority of the previously served VOQ. In other

terms, an input attempts to request better service based on the priority scheme w.

Moreover, since Weak requests, regardless of their priority, are always considered next,

an input which has already accepted a high priority granted request will not prohibit

other inputs from matching (by sending its low priority requests which are going to

be Weak).

Therefore, to summarize what has been described so far, this innovative approach

behind -RGA can be conceptually visualized as having three different components:

* The presence of Strong requests help stabilize the matching by creating requests

that will always tend to be granted. Therefore, in the absence of multiple
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iterations, the matching needs not be computed from scratch.

" The presence of a priority scheme helps guide the stabilization process of the

matching by determining which requests can become Strong.

* The presence of Weak requests help grow the size of the matching with successive

matching phases by making some requests, that are unlikely to be granted, not

compete with other requests.

Note that in the absence of multiple iterations, the use of Weak requests emulates

the process by which a matched input stops sending requests in future iterations. For

this reason, when the number of iterations is fairly large, ir-RGA might not be the

best algorithm to use.

We have not yet specified the priority scheme r to be used. It is obvious that if 7r

changes arbitrarily from one matching phase to the other, the Strong requests (and

hence the grants) will become arbitrary, yielding to an unstable matching. This will

make it difficult to realize the main goal of this algorithm, which is to maintain parts

of the previously computed matching in order not to require multiple iterations for

growing the size of the matching.

In the following sections, we discuss formally some of the properties that 7r might

have and their implications on the performance of the 7r-RGA switching algorithm.

4.2 Stable Priority Scheme 7r

In this section we define a stable priority scheme:

Definition 4.1 (stable 7r) A priority scheme 7r is a stable priority scheme iff it

satisfies the following: if VOQjj and VOQkI remain active during a time interval T,

and VOQij<,,rOVOQkj for some matching phase mo in T, then VOQij-<wVOQkj

for every matching phase m > mo in T.

When ir is stable, the r-RGA algorithm will attempt to stabilize a maximal match-

ing that favors higher priority VOQs. In other terms, it will attempt to reach a
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-stable matching. The reason for this is the following: if no VOQ transitions occur,

then a highest priority VOQj, will have a Strong request and will start being served

(if it was not already being served), and will keep getting served until inactive. The

next highest priority VOQkl that can still be served will start being served next (if

it was not already being served), and will keep getting served until inactive; this is

guaranteed by the Request stage which will issue Weak requests for all VOQs except

VOQjj at VOQij's input i. These Weak requests will allow the request for VOQkI to

be granted. This continues until the matching is stabilized after at most N matching

phases. Note that in this stabilization process, input i will have at most one Strong

request (VOQij), input k will have at most two Strong requests (VOQkl and possibly

VOQkj), and so on. In this resulting matching, a VOQ that is not served is blocked

by a higher priority VOQ, and hence the matching is 7r-stable.

The above reasoning assumed that no VOQ transitions occur; however, if VOQ

transitions do occur, the matching might be perturbed every time there is such transi-

tion. Nevertheless, we can still have a notion of stability for a particular VOQ even in

the presence of VOQ transitions. This notion is captured in the following definition.

Definition 4.2 For a priority scheme 7r, a matching computed in matching phase m

is -stable with respect to VOQjj iff it satisfies the following condition: If VOQjj is

active and is not served by the matching, then either an active VOQik is served by

the matching and VOQijjffmVOQik, or an active VOQkJ is served by the matching

and VOQij 7kffmVOQkj.

Note that the above definition is a relaxation of Definition 2.6 in the sense that the

matching satisfies the property with respect to VOQjj only instead of all VOQs. Note

also that if no VOQ transitions occur, as argued above, r-RGA will reach a w-stable

matching with respect to all VOQs in at most N matching phases. The interesting

observation is that a transition for VOQkL will not affect the notion of stability in

Definition 4.2 with respect to VOQjj if VOQk, does not have higher priority than

VOQij. More precisely, we have Lemma 4.1 below. In Lemma 4.1, S is, as before,

the speedup of the switch.
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Lemma 4.1 Given a stable priority scheme w and a VOQj 1 that remains active

during a time interval [t, t + j], if all VOQ transitions during [t, t + %] are only

for a set of VOQs Q such that VOQZ; is if-highest for Q during [t, t + :], then the

matching computed by the x-RGA switching algorithm in matching phase [tS+N -1

is w-stable with respect to VOQjj and all VOQkL such that VOQkL-<rrtsi VOQij.

Proof: The proof is similar to the argument that a if-stable matching will be

reached in at most N matching phases in no VOQ transitions occur. Starting from

the first matching phase FtS], we only consider in the argument VOQjj and the

VOQs that have higher priority than VOQjj.

Let Qo be the set containing VOQjj and all VOQk, such that VOQkea<lrts] VOQij.

Note that, since w is stable, no transitions occur for VOQs in Qo during [t, t + E]

by the condition of the lemma. Note also that by assumption, during a matching

phase m, VOQs that share an input or an output port are ordered by rm, and hence

the highest priority VOQ at an input or an output is uniquely determined during a

matching phase.

Regardless of any transitions for VOQs outside Qo, a if-highest priority VOQkL

in Qo will be served in matching phase [tS], since it is the highest priority VOQ

at input k and output 1 and will therefore be issued a Strong request that will be

granted and accepted. Moreover, VOQkI will keep getting served until matching

phase [tS] +N - 1 since no VOQ transitions occur in Qo before that time, and hence

VOQkI remains if-highest in Qo during [t, t + z] by the stability property of F.

Let Qi be the set obtained by removing from Qo all the VOQs that have input

k or output 1. Note that all VOQs in Qo - Q that are not served during this and

the next N - 1 matching phases are blocked by VOQkI which is if-highest in Qo - Qi

during [t, t +%j.

A i-highest VOQmn in Qi will be served in matching phase tSl +1. To see this,

observe that a Strong request will be issued for VOQmn at its input m. The reason

is the following: If no VOQ at input m was served in matching phase FtS, then

input m will issue Strong requests for all its VOQs. If on the other hand, a VOQ at

input m was served in matching phase [tSl, then it was either VOQmn or a VOQ
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with lower priority than VOQmn, since all VOQs with higher priority than VOQmn

are in Qo - Q1, and hence correspond to output I which was matched to input k in

matching phase [tS]. Therefore, input m will issue a Strong request for VOQmn,

which will be granted by output n since all requests in Qo - Qi coming from input

i to output n will be Weak requests, and all requests in Qi to output n have lower

priority. Again, VOQmn will keep getting served until matching phase [tS] + N - 1

since no VOQ transitions in (Qo - Qi) U Q = Qo occur before that time, and hence

VOQmn remains r-highest in Qi during [t, t + %] by the stability property of 7r.

We define Q2 to be the set obtained by removing from Qi all the VOQs that have

input m or output n. As before, all VOQs in Q1 - Q2 that are not served during

this and the next N - 2 matching phases are blocked by VOQmn which is r-highest

in Qi - Q2 during [t, t + }j.

The argument is carried forward until matching phase FtSl + N - 1 where we

define QN = 0 (since the size of a matching cannot be more than N). Since Qo =

(Qo - Q1) U (Q1 - Q2) U ... U (QN-1 - QN), in the resulting matching during matching

phase [tS1 +N -1, if a VOQ in Qo is not served, then it must be blocked by another

VOQ in Qo of higher priority according to 7r. Therefore, the matching computed in

matching phase [tS] + N - 1 is 7r-stable with respect to all VOQs in Qo. N

Therefore, Lemma 4.1 establishes the property that r-RGA with a stable priority

scheme 7r will be able to sustain a stable matching for a set of high priority VOQs,

so long as they remain active.

The following section defines another property of the priority scheme if that will

be useful for the operation of the r-RGA switching algorithm.

4.3 Bounded Bypass Priority Scheme 7

In this section we define a bounded bypass priority scheme:

Definition 4.3 (bounded bypass ir) A priority scheme 7r is a bounded bypass pri-

ority scheme iff it satisfies the following: for any time interval T in which VOQjj
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remains active, VOQkI becomes active at some time t in T with VOQkI-<w[ SJVOQi

(i.e. VOQkI "bypasses" VOQij) at most a bounded number of time b in T.

As mentioned in the previous section, with a stable priority scheme, the matching

might be perturbed every time there is a VOQ transition. The bounded bypass prop-

erty limits the number of times this perturbation occurs with respect to a particular

VOQ. By the bounded bypass property, a VOQjj that remains active will eventually

become (and remain thereafter) a 7r-highest VOQ (after at most a bounded number

of transitions for VOQs with higher priority than VOQig); and therefore, if 7r is also

stable, the matching will become r-stable with respect to VOQjj and remains so until

VOQjj in inactive.

We can loosely bound the number of matching phases in which the matching is

not ir-stable with respect to VOQjj as follows:

Lemma 4.2 Given a stable bounded bypass priority scheme 7r and a VOQjj that re-

mains active during a time interval T, the matching computed by the 7-RGA switching

algorithm is ir-stable with respect to VOQjj for all matching phases in T except for

at most (2b + 1)(N 2 - 1)N matching phases, where b is the bound from the bounded

bypass property of ir.

Proof: Since 7r is a bounded bypass priority scheme, a VOQ can "bypass"

VOQjj at most a bounded number of times b. More precisely, during a time interval

T in which VOQjj remains active, VOQkI can become active at some time t in

T with VOQi-. 7r3S VOQjj only a bounded number of times b. This implies that

VOQkL can become inactive at some time t in T while VOQkI- <rtSJVOQij at most

b + 1 times; since otherwise, VOQk, bypasses VOQjj more than b times for the

following reasoning: between any two times t 1 < t2 in T at which VOQkL becomes

inactive, there must exist a time t E (t, t 2 ) at which VOQkI becomes active, and

VOQkl<(r1 tJ VOQij->VOQkl<irt2SVOQjj by the stability property of 7r.

Therefore, a transition for a VOQ with higher priority than VOQij, can occur at

most 2b+ 1 times while VOQjj is active. Since we have at most (N 2 _ 1) VOQs other

than VOQij, a transition for a VOQ with higher priority than VOQjj can occur at
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most (2b+1) (N 2 -1) times while VOQtj is active. Since 7r is a stable priority scheme,

a wr-stable matching with respect to VOQjj can be reached in at most N matching

phases after a "bypass" as stated in Lemma 4.1. Therefore, the number of matching

phases in T for which the matching is not 7r-stable with respect to VOQjj is at most

(2b + 1)(N 2 - 1)N.

4.4 Theoretical Results

Lemma 4.2 implies that the -r-RGA switching algorithm satisfies the following local

stability property with a stable bounded bypass 4 priority scheme -r.

Definition 4.4 (local stability) During any time interval T in which VOQjj re-

mains active, the matching is 7r-stable with respect to VOQjj for every matching phase

in T except for at most a bounded number of matching phases.

The local stability property implies some sort of a local maximality property. For

instance, it implies that, during a time interval T in which VOQjj remains active,

either input i is matched or output j is matched except for a bounded number of

matching phases. Note that ir-RGA might never succeed in computing a maximal

matching; however, for a particular active VOQ, the matching will always be "locally"

maximal except for a bounded number of matching phases.

Next, we enumerate the guarantees of ir-RGA under different traffic models.

4.4.1 SLLN Traffic

It has been shown in [8] that a maximal matching policy guarantees weak throughput

with probability 1 under any SLLN traffic with a speedup S > 2&. It can be shown

that the result of [8] still holds for any switching algorithm that satisfies the local

4Note that the stable and bounded bypass properties as presented here are not the most general

restrictions on rr that ensure the local stability property. A generalized form of the bounded bypass

property, in which a VOQkI can acquire a higher priority then VOQjj only a bounded number of

times while VOQpj is active, is enough by itself to ensure the local stability property. However, the

stable property is important in practice to stabilize the matching more quickly and achieve high

throughput.
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stability property. Therefore, we have the following result: For any stable bounded

bypass priority scheme 7r, the r-RGA switching algorithm guarantees weak through-

put with probability 1 under an SLLN traffic with a speedup S > 2.

4.4.2 Weak Constant Burst Traffic

It has been shown in [6] that a maximal matching policy guarantees a delay bound

on every packet under a weak constant burst traffic with a speedup S > 4a. Again,

it can be shown that the result of [6] still holds for any switching algorithm satisfying

the local stability property. Therefore, we have the following result: For any stable

bounded bypass priority scheme 7r, the ir-RGA switching algorithm guarantees a delay

bound on every packet under a weak constant burst traffic with a speedup S > 4a.

By strengthening the burst condition, we can provide guarantees with a less strin-

gent speedup requirement. We strengthen the condition on the traffic by assuming

the strong constant burst model.

4.4.3 Strong Constant Burst Traffic

We will prove the following results stated in Theorem 4.1 and Theorem 4.2. Let

the priority scheme 7ro be the Earliest Activation Time ' priority scheme defined in

Chapter 3 with an embedded tie breaking that uses the indices of the input and

output ports (or any other way that ensures iro is stable). Note that 7ro is a stable

bounded bypass priority scheme.

Theorem 4.1 With the particular stable bounded bypass priority scheme ro, the

TrO-RGA switching algorithm achieves strong throughput under a strong constant burst

traffic with a speedup S = 2a, where a is the loading of the switch.

Proof: The proof is essentially the same as that of Theorem 3.1. In Theorem

3.1, we are computing a ro-stable matching in every matching phase while VOQjj is

'Now that we are using a distributed way of computing the matching, keeping a centralized clock
to compute the Activation Times might be inefficient in hardware. However, the similar effect of a
centralized clock can be obtained if each port keeps a local counter and the values of the counters
are communicated in the messages between the ports [19].

79



active, whereas here, we are computing a matching that is 7ro-stable with respect to

VOQj 1 in every matching phase while VOQj, is active, except for a bounded number

of matching phases, say K. Therefore, the term SD - 1 in Theorem 3.1, which is a

lower bound on the number of forwarded packets that satisfy certain criterion (see

Theorem 3.1), can be replaced by SD-I-K. This will imply a bound of (2N-1)B+%+K

on the time VOQjj can remain active, yielding a bound of Aj (2N-1)B+1+K + B on

the length of VOQj 3 in case A # 0, where Ao = minjpj J$O , and B is the burst

constant. In case A = 0, the length of VOQjj cannot exceed the burst constant B.

Theorem 4.2 With the particular stable bounded bypass priority scheme 7 0 , the

Tro-RGA switching algorithm achieves a delay bound on every packet under a strong

constant burst traffic with a speedup S > 2a, where a is the loading of the switch.

Proof: The proof is identical to that of Theorem 3.2 using the bound of

(2N-1)B-1+K from Theorem 4.1.
S-2a

Note that iro is a zero bypass priority scheme, i.e. a VOQ that becomes active

will have the lowest priority. Hence, once a matching is maximal, it will remain

maximal until a VOQ becomes inactive. This was found experimentally to be useful.

The following section provides some of the experimental results that were done to

compare the performance of r-RGA to the performance of another iterative switching

algorithm pDRR found in [9].

4.5 Experimental Results

While the results mentioned above hold for a speedup of 2, we simulated the r-RGA

switching algorithm with no speedup and with the priority scheme 7r = yr0 defined

above. In the rest of this chapter, 7r-RGA actually refers to 7ro-RGA. The simulations

showed that r-RGA with no speedup is capable of sustaining fairly high loads with

one iteration only. We will show performance comparisons between r-RGA and pDRR

(stands for Prioritized Dual Round Robin) which proved to perform better than PIM,

iSLIP, iPP, and pure DRR.
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Before we describe pDRR, we need to introduce the concept of a burst switch. In

a burst switch, the size of a packet is less than the transmission unit of the switch.

The switch can forward up to B (this is not related to the burst constant B of the

traffic) packets from a VOQ. This does not mean that the switch is operating at

a speedup B, as it is possible for B packets to arrive at one input per time unit

and be distributed among many VOQs at that input. Therefore, when a matching

is computed, B packets are forwarded from VOQjj if input i is matched to output

j. If VOQjj contains less than B packets however, then as many packets as VOQj

contains will be forwarded. The burst switch model appears in many places in high

speed optical networks where the configuration speed of the optical switch is slow

compared to its transmission speed; and hence, multiple packets will be forwarded

once the switch is configured with a particular matching. We will refer to this grouping

of packets as "burstification". Note that due to this burstification, the switch might

loose on throughput by forwarding less than B packets from a VOQ. Stated in a

different way, at an input, the traffic is arriving in bursts of up to B packets that are

distributed among the different VOQs, but the switch cannot distribute its capacity

and has to serve one VOQ at a time, thus loosing bandwidth. Therefore, it might

be harmful to match input i to output j if VOQjj contains less than B packets. If

B = 1, then we get our previous model which does not have the problem mentioned

above.

The pDRR algorithm holds five priority classes where Po is the lowest priority and

P4 is the highest priority. Each VOQ acquires a priority depending on its state, as

described in the table below:

Po contains less than B packets

P1  contains at least B packets

P2  contains at least 5B packets

P3  contains at least 10B packets

P4  contains a packet that has been waiting for

more than a TIMEOUT constant

Given these priority classes, an input sends requests for all its VOQs with their
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corresponding priorities. At the output, the request with the highest priority will be

granted, and ties are broken with a round robin strategy. Similarly, at the input, the

highest priority granted request is accepted, and ties are broken with a round robin

strategy.

Our comparisons were done using a 16 x 16 switch with a geometrically polarized

SLLN traffic (see [3]). Basically, a geometrically polarized traffic is a traffic in which

at an input i, it is possible to order the outputs 1 to N such that A, = PA 2 =

P2 = ... = p" 1 AiN, where 0 < p < 1 is the polarization factor. This is one way of

producing a non-uniform traffic.

4.5.1 Standard Switch

With no burstification, rr-RGA performed better than pDRR when the number of

iterations was less than three. With three iterations, pDRR performed better on high

loads. Recall that our motivation in developing ir-RGA was to reduce the number of

iterations to one iteration only and still support a high traffic load. Below is a figure

showing the performances of r-RGA and pDRR with one iteration.
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120 - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

100 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

80- - - - - - ---------- -------------------------- -o-p-RGA

60 - - - - - - - - - - -- - - -- - - - ---- - - - - - - - - ------ - pDRR

IM 1 iteration
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Figure 4-2: ir-RGA and pDRR with one iteration for B = 1

As it can be seen from the figure above, r-RGA with one iteration is able to

support up to 90% loading (93% with two iterations), while pDRR fails at 60%. For

a burst switch however, r-RGA does not perform as well as shown above, as will be

explained next.
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4.5.2 Burst Switch

The problem that burstification introduces, as discussed earlier, is that serving a VOQ

with less than B packets leads to an under-utilization of the switch, since the switch

can forward up to B packets from a VOQ. We can refer to this problem as serving

non-full bursts. The basic sr-RGA does not perform well in this setting because of

its greedy nature: it will keep on serving a VOQ until the VOQ becomes inactive

(empty), implying that the switch will serve non-full bursts more often (possibly every

time it empties a VOQ). Therefore, we modified sr-RGA such that the definition of

active VOQ is changed to a VOQ that contains at least B packets. We call sr-RGA'

this modification of sr-RGA. Again, when the number of iterations was less than

three, sr-RGA' performed better than pDRR at high loads. Figure 4-3 shows the

performance of 7r-RGA' compared to that of pDRR for one iteration.

Note that a consequence of the new modification in sr-RGA' is that low loads will

have higher delays since a VOQ is not considered active until it acquires B packets.

Note also that with the burst switch, sr-RGA and sr-RGA' fail just before reaching

90% loading with one iteration (slightly worse than the case where B = 1).
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Figure 4-3: sr-RGA' and pDRR with one iteration for B = 256

The result shown in Figure 4-3 suggests another modification to sr-RGA which

will enhance its performance for low loads: instead of considering VOQs with less

then B packets inactive, they will be given a lowest priority Po. Figure 4-4 illustrates

the result for this modification, for the same burst size B = 256 and for one iteration.
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Figure 4-4: Modified ir-RGA' and pDDR with one iteration for B = 256

With this modification of the 7r-RGA, the lowest priority Po requests were handled

by a DRR strategy. Therefore, Figure 4-4 shows that a balance between DRR and

7r-RGA is likely to lead to a good performance for a burst switch. Next, we change

the threshold of activeness and assign the lowest priority Po to VOQs with less than

3B packets (instead of B packets). This leads to a higher load support; however, as

expected, increases the average delay. The result is depicted in Figure 4-5.
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Figure 4-5: VOQ activeness = 3B packets with one iteration for B= 256

4.5.3 Multiple Server Switch

A multiple server switch represents an architecture solution for dealing with the prob-

lem of burstification. With multiple servers, the capacity of the switch remains the

same; however, it is divided into smaller granularity. Instead of being able to forward

Bpackets from a VOQ, H servers, each capable of forwarding yE akt rma

input to an output, will be used. The architecture is described in [9] and is illustrated
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in Figure 4-6.
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Figure 4-6: Multiple server switch model

As seen from Figure 4-6, instead of computing a matching between input ports and

output ports, a matching between servers is computed. This makes it more efficient

to handle non-full bursts since we can avoid dedicating the full capacity of the switch

to a non-full burst, by assigning the H servers to different VOQs. Of course, more

than one server (up to H) can still be assigned to the same VOQ. In fact, one way of

assigning servers (at it is done in pDRR), is by assigning as many servers as needed

for the highest priority request, and as many of the remaining servers as needed for

the second highest priority request, and so on.

When multiple servers are used, more than one VOQ can be served at the same

input during a single matching phase. For this reason, we need to modify the r-RGA

algorithm to deal with this feature, more precisely, the definition of the previously

served VOQ needs to adapt to this new setting. Since the idea behind the previously

served VOQ is to keep on serving that VOQ, we simply change the definition of the

previously served VOQ to the VOQ that was previously fully served by all H servers.

In other terms, the previously served VOQ is defined only if there is a unique one.

With this modification, we can simulate the ir-RGA algorithm to study its perfor-

mance with multiple servers. It turned out that pDRR deals with multiple servers

better than ir-RGA. Therefore, we modified ir-RGA further to deal with multiple
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servers. The following simulation shows the result of a balance between pDRR and

7r-RGA as follows: all VOQs with Weak requests are given the same low priority P2 ,

all VOQs with less than 3B packets are given the same low priority P1 , and all VOQs

with less than B packets are given the same low priority P0 , where P2 > P1 > PO.

VOQs with equal priority are handled by a DRR strategy. This means that this

newly modified version of 7r-RGA uses four priority classes, where a VOQ that does

not fall into the three classes mentioned above, takes the highest priority P3. The

rr-RGA switching algorithm operates as usual on the VOQs with priorities P2 and

P3 , with the exception that Weak requests are given the same priority P2 instead

of their original irO priority. In some sense, we use 7r-RGA on high priority VOQs

and pDRR on low priority VOQs. The following figures illustrate the results for one

iteration and one, two, and four servers.
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Figure 4-7: One iteration and one server for B = 256
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Figure 4-8: One iteration and two servers for B= 256
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Figure 4-9: One iteration and four servers for B = 256

As the number of servers increases, the newly modified 7r-RGA and pDRR converge

to the same performance.

4.6 Summary

Theoretically speaking, with a particular priority scheme rr0 =Earliest Activation Time,

the -RGA switching algorithm provides strong throughput with a speedup of 2 and

a delay guarantee with a speedup S > 2. The ir-RGA switching algorithm requires

o (log N) computational complexity to select the highest priority request with the use

of appropriate parallelism at the ports. Since only one RGA iteration is needed in each

matching phase (or more generally, a constant number of iterations), the computa-

tional complexity of the 7r-RGA switching algorithm will be O(log N). An algorithm

that provides delay guarantees with no speedup and requires O(log N) computational

complexity is described in [4]. As described in the Summary section of Chapter 2, this

algorithm requires explicit knowledge of the values of is, and therefore, the algo-

rithm is sensitive to the traffic pattern. This knowledge requirement can be removed

by transforming the traffic into a uniform traffic using two consecutive switches [5].

However, this will cause receiving packets in an out of order fashion and leads to the

need to re-sequence packets at the output. The ir-RGA switching algorithm does not

require explicit knowledge of the values of Ads.

Practically speaking, the ir-RGA algorithms supports up to 90% loading with no
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speedup, one iteration only, and the Earliest Activation Time priority scheme. For

burst switches and multiple server switches, modifications to the -RGA algorithm

that establish some sort of balance between plain r-RGA and pDRR proved to have

better performance than plain 7r-RGA and pDRR when the number of iterations is

less than three. Such modifications, as indicated in the previous section, allow us to

perform pDRR at low loads and r-RGA at high loads, combining the advantages of

both: non-greediness of pDRR and stability of r-RGA.
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Chapter 5

Switching using Parallel Switches

with no Speedup

As we have seen in Chapter 1, output queued switches become increasingly inade-

quate to meet high speed requirements, because having to account for multiple packet

arrivals to the same output requires their queue memories to operate at N times the

line speed, where N is the number of inputs. Although input queued switches provide

an attractive alternative since their memory and switch fabrics may operate at only

the line speed, they present a challenge for providing guarantees comparable to those

provided by output queued switches, and require a sophisticated switching algorithm

that becomes a critical component of the switch. For instance, traditional switching

algorithms that achieve 100% throughput in an input queued switch do not provide

strict delay guarantees, and are based on computing a maximum weighted matching

that requires a running time of O(N 3 ) [21], [23], or O(N2.5 ) [24], making them im-

practical to implement on high speed switches. Some recent work [7] has, therefore,

focused on asking whether an input queued switch can be made to emulate an output

queued switch, and has demonstrated that this can be achieved by a combination

of a speedup (of 2 - k) and a special switching algorithm based on computing a

stable marriage matching [12]. Such emulation involves substantial bookkeeping and

communication overhead between the switching algorithm and the switch itself, and

despite its theoretical significance, is not yet practical at high speeds. Moreover, most
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practical switching algorithms for input queued switches (see, for instance, [6], [18])

require a speedup of between 2 and 4 to achieve adequate guarantees.

In this chapter, we propose a parallel switching architecture that requires no

speedup and provides a delay guarantee. The architecture consists of k input-output

queued switches, with FIFO queues, operating at the line speed in parallel, with

k being independent of the number N of inputs and outputs. Arriving traffic is

demultiplexed (spread) over the k identical switches, forwarded to the correct output,

and multiplexed (combined) before departing from the parallel switch. We show that

by using an appropriate demultiplexing strategy at the inputs and by applying the

same matching in each of the k parallel switches, we guarantee a way for packets of a

flow to be read in order from the output queues of the switches, thus eliminating the

need for re-sequencing. Further, by allowing the switching algorithm to examine the

state of only the first of the k parallel switches, we reduce considerably the amount

of state information required. The switching algorithms that we develop are based

on existing practical switching algorithms for input-output queued switches, and will

have an additional communication complexity that is optimal up to a constant factor.

5.1 Motivation

As we have seen so far, most practical switching algorithms require a speedup of

at least 2. This poses two non-trivial difficulties in moving towards higher speed

switches:

* The first is that the memory within the switch must run at a speed faster

than that of the external lines. This reduces memory access times, and makes

it difficult to build practically useable memories, especially with continuously

increasing line speeds.

* The second is that, with speedup, the time available to obtain a matching (by

execution of the switching algorithm) is also reduced. This is particularly prob-

lematic for some of the more complex switching algorithms needed to provide
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guarantees. Specifically, with a speedup of S, a switching algorithm has only }
time units to compute a matching.

Our approach, therefore, is to eliminate the need for speedup by using input-

output queued switches in parallel. It is worth noting here that a previous work that

addresses the use of parallel switches appears in [14]. Below we briefly point out some

differences between our approach and the latter:

* In [14], the authors use parallel output queued switches, while we use parallel

input-output queued switches, thus offering a different theoretical framework

for the problem.

* The objective in [14] is to emulate output queuing for a switch operating at

a high line speed by using a number of output queued switches operating in

parallel at some sub-multiple of the line speed. Our objective is to provide

basic guarantees, such as bounded delay on every packet, without requiring any

speedup in the system.

* The algorithm in [14] relies on simulating an output queued switch in the back-

ground, which requires the maintenance of a large amount of state information.

Our switching algorithms, on the other hand, are based on existing switching

algorithms for an input-output queued switch that do not require an excessive

amount of state information.

" The architecture in [14] naturally requires 2N parallel layers (where N is the

size of the switch) of output queued switches to fully eliminate memory speedup

in the system. This is because the queue memory of each switch is required to

operate at a speed equal to 27, where R is the line speed and k is the number

of parallel switches. This dependence on N can be removed if input-output

queued switches are used instead (4 of them). As a consequence, each input-

output queued switch will then have to emulate an output queued switch. While

such an emulation is possible as demonstrated in [7], it is not yet practical due

to the excessive bookkeeping and communication needed between the switching
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algorithm and the switches. Moreover, the emulation makes use of non-FIFO

queues. Nevertheless, the emulation algorithm provided in [7] is practical at low

speeds, suggesting that increasing the number of parallel input-output queued

switches renders the algorithm practical. This however implies that the number

of parallel switches needed has a dependence on the line speed, even if switches

operating at the line speed are available. By contrast, to eliminate speedup,

our architecture uses a constant number of layers that is independent of N.

e The bandwidth of the architecture in [14] is 2NR where R is the line speed.

The bandwidth of our architecture is kNR. Therefore, for k = 2, which is

sufficient to provide delay guarantees as will be seen later, both architectures

have the same bandwidth. A more recent work [15] by the same authors of

[14] illustrates an output queuing emulation up to an additive constant factor

D using N output queues with no speedup. Hence, they reduce the bandwidth

required to NR only. This however, requires re-sequencing of packets at the

output. But since there is a bound D on the time a packet will be delayed from

its output queuing time, re-sequencing can be eliminated by waiting a time D

before delivering any packet at the output. The remaining disadvantage is that

D = 2kN where k is the number of switches, and hence the delay is O(N 2 ).

Our main goal is not to emulate output queuing, as was done in [14] and [15].

Rather, it is to obtain an efficient and practical way of achieving basic guarantees,

such as bounded delay on every packet, with a constant number of parallel layers, no

speedup, and without the need to re-sequence packets at the output.

5.2 The Parallel Architecture

We use an architecture similar to the architecture described in [14). The only differ-

ence between the architecture presented here and that of [14] is that we use input-

output queued switches while the authors in [14] use output queued switches. The

architecture is depicted in Figure 5-1.
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Input Sw s Output
Demultiplexers Multiplexers

Figure 5-1: The parallel switches

The architecture consists of the N input ports having a demultiplexer each, and the

N output ports having a multiplexer each. The middle stage consists of k switches in

parallel, with each switch being an input-output queued switch, like the one depicted

in Figure 1-5. At each input port i, a demultiplexer sends a packet arriving on that

input to one of the k parallel switches. Likewise, at every output port j, a multiplexer

accesses the output queue for that port (i.e. the jth output queue) in each of the k

switches. Since no speedup is to be used, we define a time slot, as described at the

beginnings of Chapter 1, to be the time needed for a packet to be read from or stored

into a queue. Therefore, the switches operate in time slots where in each time slot,

each switch can forward at most one packet from an input port and at most on packet

to an output port. Although we assume that no speedup is being used, the switches

of Figure 5-1 are input-output queued switches for the following reason: Since there

is no speedup, an output port can deliver at most one packet per time slot; however,

multiple packets can be forwarded to that output by multiple switches during a single

time slot. Hence, forwarded packets need to be stored.

During each time slot, multiple packets may arrive at an input i provided each

is destined to a different output j. The actual arrival pattern, of course, depends

on the traffic model and on the specific implementation of the demultiplexers (for
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instance each demultiplexer in Figure 5-1 can represent N actual demultiplexers for

the different N flows at the input).

To proceed further, we define the following notation:

(i, J) the flow (of packets) from input i to output j

P(i, j) a packet from input i to output j

Q(i, j) a packet from input i to output j

VOQ VOQ2 in switch I

OQ1 Output queue j in switch 1

Unless otherwise mentioned, in the proofs that follow, we neither require any

synchronization between packet arrivals and the operation of the parallel switches,

nor do we require any synchronization between the k switches themselves, except

that they all perform a matching by the end of a time slot. Our problem is to

find a switching algorithm that provides delay guarantees while being efficient and

practical to implement. The architecture in Figure 5-1 suggests the following natural

decomposition of the switching algorithm:

* Demultiplexing: At every input i, deciding where to send each incoming packet.

* Switching: For each of the k parallel switches, deciding on a matching, i.e.

which packets to forward across the switch.

" Multiplexing: At every output j, deciding which switch to read a packet from.

Before discussing the operation of this architecture, we describe why some simple

approaches don't work.

5.2.1 Segmentation

The simplest approach one may consider is to segment each incoming packet into k

segments, forward the segments in parallel across the switches, and reassemble the

segments at the output. Unlike what one might think, however, this approach does

not eliminate the need for speedup. This is because, each segment will now require
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( )th the time of a complete packet, so a packet will have to be forwarded across

the parallel switches in only (j)th of a time slot. Thus, the time available for the

switching algorithm also reduces by a factor of k, and k matchings will have to be

computed per time slot.

5.2.2 Rate Splitting

Yet another approach could be to split a flow among the parallel switches to divide

its rate equally among them. If the parallel switches are allowed to forward packets

independently, however, it is difficult to control the order in which packets of the same

flow emerge at the outputs of the switches. This can lead to either deadlock or output

overloading with FIFO output queues as describe below. For instance, two packets

that arrive at a given input, and are sent to two different switches, may experience

different delays depending on the state of each switch, and thus may arrive at the

output in the wrong order. Even though it appears that this could be circumvented

by controlling the order in which the output queues are read (that is, by determining,

at each time slot, the output queue containing the oldest packet of a flow and reading

that packet), there could still be situations, such as the one depicted in Figure 5-2,

where no output queue can be read without violating the order of packets.

.. e iHead Of Line
Output queue jin (HOL) packets
switch S1: 00,1

Output queue j in
switch S2: 002

Figure 5-2: Possibility of deadlock at the output

In Figure 5-2, the packets at the head of output queue j in both parallel switches

are the second packets of their respective flows. Thus, with FIFO output queues, it is

not possible to deliver any packet at output j without violating the order of packets

in a flow. Another solution could be to read the Head of Line (HOL) packets and

temporarily store them to be delivered later. When the multiplexer has read deep
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enough into the output queues to be able to reconstruct the correct order of packets

in a flow, the HOL packets stored earlier can be released in the correct order. Clearly,

if this happens often, time slots will be wasted without delivering packets at output j,

causing the FIFO output queues to become overloaded and to grow indefinitely [25].

Of course, the above statement assumes that the output queues are FIFO and that

a multiplexer cannot access more than one packet per time slot. The choice of the

FIFO restriction is based on the ease of implementation of FIFO queues. Restricting

the multiplexer to at most one access per time slot emanates from the need to have

no speedup in any part of the parallel architecture. Both of these restrictions are

reinforced by the fact the we do not allow for packet re-sequencing at the output.

Therefore, while on one hand our goal is to enable the switches to operate in a

coordinated fashion, on the other it is to avoid excessive bookkeeping of the type

needed in [14] to emulate output queuing.

5.2.3 Basic Idea

The key idea is to first avoid the type of deadlock depicted in Figure 5-2. Having

achieved that, we focus later on how to provide the delay guarantees. We say that a

packet P is older than a packet Q if P arrives before Q. In order to avoid the type

of deadlock in Figure 5-2, we consider the following two properties.

Definition 5.1 (output contention) In a single switch, two packets coming from

different inputs and destined to the same output cannot be forwarded during the same

time slot (by the property of a matching, this is trivial when the switch has no speedup).

Definition 5.2 (per-flow order) For any two packets P and Q of the same flow,

if P is older than Q, then by the end of the time slot during which Q was forwarded,

P would have been forwarded.

We will show that the two properties above are sufficient to ensure that, at an

output j, the packets of any flow (i, j) can be read in order. We begin by defining this

order more formally. In doing so, we define a partial order relation that we denote
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by -<FIFO. The partial order relation -<FIFO is defined over all the packets that are

residing at the output side of the switches. However, as it will be seen later from

the definition of -FIFO, some packets might be left unordered by -<FIFO. These are

packets that are destined to different outputs or packets of different flows that are

forwarded during the same time slot. We will define the order relation <FIFO in such

a way that, if the per-flow order property is satisfied, it will induce the standard FIFO

order on all packets pertaining to a single flow.

Definition 5.3 (-<FIFO) For any two packets P(i, j) and Q(k,j) at the output side,

P(i,j )-<FIFOQ(k, j) if?

* the time slot during which P(i, j) was forwarded precedes the time slot during

which Q(k, j) was forwarded, or

* i = k, P(i, 1) is older than Q(k, A), and both were forwarded during the same

time slot.

Note that if P(i, j)-<FIFOQ(i, j) and the per-flow order property is satisfied, then

P(i, j) is older than Q(i, j). More precisely, we have the following lemma.

Lemma 5.1 If the output contention and per-flow order properties are both satisfied,

the following is true for every output j: At the end of a time slot, either OQ' is empty

for all I or there exists a flow (i, J) such that its oldest packet P(i, j) is at the head

of 0Q1 for some 1.

Proof: If at the end of a time slot, OQ is empty for all 1, the lemma is true. So

assume that, at the end of a time slot, there is an 1 such that OQ is not empty. Since

-<FIFO is an order relation, there must exist an I and an i such that OQ contains a

packet P(i, j) with the following property: there is no packet Q(k, j) at the output

side satisfying Q(kj)-<FIFOP(ij). We will prove that P(i,j) is at the head of 0Q

and that P(ij) is the oldest packet of flow (i,j). We first prove that P(i,j) is at

the head of OQ . If a packet Q(k,j) is ahead of P(i,j) in OQ , then by the output

contention property, Q(k, j) was forwarded during a time slot prior to the time slot
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during which P(i, j) was forwarded. By the definition of -<FIFO, Q(k,7J) -FIFOP(i, j)

which is a contradiction. Next we prove that P(i, j) is the oldest packet of flow (i, J).

If this is not so, note that by the per-flow order property, the oldest packet of flow

(i, j), Q(i, j), must be at the output side, and in the worst case, must have been

forwarded by the end of the time slot during which P(i, j) was forwarded. By the

definition of <FIFO and since Q(ij) is older than P(i,.j), Q(i,j)-<FIFoP(ij) and

we reach a contradiction again.

The above lemma implies that for every flow (i, j), whenever there are packets

in the output queues for output j, a packet can be delivered at output j without

violating the order of packets pertaining to flow (i, J). Therefore, this eliminates

the deadlock situation described earlier and prevents the output queues from being

overloaded. The output contention property is trivially satisfied when the switches

have no speedup. Therefore, we will design our switching algorithm to satisfy the

per-flow order property.

5.3 The Approach

To specify our approach, we will describe how we carry out the three steps outlined

in Section 5.2 (demultiplexing, forwarding, and multiplexing). As motivated earlier,

we will design our switching algorithm to satisfy the perflow order property. We state

the following definition that we need for the rest of the chapter.

Definition 5.4 (k-parallel switching) k-parallel switching is one where, during

each time slot, the switching algorithm computes only one matching, M, and applies

it in all k parallel switches.

We start by describing the demultiplexer operation.

5.3.1 Demultiplexer Operation

To distribute the incoming packets among the k parallel switches, the demultiplexer

follows a special demultiplexing strategy, which we call minimum length demultiplex-

98

III



ing, as defined below:

Definition 5.5 (minimum length demultiplexing) Demultiplexer Di sends a packet

destined for output j to a switch 1 with a minimum number of packets in VOQ5J at

the end of the time slot preceding the current time slot.

We now prove that this strategy together with k-parallel switching ensures that

the k oldest packets for each flow (i, j) are always in distinct switches. We start with

a simple lemma.

Lemma 5.2 If minimum length demultiplexing and k-parallel switching are used,

then at the end of a time slot, the lengths of VOQ8 and VOQqJ differ by at most 1

for any two switches I and s.

Proof: The proof is by induction on the number of time slots:

Base case: The lemma is trivially true at a fictitious time slot before the beginning

of the first time slot.

Inductive step: Assuming that the lemma is true at the end of time slot T, we

will prove that it holds at the end of time slot T + 1. We focus on any two VOQs,

VOQ8. and VOQt , and we consider two cases:

Case 1: At the end of time slot T, both VOQs were non-empty. k-parallel switch-

ing during time slot T +1 will decrease the length of both VOQs by the same amount

(by either 0 or 1). If no packet is sent to either one of the VOQs during time slot

T + 1, then the lemma holds at the end of time slot T +1. Otherwise, a packet is sent

to one of the VOQs say VOQi. By the minimum length demultiplexing, we know

that at the end of time slot T , the length of VOQ8 was at most that of VOQJ.

Therefore, adding one packet to VOQiwill not violate the lemma.

Case 2: At the end of time slot T, at least one VOQ, say VOQ5J, was empty.

Then we know by the lemma that VOQ J must contain at at most one packet. If a

packet P(i, j) is sent during time slot T + 1 to either VOQ& or VOQiJ, then by the
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minimum length demultiplexing it must be sent to VOQ{J. Therefore, at the end of

time slot T + 1, the length of both VOQs is at most 1, and the lemma holds. U

Using Lemma 5.2, we can now prove the following lemma:

Lemma 5.3 If minimum length demultiplexing and k-parallel switching are used,

then for any flow, at the end of a time slot, either all packets at the input side are in

distinct switches or the k oldest packets at the input side are in distinct switches.

Proof: If at the end of a time slot T, there is some VOQj 1 that is empty, then

by Lemma 5.2, VOQij has length at most 1 for all 1, and hence all packets at the

input side are in distinct switches. If at the end of a time slot T , no VOQjj is empty,

then for the k oldest packets at the input side not to be in distinct switches, it must

be that some VOQij, say VOQij, contains two of the k oldest packets P1 and P2 ,

and another VOQij, say VOQ-, contains a packet P3 that is not among the k oldest

packets. Without loss of generality P3 is the head of VOQsJ by the end of time slot

T . Let To be the time slot during which P3 arrived to VOQt.

Consider the end of time slot To - 1. Since only one packet P(i, j), in this case P3

can arrive during time slot To , we know that at the end of time slot To - 1, both

P1 and P2 were in VOQi. Therefore, from the end of time slot To - 1 till the end of

time slot T, VOQ'J was non-empty. Therefore, k-parallel switching implies that every

time VOQt. was served by a matching, so was VOQ8. Since at the end of time slot

T, P3 is at the head of VOQ -, all the packets that were in VOQJ. at the end of time

slot To - 1 must have been forwarded by the end of time slot T . This means that

at least that many packets, excluding P1 and P2 , were also forwarded from VOQ$J.

Therefore, at the end of time slot To - 1, the lengths of VOQ5i and VOQ'J differed

by at least two, which contradicts Lemma 5.2. U

Using Lemma 5.2 and Lemma 5.3, we prove the main result of this section:

Theorem 5.1 If minimum length demultiplexing and k-parallel switching are used,

then the per-flow order property is satisfied.

Proof: Consider a flow (i, J) and a time slot T . If no packet P(i, j) is forwarded

during time slot T , then the per-flow order property for flow (i, j) cannot be violated
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during time slot T. Assume a packet P(i, I) is forwarded during time slot T. By

Lemma 5.3, at the end of time slot T- 1, either all packets of flow (i, J) were in distinct

switches or the k oldest packets of flow (i, j) were in distinct switches. Therefore,

k-parallel switching cannot violate the per-flow order property during time slot T. U

As a consequence, we can now prove that using minimum length demultiplexing

and k-parallel switching cannot create the deadlock situation illustrated in Section

5-2.

Corollary 5.1 If minimum length demultiplexing and k-parallel switching are used,

then for every output j, at the end of a time slot, either OQ' is empty for all 1 or

there exists a flow such that its oldest packet is at the head of OQ for some 1.

Proof: Since the output contention property is trivially satisfied, the corollary

is immediate from Lemma 5.1 and Theorem 5.1. U

The demultiplexers do not have to explicitly identify the VOQ with the mini-

mum number of packets, as we can prove that each of the following strategies, when

combined with k-parallel switching, is a minimum length demultiplexing.

Round Robin

In this strategy, each demultiplexer keeps N counters, one for each output. Each

counter stores the identity of the switch to which a new packet for that output should

be sent, and all counters start initially at 0. Every time the demultiplexer sends a

packet for a particular output to the switch specified by the corresponding counter,

it increments that counter modulo k. This has the nice property of dividing the rate

of a flow equally among the k parallel switches. Moreover, as we will illustrate later

in Section 5.3.4, this strategy will be useful for building a switch that supports a line

speed that is k times the line speed of the individual switches.

Round Robin Reset

This strategy is the Round Robin strategy with a slight variation. For every flow (i, j),

the system keeps track of the number of packets of that flow that are still residing

at the input side of the switches. Whenever this number becomes zero, the counter
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at demultiplexer Di that corresponds to output j is reset to zero. This strategy

requires some extra information (to be kept either by the switching algorithm or by

the demultiplexers) to correctly reset the counters of the demultiplexers. Moreover, it

might require some synchronization between packet arrivals and the time slots of the

switch. As will be seen later however, this strategy will actually allow the switching

algorithm to keep less information for coordinating the operation of multiplexers at

the output ports, and, in some cases, it also helps to reduce the amount of state

information that the switching algorithm must consider for computing a matching.

Lemma 5.4 If k-parallel switching is used, then Round Robin demultiplexing is a

minimum length demultiplexing.

Proof: We will prove that for any flow (i, J), by the end of a time slot T, either

VOQijs in all switches have the same length, or starting from a switch, we can find

a round robin order on the switches, Si to Sk, such that there exists 0 < 1 < k, such

that VOQij is the last VOQjj that received a packet P(i, j) by the end of time slot

T, the length of any VOQt- for 1 < s < k is L, and the length of any VOQsJ for

0 < s < 1 is L +1. Note that proving the above claim proves the lemma since the

next time slot a packet P(i, j) arrives, it will be sent to a VOQjj with the minimum

number of packets, either because VOQijs in all switches had the same length at

the end of time slot T, or because the packet is sent to VOQt'f by Round Robin

demultiplexing, which has a minimum number of packets. We prove the above claim

by induction on the number of time slots.

Base case: The claim is trivially true at a fictitious time slot before the beginning

of the first time slot since VOQijs in all switches have the same length.

Inductive step: The claim is true up to time slot T. We will prove that it remains

true for time slot T+ 1. We are not going to consider the interleaving in the operations

of applying the matching and sending a packet to some VOQ. But one can show that

this interleaving has no effect on the reasoning below.
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If VOQijs in all switches had the same length by the end of time slot T (or after

the arrival of a packet during time slot T + 1), k-parallel switching implies that they

will have the same length by the end of time slot T + 1. Moreover, by k-parallel

switching, if a packet is forwarded from a VOQsj for s > 1, a packet will be forwarded

from a VOQij for s < 1. Therefore, the above claim will still be true after applying

the matching.

If a packet P(i, j) arrives during time slot T + 1 and VOQijs in all switches had

the same length by the end of time slot T (or after applying the matching during

time slot T + 1), then if P(i, j) is sent to some VOQJ' (which will have the maximum

number of packets by the end of time slot T + 1), we set the order S, to Sk such that

Si = S, and we make I = 1.

If a packet P(i, j) arrives during time slot T + 1 and by the end of time slot T (or

after applying the matching during time slot T + 1), we had the order S, to Sk with

some I < k - 1, then we keep the same order and increment 1 by one. If I = k - 1,

then by the end of time slot T + 1, VOQijs in all switches will have the same length

since P(i, j) will be sent to Sk.

A similar proof can be constructed for Round Robin Reset since Round Robin

Reset acts exactly like Round Robin, except that it resets the round robin order for a

flow whenever all packets of that flow have been forwarded. In the interval between

two successive resets, therefore, Round Robin Reset behaves exactly like Round Robin

and hence satisfies minimum length demultiplexing.

5.3.2 Switching Operation

We showed how minimum length demultiplexing together with k-parallel switching

can satisfy the per-flow order property, which (with the output contention property)

ensures that, for every output j, it is possible to read a packet (if one is available)

without violating the order of packets within a flow. In Section 5.3.3, we explain

how, during each time slot, the multiplexer may identify the appropriate queue to

read from. Our focus here is to consider how a matching M may be computed to
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achieve a bounded delay on every packet. We turn our attention first to a class of

switching algorithms for the single switch setting that we call k-serial switching.

Definition 5.6 (k-serial switching) In a single switch setting, k-serial switching

is one in which the switching algorithm applies a given matching, M, consecutively k

times before computing and applying a new matching.

Our intention is then to show that any k-serial switching algorithm with a partic-

ular speedup can be emulated by a combination of minimum length demultiplexing

and some k'-parallel switching algorithm, where we define emulation as follows:

Definition 5.7 (emulation) If, using a k-serial switching algorithm, a packet P is

forwarded across the single switch during a time slot T, then using minimum length

demultiplexing and some k'-parallel switching algorithm, the same packet would also

have been forwarded across one of the k' parallel switches by the end of time slot T.

In what follows, we will assume that packets arrive only at the beginning of a

time slot. This requirement can be realized by delaying an incoming packet until the

beginning of the next time slot, which increases the packet delay by at most one time

slot.

We first state the following simple lemma:

Lemma 5.5 For any real number S, if minimum length demultiplexing and [Si -parallel

switching are used, and packet arrivals occur only at the beginning of a time slot, then

if M is the matching computed in time slot T and (i, j) c M, then either all the

packets of flow (i, j) or the [Si oldest packets of flow (i, j) are forwarded by the end

of time slot T.

Proof: If at the end of time slot T - 1, at least [S] packets of flow (i, j) are at

the input side, then the result is true by Lemma 5.3 applied at the end of time slot

T - 1. If at the end of time slot T - 1, less than [S] packets of flow (i, j) are at the

input side, then assume, without loss of generality, that a packet P(i, j) arrives at the

beginning of time slot T. By Lemma 5.3 applied at the end of time slot T - 1, and
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by minimum length demultiplexing, P(i, A) will be sent to an empty VOQjj. Thus at

the beginning of time slot T, there is at most [S] packets of flow (i, J) at the input

side, each being in a separate VOQ by Lemma 5.3. Therefore, [S]-parallel switching

implies that all packets of flow (i, J) will be forwarded by the end of time slot T. U

Using Lemma 5, we can prove the following theorem:

Theorem 5.2 If packet arrivals occur only at the beginning of a time slot, then any

k-serial switching algorithm under a fractional speedup S = t can be emulated using

minimum length demultiplexing and an [S] -parallel switching algorithm.

Proof: Every c time slots, the k-serial switching algorithm has exactly k match-

ing phases, during all of which a matching M is kept constant. The [S]-parallel

switching algorithm will run the k-serial algorithm in the background, and in do-

ing so, it will compute the same matching M every c time slots. We will prove the

theorem by induction on the number of time slots.

Base case: The theorem is trivially true at a fictitious time slot before the begin-

ning of the first time slot.

Inductive step: By the end of time slot T, all packets that were forwarded by the

k-serial algorithm were also forwarded by the [S]-parallel algorithm. Consider time

slot T + 1. Since the k-serial switching algorithm can have at most [S] matching

phases in every time slot (speedup of S), this implies that if (i, j) E M, then the

number of packets of flow (i, J) that are going to be forwarded during time slot T +1

by the k-serial algorithm cannot be more than [Si. By Lemma 5.5, if (i, J) e M,

then either all the packets of flow (i, J) or the [S] oldest packets of flow (i, J) are

forwarded during time slot T+1 by the [Si-parallel algorithm. Therefore, if a packet

P(i, j) is forwarded during time slot T + 1 by the k-serial algorithm, and had not

been forwarded by the [S]-parallel algorithm by the end of time slot T, then it must

be among the packets that will be forwarded during time slot T + 1. U

Note that if S is an integer (which we can always assume to be true), then the

[Si-parallel switching algorithm is an k-parallel switching algorithm because S =
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[S] = k. In this case, as a practical consideration, the k-parallel switching algorithm

does not need to run the k-serial switching algorithm in the background. Instead,

it reconstructs the state of the single switch from the k parallel switches. This is

possible since in every time slot both switching algorithms apply the same matching

M an equal number of times k (one in parallel and the other sequentially); therefore,

by the end of a time slot, the same packets which are remaining at the input side

in the single switch, are also remaining at the input side in the k parallel switches.

This reconstruction of the exact state of the single switch requires also that the

same packets are being read from the output queues in every time slot by both

algorithms (FIFO order). We know from Lemma 5.1 that this is possible (since k-

parallel switching means that packets that are forwarded to the same output during

a single time slot pertain to the same flow, and hence all packets at an output are

ordered by the <FIFO relation). Reconstructing the single switch from the k parallel

switches, however, implies that the switching algorithm has to look at a large amount

of state. At the end of this section, we will suggest a way to reduce the amount of

state information that the k-parallel switching algorithm has to look at; namely, we

will consider looking only at the state of the first switch.

Note also that since the [S]-parallel switching can exactly mimic the k-serial

(S = k) algorithm when S is an integer, it can provide the exact same guarantees as

the k-serial switching algorithm.

Below, we state some loose delay bounds that the emulation guarantees for every

packet under a weak constant burst traffic. We define the arbitration delay of a packet

as the time the packet remains in its VOQ. The following theorem states that if each

output emulates a global FIFO queue, emulating a k-serial switching algorithm that

guarantees a packet arbitration delay will also result in guaranteeing a total packet

delay.

Theorem 5.3 If a k-serial switching algorithm under a weak constant burst traffic

and a fractional speedup S = ! guarantees a packet arbitration delay DA, then emulat-

ing that switching algorithm using minimum length demultiplexing and an [S] -parallel

switching algorithm achieves a bounded delay of ([S] + 1)DA + B on every packet,
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where B is the traffic burst constant, provided that every output reads the packets in

the -<FIFO order.

Proof: By Theorem 5.2, we know that the [S -parallel switching algorithm will

guarantee a packet arbitration delay DA. Therefore, at the end of a time slot, the

number of packets destined to an output j that are still at the input side cannot

exceed DA in any of the [S} switches. Otherwise, at least one packet will be delayed

for more than DA time slots at its input, implying that its arbitration delay will be

greater than DA. Consequently, at the end of a time slot, the number of packets

destined to output j that are still at the input side in all [Si switches is at most

[Si DA. By Corollary 1, if there are packets waiting in some output queue OQ, then

it is possible to deliver a packet at output j without violating the packet order of

any flow. Therefore, as long as some OQ is not empty, output j delivers a packet.

Consider a time slot T in which some OQ' becomes non-empty. At the end of time

slot T - 1, the number of packets destined to output j that reside at the input side is

at most [Si BAas argued above. If during t time slots starting from time slot T, some

OQJ is non-empty, then by the end of the t time slots, output j will have delivered

t packets. However, during the t time slots, the total number of packets that could

have been forwarded to some output queue of port j is at most [Si BA+ t ± B; since

at most t + B packets destined to output j could have arrived during the t time slots,

by the property of the weak constant burst traffic. This means that the total number

of packets that remain in the output queues of port j after the t time slots is at most

[SiDA + B. This is true for any t; therefore, at the end of a time slot, the number of

packets in all output queues of port j is at most [SDA + B. As a result, since the

output emulates a FIFO queue (with an [S]-parallel switching algorithm, all packets

at a particular output are ordered by -FIFO), once a packet arrives at the output

side, it will be delivered within at most [S 1DA + B time slots, hence achieving a

bounded delay of ([S] + 1)DA + B on every packet. U

If Round Robin demultiplexing is used, then to achieve a bounded delay on every

packet, we need not restrict the output to read packets in a global FIFO order.

We only require that the output read packets of the same flow in order, which is a
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requirement we have imposed throughout the chapter.

Theorem 5.4 If a k-serial switching algorithm under a weak constant burst traffic

and a fractional speedup S = { guarantees a packet arbitration delay DA, then emu-

lating that switching algorithm using Round Robin demultiplexing and an [S] -parallel

switching algorithm achieves a bounded delay of ([S] +1)DA + B + ([S] - 1) (N - 1)

on every packet, where B is the traffic burst constant and N is the size of the switch,

provided every output reads packets of the same flow in order.

Proof: The proof is similar to the proof of Theorem 5.3. We use the fact

that at the end of a time slot, the number of packets in all output queues of port

j is at most [S]DA + B. Assume a packet P(ij) remains in 0Q for at least

[S]DA + B + ([S] - 1)(N - 1) + 1 time slots. By the end of the time slot during

which P(i, j) was forwarded, OQi contained at most [S]DA + B packets including

P(i, j). Therefore, at least ([S] - 1)(N - 1) + 1 packets, that were forwarded after

P(i, j), were delivered at output j before P(i, j). These packets cannot pertain to

flow (i, j) since packets of a flow are delivered in order. Therefore at most N - 1

flows can contribute to these packets. As a consequence, there exists a flow for which

at least [Si packets were forwarded after P(i, j) and delivered at output j before

P(i, j). Since Round Robin demultiplexing is used and the output reads packets of

the same flow in order, it must be that one of these packets, say Q, was in OQ. But

OQ is a FIFO queue and Q was forwarded to it after P(i, j). Therefore, Q could not

have been delivered at output j while P(i, j) remains in OQ .

It remains for us to show the existence of k-serial switching algorithms that guar-

antee a packet arbitration delay under some speedup S = /. We will modify some

existing switching algorithms that guarantee packet arbitration delay under some

speedup S to make them k-serial switching algorithms, for any integer k.

Some k-serial Switching Algorithms

In order to obtain k-serial switching algorithms, we convert existing switching algo-

rithms for a single switch into k-serial switching algorithms, by simply modifying the
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existing algorithms to hold the matching that they compute constant for k times 1.

Our motivation is that the state of the switch cannot change substantially within a

constant time j. Thus, holding the same matching for k times should possibly still

be able to guarantee a packet arbitration delay.

We were able to prove this fact for several existing switching algorithms, such as

the Earliest Activation Time switching algorithm described in Chapter 3, the Oldest

Cell First algorithm due to Charny et al [6], the Central Queue algorithm due to

Kam et al [16], and the Delayed Maximal Matching algorithm, an algorithm that we

describe here in order to illustrate the point further.

Earliest Activation Time

This algorithm was presented in Chapter 3 and is a priority switching algorithm with

the Earliest Activation Time priority scheme. Recall that the Earliest Activation

Time priority scheme assigns higher priority to active (see Definition 2.2) VOQs with

earlier activation times (see Definition 3.2). Therefore during a matching phase, if

an active VOQjj is not served by the matching, either some active VOQik with an

activation time no later than that of VOQjj is served, or some active VOQkJ with an

activation time no later than that of VOQjj is served. Hence, holding a matching M

for k times starts to violate the above property for VOQjj only when some VOQik (or

some VOQkJ) becomes inactive while being served by the matching M. The above

property will be violated at most k - 1 times by a VOQik (or a VOQkJ) while VOQjj

remains active, since once a VOQ becomes inactive, its activation time will be more

recent than that of VOQj 5 when it becomes active again; and this will be reflected by

the priority scheme when the matching is recomputed after k time slots. Therefore,

holding the matching constant for k times will violate the above property for VOQjj

at most 2(k -- 1)(N - 1) times while VOQjj is active (there are 2(N - 1) VOQs that

share either an input or an output with VOQij). With a speedup S = 2, we can

prove that this modified algorithm still guarantees a bounded delay on every packet

'A similar idea was suggested in [29] where a random matching is computed in every matching
phase but the matching is used only if it is better (in some sense) than the last used matching.
Therefore, a matching might be held for a while before applying another matching.
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when a < 1 under a strong constant burst traffic (see Theorem 4.2), where ca is the

loading of the switch. We can show that the additional delay to the original delay is

2(k-1)(N-1)
S-2a

Oldest Cell First

This algorithm is due to Charny et al. [6] and is also a priority switching algorithm.

The priority scheme used by this algorithm assigns higher priority to the VOQs

holding older packets. Therefore, in every matching phase, the oldest packet that can

still be forwarded is chosen. This is repeated until a maximal matching is obtained.

This algorithm guarantees a bounded delay on every packet with S = 2 when a < 1

under a weak constant burst traffic (see [6]), where a is the loading of the switch. The

priority scheme of this algorithms guarantees that if a packet P(i, j) is not forwarded,

then either a older packet Q(i, k) is forwarded, or an older packet Q(k, j) is forwarded.

With an argument similar to the one made above for the Earliest Activation Time

switching algorithm, we can prove that holding the matching k times can violate the

above property for packet P(i, j) only a bounded number of times, 2(k - 1)(N - 1).

This is enough for the algorithm to still provide a delay guarantee (see [6]). The

additional delay to the original delay will be 2(k-1)(N-1)
S-2a

Central Queue

This algorithm is due to Kam et al. [16]. We will now describe the algorithm as

it was originally presented in [16] (which is different than how it was presented in

Chapters 1 and 2). The algorithm works by assigning credits to each VOQj 5 based of

the rate of flow (i, J). A packet is admitted if it has credit. The credit is decremented

by 1 whenever a packet is forwarded. The credit of a non-empty VOQjj represent the

weight of (i, J). In every matching phase, the algorithm computes a L-approximation

of the maximum weighted matching, by repeatedly picking (i, J) with the largest

weight until a maximal matching is obtained. This was proved to guarantee strong

throughput under no speedup when the credit rate at each input and output is less

then .. As argued in [16], when a flow (i, j) is constantly backlogged, a bounded

VOQ length L implies a bounded packet arbitration delay _L, where gij is the credit
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rate of flow (i, j). Using the same techniques in [16], one can prove that, with a

speedup of 2 and a credit rate less than one, this algorithm also guarantees strong

throughput.

During a constant time, the change in the credit assigned to a VOQ is bounded.

Therefore, the change in the total weight of the maximum weighted matching is

also bounded. Our matching, being a L-approximation of the maximum weighted

matching when first computed, when held for k times, cannot differ from the half

weight of the maximum weighted matching by more than a certain bound. A problem

arises, however, if a VOQjj with a large credit suddenly becomes empty. In that case,

(i, j) is still considered part of the matching, while the matching is being held constant,

and is contributing a large weight to the matching. However, that weight should not

be counted in the matching because flow (i, j) is idle and no packets of flow (i, j) are

being forwarded. Therefore, the weight of the real maximum weighted matching at

that time might differ from the weight of the maximum weighted matching when our

matching was computed, by as much as the credit of VOQjj. If flow (i, j) is constantly

backlogged however, when it becomes idle, the credit of VOQjj can be bounded. As

a consequence, when all flows are constantly backlogged, the difference between the

weight of the matching and the half weight of the maximum weighted matching is

bounded at all times (the bound is 0(kN)), and this is all what we need to keep the

proof working (see [16]). Therefore, the VOQ length will still be bounded and a delay

guarantee will be achieved when all flows are constantly backlogged. Note that in

order to satisfy the requirement of Theorem 5.2, namely that a packet arrival occurs

only at the beginning of a time slot, delaying an incoming packet until the next time

slot does not violate the condition that a flow is constantly backlogged.

Delayed Maximal Matching

This is a simple algorithm that we present to illustrate further the idea of holding the

matching for a constant number of times. The switching algorithm waits for a time T

until enough packets have accumulated in the VOQs. Then it forwards those packets

in an interval of time T using successive arbitrary maximal matchings. During that
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interval of time, another set of packets would have accumulated, and the algorithm

repeats. Therefore, the arbitration delay is T. One way of achieving this with a weak

constant burst traffic is the following. The switching algorithm builds an N x N

matrix A where aij represents the number of packets that arrived from input i to

output j. The algorithm waits a time T > B where a is the loading of the switch

and B is the traffic burst constant. Since the number of packets that arrive from

an input or to an output during an interval of time T is at most aT + B (property

of the weak constant burst traffic), the sum of entries of any row and any colon in

the matrix A will be at most T. In that case, it can be shown that the switching

algorithm can forward those packets in at most 2T maximal matchings. Therefore,

with a speedup of S = 2, this is done in at most T time slots. By that time, another

matrix would have been computed and the same process is repeated again.

If we hold the matching for k times, every VOQij will be served at most k - 1

times while its aij is zero. We can show that this implies that the algorithm will need

an extra 2(k - 1)(N - 1) matchings (or equivalently (k - 1)(N - 1) time slots with a

speedup S = 2) to forward the packets during the interval of time T. For the process

to work as before, we require that aT + B < T - (k - 1) (N - 1) or T > B+(k-1)(N-l)

which adds an extra delay of (k-l)(N-1)

Birkhoff-von Neumann Decomposition: A k-parallel Switching Algorithm

Chang et al. [4] (see also [5]) have proposed an algorithm that is capable of pro-

viding delay guarantees for input queued switches with no speedup. The algorithm

consists of taking a static rate matrix and computing only once a static schedule in

time O(N 4 -), based on a decomposition result of Birkhoff and von Neumann. The

schedule is a static list of matchings, corresponding to permutation matrices obtained

from the decomposition of the rate matrix, and applied according to certain weights.

In our context, we may utilize this algorithm in conjunction with Round Robin demul-

tiplexing which ensures identical rate matrices for all switches. Using this algorithm,

k static schedules can be obtained based on the individual rate matrices. These static

schedules will be identical since all switches will have the same rate matrix. Thus, as
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a natural consequence of this approach, the same matching will be applied in every

time slot in all of the parallel switches. For each individual switch, this provides

comparable arbitration delay guarantees as the original algorithm of Chang, with the

added advantage, that we can sustain a line speed that is now k times the speed at

which the parallel switches operate. Note however, that since each switch is now run-

ning at a slower speed, it is not possible to transmit packets at the line speed between

the inputs and the switches and between the switches and the outputs. However, the

technique described in [15] of buffering packets at the demultiplexers and multiplexers

can be utilized, causing only a small additive delay. This will be discussed with more

detail in Section 5.3.4.

Reducing State Information

It can be shown that when the speedup S = k is an integer, the k-parallel switching

algorithm can reconstruct, from the state of all the k parallel switches, the state of

the single switch running the k-serial switching algorithm. This requires, however,

that the scheduler examine the state of each of the k parallel switches, and maintain

a global state. It turns out that this global state requirement can actually be relaxed.

For the single switch switching algorithms discussed above, only three kinds of state

information are used: the activation time for the Earliest Activation Time switching

algorithm, the oldest packet of each VOQ for Oldest Cell First, and the length of

each VOQ for Central Queue 2 and Delayed Maximal Matching.

For the Earliest Activation Time switching algorithm, the only state needed is

whether a VOQ is active or not (see Chapter 3). This can be done by communicating

active and inactive VOQs from the input ports to the switching algorithm as described

in Chapter 3, and no extra state information will be needed.

By using Round Robin Reset demultiplexing, the amount of state information

needed can be greatly reduced for the Oldest Cell First. For instance, it ensures that

2Here we say the length of a VOQ instead of its credit because when a strong constant burst
traffic is constantly backlogged, the length of a VOQ differs from its credit by at most a constant. Al-
ternatively, the Central Queue algorithm can use the credit of a VOQ and no other state information
will be needed. But then, explicit knowledge of the rates is required.
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the oldest packet of every flow is always in the first switch. Thus, when using Oldest

Cell First and Round Robin Reset, the algorithm needs only look at the state of the

first switch to compute a matching.

For the Central Queue algorithm, the use of any minimum length demultiplexing

ensures that, for every flow (i, j), the number L of all the packets at the input side is

related to the number of packets L 1 in VOQb in the following way:

kL1 -k<L<kL1 +k

Thus, if kL 1 is used as an approximation to L, the computation of the k-approximation

of the maximum weighted matching will be affected by at most a certain bound,

which, as argued previously, will not hurt the delay guarantees for the Central Queue

algorithm. Note that we are now using lengths of VOQs as the weights and not the

credits (see footnote 2).

For the Delayed Maximal Matching algorithm, defining similarly agij and using the

upper bound kai1+ k -1 as an approximation for aii, will result in serving a VOQ at

most an additional bounded number of times while it is empty; a phenomenon that

can be accommodated for in the same way described earlier for the k-serial version of

the Delayed Maximal Matching algorithm, i.e. by increasing the delay after which the

algorithm obtains a new matrix. The upper bound kaij 1 + k - 1 is used here because

the algorithm needs to make sure that it is emptying all the matrix as described

earlier.

Observe that state reduction is not an issue for the Birkhoff-von Neumann decom-

position algorithm, because it only stores a precomputed schedule and so does not

require any state information from the switches for its operation.

5.3.3 Multiplexer Operation

We have already shown that when using minimum length demultiplexing and k-parallel

switching, it is possible for the multiplexer at an output port to always deliver a packet

from the output queues of the k parallel switches in a way not to violate the order of
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packets pertaining to the same flow. The only question that remains is how a multi-

plexer Mj determines which output queue OQ. to read the next packet from? This

can be done in different ways. One way is to use a standard re-sequencing technique.

Packets are tagged upon arrival to the switch with their arrival times. At the output

side, the multiplexer incrementally sorts the tags of the head of line (HOL) packets

and chooses to read the one with the smallest tag. This requires additional access to

the output queues which we assume not possible given that no speedup is available;

especially since the tag value itself can grow as large as the total delay of a packet.

An alternative is for the switching algorithm to store this information and sort

the head of line packets of all the queues. This, however, requires the communication

of tags between the demultiplexers and the switching algorithm every time packets

arrive. In addition, to avoid the use of unbounded tags, both of these approaches

must address the issue of tag reuse.

We would like to avoid the use of the above re-sequencing techniques. A more

efficient approach that uses Round Robin or Round Robin Reset demultiplexing is the

following. For each output j, the switching algorithm maintains a FIFO list L of

tuples of the form (p, s) pertaining to successive time slots during which a packet was

forwarded to output j. Hence, for every such time slot, p is the number of packets

switched to output j during that time slot, and s is the index of the switch that

forwarded the oldest packet to output j during that time slot (note that all packets

switched to output j during that time slot pertain to the same flow).

Therefore, during each time slot for which some (i, j) belongs to the matching, the

algorithm adds a (p, s) to L,. The algorithm may easily obtain the information to do

so from the demultiplexers. Each demultiplexer Di stores the number of packets for a

particular output that have arrived up to the current time slot and are still remaining

at the input side.

Upon applying a matching M, the switching algorithm communicates to demulti-

plexer Di the index j of the output for which (i, j) E M. The demultiplexer responds

with the number of packets that will be forwarded to output j as a result of applying

M (this is easy to determine since it is either all the packets or k packets by Lemma
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5.5), and the index of the switch that contains the oldest such packet (also easy to

determine with any of the two round robin demultiplexing strategies described ear-

lier). The total communication required between the demultiplexers and the switching

algorithm is therefore 0 (N log N + 2N log k).

Following this, demultiplexer Di updates for every output j the number of packets

of flow (i, J) remaining on the input side as well as the index of the switch that

now contains the oldest packet of flow (i, j). At the output side, each multiplexer

Mj periodically retrieves from the switching algorithm a tuple (p, s) from which it

learns the number of packets that must be read and the identity s of the switch

from whose output queue the multiplexer must start reading the first packet of this

round, and continues in a round robin fashion (as a consequence of the round robin

demultiplexing). Therefore, the communication between the switching algorithm and

the multiplexers is 0(2Nlog k). Hence, the total communication with the switching

algorithm is 0 (N log kN), which is within a constant factor of the Q (N log N) amount

of communication needed for the switching algorithm to specify a matching in a single

switch.

If we use Round Robin Reset demultiplexing, then we know that the oldest packet

of a flow is always in the first switch and therefore s is not needed.

Instead of requiring additional memory for the switching algorithm, we can use

the memory of the switch itself, i.e. the output queues, in order to store the required

information. This works for the case of Round Robin Reset demultiplexing in the

following way: Since the oldest packet of a flow is in the first switch, we only need

to tag a packet P(i, j) that is forwarded across the first switch with the number p of

packets of flow (i, J) that are going to be forwarded during the current time slot. At

the output, the multiplexer retrieves this number when reading the packet in the first

switch, and hence it knows how many packets to read before coming back to the first

switch. This is efficient in terms of space since the tag length is 0(log k) and only

packets in the first switch need to be tagged. A difficulty with this approach is that

we must tag packets upon forwarding them, which might not be straight forward to

realize.
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5.3.4 Supporting Higher Line Speeds

We now briefly describe how we can use parallel switches that run at a speed slower

than the line speed. For this purpose, we assume that the line speed is some integer

multiple, m, of the speed of a single switch.

The first thing to note is that each time slot of a switch is now m times the original

time slot of the traffic (since the switches are m times slower). Thus, we will refer

to the time slots of the traffic by external time slots, reserving the term time slots to

denote the internal time slots of the switches.

The second thing to note is that now, a demultiplexer will not be able to send

packets to a single switch in successive external time slots, since each link can be

accessed only once every time slot, i.e. once every m external time slots. Similarly,

a multiplexer can access output queue OQ for output j once every m external time

slots.

We will assume the use of the Round Robin demultiplexing strategy. Assume also

that the number of parallel switches is m. We will describe how we can use the links

that are running at I the original line speed.M

We will use m FIFO buffers running at the line speed in each demultiplexer and

multiplexer. Each of the m FIFO buffers corresponds to one of the m switches. When

a packet needs to be sent by demultiplexer Di from input i to a switch, it is stored in

a buffer of Di corresponding to that switch. The packet at the head of the buffer is

sent to the switch when the link is available. When only one packet can arrive at an

input during a single external time slot, an analysis of this technique appears in [15]

and illustrates that a buffer size of N is enough for each buffer of the demultiplexer.

Moreover, each packet will be delayed at most N time slots (i.e. mN external time

slots) at the input. Therefore, we can consider a new arrival pattern of packets at the

input, where at a given time slot, only packets that arrived N time slots prior to the

current time slot are considered present. This produces the original arrival pattern

of packets delayed by mN external time slots.

Similarly, when a packet needs to be delivered at output j by multiplexer M, it
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is stored, when the link is available, in a buffer in Mj corresponding to the switch

being used to deliver that packet. The packet remains in that buffer until it can be

delivered. Therefore, the m buffers of the multiplexer act as a re-sequencing buffer.

As before, the analysis described in [15] yields a buffer size of N for each of the m

buffers of Mj . Moreover, each packet will be delayed at most N time slots (i.e. mN

external time slots) at the output. Therefore, by waiting mN external time slots

at the output, the same techniques for delivering packets described in the previous

section are still valid, hence making re-sequencing a simple operation.

In general, for a weak constant burst traffic with burst constant B, the buffer size

will be N + [$1 and the the delay of mN external time slots will be replaced by

rmN +B.

The above buffering technique solves the problem of slow links with an additive

delay of 2(mN+ B). We now illustrate that with these m slow switches, we can still

somehow emulate an m-serial switching algorithm running at the original line speed.

We consider the new arrival pattern at the input, which is the exact original arrival

pattern delayed by mN + B external time slots.

The idea is similar to what Lemma 5.5 and Theorem 5.2 achieve. As before, the

m-serial switching algorithm holds a matching M for m external time slots, which

is equal to one time slot of the m-parallel switching algorithm. First we note that

minimum length demultiplexing operates in every external time slot now as opposed

to every internal time slot. Therefore, the number of packets in a VOQ at the end

of an external time slot might not be accurately defined since a matching requires rn

external time slots (one time slot) to complete. Conceptually however, we can think

of the matching taking effect only during the last external time slot of a time slot.

Hence, minimum length demultiplexing reflects the correct number of packets in the

VOQs as viewed by the demultiplexers in each external time slot. Since in our setting,

Round Robin demultiplexing is a minimum length demultiplexing as proved earlier,

and since Round Robin demultiplexing does not rely on the number of packets in the

VOQs, regardless of how the matching is carried during a time slot, we will still have

the same results as before. Namely, Lemma 5.5 will still be true, and hence if (i, A)
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is in the matching M , then either all packets of flow (i, J) or the rn oldest packets

of flow (i, J) will be forwarded by the end of a time slot. With a proof similar to the

one for Theorem 5.2, and since the m-serial algorithm can forward at most m packets

every m external time slots, we conclude that the m-parallel algorithm emulates the

rn-serial algorithm up to an additive constant m - 1; the reason being that a packet

that is forwarded with the m-parallel algorithm during a time slot T might have been

forwarded by the m-serial algorithm during any of the m external time slots that

correspond to time slot T. Therefore, if the rn-serial switching algorithm guarantees

an arbitration delay DA external time slots, the m-parallel switching algorithm will

guarantee an arbitration delay of DA + m - 1 + mN + B = DA + m(N + 1) + B - 1

external time slots.

5.4 Summary

We suggested a scheme that eliminates the need for speedup by using k = [S] parallel

input-output queued switches with no speedup, where S is the speedup of the original

switch. The key to our approach was to apply the same matching in all the parallel

switches. By adapting existing switching algorithms for the single switch setting to

hold their matching constant for a number of times, we were able to apply the same

matching in all switches, and guarantee a bounded delay on every packet. In addition,

both demultiplexing and multiplexing at the inputs and outputs, respectively, could

be done using O(N log kN) amount of communication between the switching algo-

rithm and the parallel switches. This is to be compared to the Q(N log N) amount of

communication needed in a single switch for the algorithm to specify a matching. We

also suggested some heuristics that reduce the amount of state information that the

switching algorithm needs to look at in order to compute a matching, resulting in the

algorithm looking only at the state of the first switch. Our approach offers the advan-

tage of using a constant number of parallel layers. This was not the case in [14] and

[15], which emulate output queuing for a high line speed using O(N) output queued

switches running at lower speed with no memory speedup. While this dependence
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on N can be eliminated by replacing the output queued switches with input-output

queued switches [7], the algorithm for emulating an output queued switch becomes

more complicated and much less practical to implement. Moreover, our approach

makes use of FIFO queues only, whereas the approach outlined in [7] requires the use

of non-FIFO queues. The bandwidth requirement of the architecture proposed here

is kNR where R is the line speed. The authors of [15] succeeded in reducing this

bandwidth requirement to NR only at the expense of allowing packets to arrive in

an out-of-order fashion with a bounded delay of O(N 2).
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Chapter 6

Scheduling Unsplittable Flows

Using Parallel Switches

In this chapter, we address the problem of scheduling unsplittable flows using a num-

ber of switches in parallel. This has applications in optical switching and eliminates

the need for re-sequencing in traditional packet switching. As we have seen in the

previous chapter, the use of parallel switches provides a way of building a high speed

switch while overcoming the speedup requirement imposed on the switch. Unlike

packet switching however, we will assume that flows cannot be split across switches.

This constraint adds a new dimension to the problem: various questions, such as ob-

taining the best schedule, i.e. the schedule with the maximum throughput possible,

become NP-hard.

Our problem here is a special case of the general unsplittable flow problem (see

[10] for references), where in a directed capacitated graph containing a number of

commodities with demands, the goal is to obtain a flow that does not violate capac-

ity and in which all demands are satisfied and every commodity flows along a single

path. In this chapter, we are not going to address the general problem. Rather, we

will study the special case of scheduling unsplittable flows using parallel switches,

and present some simple approximation algorithms to various aspects of the problem.

An approximation algorithm is a polynomial time algorithm that produces a solution

within a constant factor of the optimal solution (which is NP-hard and hence no
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efficient algorithm for obtaining it is known). For instance, an -approximation algo-

rithm for maximizing the throughput is a polynomial time algorithm that produces

a throughput that is at least an c fraction of the maximum throughput possible. We

also define a speedup version of the problem and discuss under what speedup we can

schedule all the flow.

Before we proceed to the description of the architecture and the problem in more

detail, we first motivate the approach and list a number of assumptions. Three main

concerns motivate our decision for not to split the flows:

" Per-flow guarantees: We would be able to achieve per-flow guarantees since each

flow will have a dedicated path and bandwidth.

" Re-sequencing: Since packets cannot be out-of-order at the output port any-

more, we will eliminate the need for re-sequencing, which is a major drawback

at the output.

* Optical flows: We would accommodate for optical switches where the optical

flows are naturally unsplittable.

In the ideal situation, we would like our scheduling algorithm to be an online

algorithm (as opposed to offline). An online algorithm schedules flows as soon as they

arrive without any knowledge about future flows. For our approximation algorithms,

however, we consider offline algorithms. We prove that with no speedup (which will

be defined later for our case of unsplittable flows), a fairly general notion of an online

algorithm, that we call greedy, cannot schedule a subset of the flows in a way to obtain

a throughput that is a positive fraction of the maximum throughput possible, even

if the flows are admissible (i.e. can be scheduled if splitting is allowed). In other

words, there is no greedy approximation algorithm for the problem of maximizing

throughput.

We also would like our algorithm to be oblivious in the sense that it would be able

to schedule the flows without any knowledge of the remaining capacities on the links

connecting the switches to the output ports, since this knowledge is probably hard to
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obtain without direct communication between the input and output ports or between

the input ports themselves. Throughout this chapter, however, we will assume that

the algorithm is not oblivious and has exact knowledge of the remaining capacities

on the links connecting the switches to the output ports.

6.1 The Problem

The switching architecture that we are going to use is depicted in Figure 6-1. This is

similar to the architecture in Figure 5-1, except that we do not restrict the switches

to be input-output queued switches and we do not explicitly requires the use of

demultiplexers and multiplexers at the input and output ports respectively.

S1 / output link

106S

input porti S -

S * output port j

NO 0

Su

input link Bk

Figure 6-1: The unsplittable flow parallel architecture

Each input and output is connected by links to all k switches. Each link has

capacity 1 and, as a consequence, each switch will be able to handle N units of

bandwidth, where N is the number of input and output ports. Each flow is at most

1 unit of bandwidth. In the speedup version of the problem, each link has capacity S

(where S> 1), and therefore, each switch handles SN units of bandwidth. We choose

not to affect the demand (individual flow size) with speedup and therefore, each flow

will still be at most 1 unit of bandwidth in the speedup version of the problem.

Therefore, given a set of flows each of which is at most 1, we would like to unsplit-

tably schedule the flows, which means to assign flows to the switches, such that all

link capacities are not exceeded i.e. each link handles at most 1 unit of bandwidth (or
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S units of bandwidth in the speedup version). A set of flows is admissible iff the sum

of flows at every input and every output is at most k. This means that all the flows

can be scheduled if flow splitting is allowed. We are going to address the following

questions which are generally addressed in the literature:

" Maximization: Given a set of flows, can we unsplittably schedule a subset whose

throughput is the maximum throughput possible?

" Number of rounds: Given a set of flows, what is the minimum number of rounds

that are needed to unsplittably schedule all the flows?

* Speedup: Given an admissible set of flows, what is the minimum speedup needed

to unsplittably schedule all the flows in one round? This is known as the

congestion factor in the literature [10].

Note that all the problems stated above are NP-hard. With regard to the max-

imization problem, we will present some simple approximation algorithms (offline)

that guarantee a constant fraction of the maximum throughput possible. As for the

number of rounds, Du et al. show in [11] that [F'-1] switches (instead of k) with no

speedup are enough to unsplittably schedule an admissible set of flows. Therefore, 3

rounds are enough to unsplittably schedule an admissible set of flows. We will provide

a 4-approximation algorithm for the number of rounds when the set of flows is not

admissible. Du et al. show also in [11] that it is possible to unsplittably schedule

an admissible set of flows with a speedup S >I1+ k-1B, where k is the number of

switches and B is an upper bound on the size of any flow. Therefore, in our case, a

speedup of 2 will be enough. We will address the same speedup question for the case

of online algorithms.

6.2 Theoretical Framework

In this section, we define a term that we call blocking factor. Before we go to the

main definition, we need some preliminary definitions. Assume that we have a set of
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flows F and that we schedule a subset of flows G C F. In other words, G is the set

of flows in F that are passing through the parallel switch architecture. Let fnsf be

the input link connecting the input port of flow f to switch s. Similarly, let outs1

be the output link connecting the output port of flow f to switch s. Let u(e) be the

amount of flow passing through link e. An input link e in switch s is blocking if there

exists a flow f V G such that e = irntf and u(e) > u(outS,). Similarly, an output

link e in switch s is blocking if there exists a flow f V G such that e = outtj and

u(e) > u(insf).

Definition 6.1 (blocking factor) The blocking factor 0 is defined as follows:

minee Bu(e) if B=0

oo if B =0

where B is the set of all blocking links.

Note that for any switch s and every flow f V G, at least one of inf and outs,f is

a blocking link, and hence f has to use at least one blocking link in s in order to be

routed through s. Therefore, every flow f 0 G has to use at least one blocking link

to be routed through the parallel switch architecture.

The blocking factor is a measure of how large the throughput of G is, since for

every flow f V G, we look at how much flow in G is going through the switches,

either from the input port of f or to the output port of f. A large blocking factor

is therefore an indication of a high utilization of the parallel switch architecture and

hence of a high approximability of the maximization problem.

6.3 Maximization

In this section, we establish a loose connection between the blocking factor and the

approximability of the maximization problem in scheduling unsplittable flows. More

precisely, we show that a blocking factor 3 implies a 4-approximation. We first
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prove that a fairly general notion of an online algorithm, that we call greedy, cannot

achieve any positive approximation factor.

Definition 6.2 (greedy) A greedy scheduling algorithm is an online algorithm that

satisfies the following conditions:

" When a flow arrives, the algorithm has to decide immediately whether to accept

or reject the flow without waiting for any future flows.

* If a flow can be scheduled without violating any link capacity, then the algorithm

has to accept the flow and assign it to one of the parallel switches.

* once a flow is accepted and assigned to a switch, it cannot be re-routed.

It is worth mentioning that Tsai et al. proved in [30] that a multirate clos network

is widesense nonblocking only if the number of switches is at least 3k - 2. Since a

multirate clos network is a special case of our architecture, the result still applies.

This is equivalent to the statement that any greedy algorithm requires at least 3k - 2

switches in order to unsplittably schedule all flows.

Theorem 6.1 For any 0 < c < 1, there is no greedy c-approximation algorithm for

the problem of maximizing the throughput in scheduling unsplittable flows, even with

an admissible set of flows.

Proof: The proof is by construction of a particular instance of the problem

where, for a given e, N = (L ] +1)k. We divide the input ports into two sets 1 and

'2, where I, contains the first k input ports. Similarly, we divide the output ports

into two sets 01 and 02, where 01 contains the first k output ports. Assume that for

every input port i E I, we schedule an amount of flow equal to 1 from input port i

to output port i in all k switches, except for switch i where we schedule a flow of size

1 - c' from input port i to output port i, where 0 < c' < 1

Given the above setting, any future flow for output j E 01 has to be assigned to

switch j, since all links to output j in all other switches are fully utilized. We will

later describe how we can force such a setting.
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Next, from every input port i C 12 , we receive k flows of size E" for all the output

ports in 01. Note that for the admissibility condition to hold at an output port

j c 01, we require that [ ke" < e'; we can assume equality. The greedy algorithm

will have to schedule these flows and, as argued above, will assign flows for output

j to switch j. For all i 'E 12 , this will make all k links from input port i partially

utilized.

Next, for each i '2, we receive k - I flows of size 1and one flow of size 1- ke",

all from input port i to output port i. Note that the admissibility condition at input

ports i E 12 still holds since E" x (k) + 1 x (k - 1) + 1 - ke" =-k. For each i E '2, the

greedy algorithm can only schedule the last flow of size 1 - ke" from input port i to

output port i, since every link from input port i is now partially utilized.

So far, the sum of all flows is kN - he'. So we can still have ke' additional amount

of flow (c' from each input port i E Ii), and without loss of generality, we can assume

that the greedy algorithm is able to schedule them.

Note that the maximum throughput possible is at least k2 - ke' + [ Ik(k - 1)

which consists of the initial setting of the switches in addition to assigning to each

of the first k - 1 switches a flow of size 1 from input port i to output port i, for

all i e '2. Therefore, the maximum throughput possible is O((1 + [ .J)k 2 ). The

throughput achieved by the greedy algorithm is k 2 + (1 - ke") [fk, which is 0(k2 ).

Therefore, the approximation factor is at most

O(k 2 )

0((1+ [ J)k2)

which goes to < e when k grows large enough.

Now we illustrate how we can force the setting described at the beginning of this

proof, namely, for a given i, scheduling an amount of flow equal to 1 from input port

i to output port i in all k switches, except for switch i where we schedule a flow of

size 1 - e'. We begin by receiving flows, all of which are greater than }, from input

port i to output port i while increasing the size of the flow in every time by a small

amount. In every time, the greedy algorithm will choose a different switch to schedule
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the flow, since two flows cannot be assigned to the same switch without exceeding

the link capacities. After the greedy algorithm chooses switch i, which has to happen

at some point, we start fully utilizing links from input port i to all the switches that

have not been chosen yet by the greedy algorithm, by receiving a sufficient number of

flows of size 1 from input port i to output port i. After that, among all the switches

which can take more flows from input port i to output port i, switch i will have the

largest amount of flow going through it from input port i to output port i. We start

receiving flows in such a way to cause the greedy algorithm to choose switches in the

same order it had before, by receiving the flows in decreasing size this time and fully

utilizing every link from input port i, except the one going to switch i. For instance,

if the amount of flow going from input port i to output port i through switch s is b,

we receive a flow of size 1 - b from input port i to output port i, which has to be

assigned to switch s (since we start with the smaller values of b). We stop just after

fully utilizing all the links from input port i except the one going to switch i. Hence

switch i will have 1 - 6' amount of flow going from input port i to output port i,

where 0 <6c' < I.

Note that it is possible to prove Theorem 6.1 using a simpler instance with two

switches. In that case however, the total amount of flow presented to the switches

will be less than the total capacity of the two switches. The instance used in the

proof above has the special property that the total amount of flow received is C =

kN , where C is the full capacity of all the switches. This implies that the low

approximation factor is not due to the absence of flows, and in other words, adding

more flows cannot enhance the approximation factor. So even with enough flow equal

to C, for any c, a greedy algorithm will not be able to achieve a total throughput

greater than or equal to EC.

We now prove that a blocking factor 0 implies an approximation factor 4.

Lemma 6.1 If the blocking factor is /, then the throughput is at least a fraction 2

of the maximum throughput possible.
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Proof: If 0 = oo, then there are no blocking links and hence no flows are left

out. Therefore, a fraction equal to ' = 1 of the maximum throughput possible is

scheduled. If 0 is finite, then let L be the number of blocking links. Let F be the

set of all flows, and G C F be the set of flows that are scheduled. Let G' be the set

of flows in F - G that are scheduled in the optimal solution. We know that every

flow in F - G, and hence in G', has to use at least one blocking link in order to be

scheduled in one of the switches. This means that the sum of flows in G' cannot be

more than L since every blocking link has capacity 1. Moreover, for every blocking

link e, u(e) > ,3 by definition. This means that the sum of flows in G that are passing

through blocking links is at least L, since a flow can pass through at most two

blocking links. This implies that the sum of flows in G is at least P that of G'. The

throughput of the optimal solution cannot be more than the sum of flows in G U G'

by definition of G and G' . Therefore, the sum of flows in G is at least fL12L+/3L/2 -2+fl

of the maximum throughput possible. N

Note that the fraction stated in Lemma 6.1 is also true if we consider the maximum

amount of flow going through an ideal switch, where splitting of flows is permissible.

In the proof above, we did not rely on the fact that the optimal solution does not allow

for flow splitting. Therefore, the same analysis applies if we compare our throughput

to any other throughput even when splitting occurs.

Using the result above, we can obtain a i-approximation algorithm for the problem

of maximizing the throughput. The algorithm is described below:

Algorithm A:

We divide the flows into two groups: large flows and small flows. Flows that are

greater than 1 are considered large, all other flows are considered small. The algo-
rithm starts by scheduling large flows first, in an arbitrary way, until no more large

flows can be assigned to the switches. Then it schedules small flows, in an arbitrary

way, until no more small flows can be assigned to the switches.

Lemma 6.2 Algorithm A guarantees a blocking factor 3> .1
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Proof: To prove that the blocking factor # > 1, assume the opposite. This

implies that there is a blocking link e in some switch s such that u(e) K <. By the

definition of a blocking link, there exists a flow f that is left out, such that either

e = 2TSf or e = outs,f. As a consequence, u(in5 ,f) < and u(outsf) K 1. This means

that flow f cannot be a small flow, since otherwise, it could have been assigned to

switch s before the algorithm had stopped. So f must be a large flow. But since

u(in8 ,f) _ <. and u(out8 ,f) <, only small flows are passing through in3 ,f and outs,f,

which contradicts the way the algorithm favors large flows first. Therefore, >3> }. U

Theorem 6.2 There exists a i-approximation algorithm for the problem of maximiz-

ing the throughput in scheduling unsplittable flows.

Proof: Algorithm A is a polynomial time algorithm. By Lemma 6.2, Algorithm

A guarantees a blocking factor 03> ., which by Lemma 6.1, implies a k-approximation

for the problem of maximizing throughput.

In the following section, we will see that a k-approximation algorithm exists for

the problem of maximizing throughput when the set of flows is admissible.

6.4 Number of Rounds

The fact that it might be unfeasible to schedule all flows unsplittably, even when the

admissibility condition holds, motivates the idea of rounds. In this section, we ask

how many rounds are needed to unsplittably schedule all the flows. The authors in

[10] provide an algorithm that schedules all flows unsplittably in a general graph with

a single source in 5 rounds, given that the cut condition holds. The cut condition is

a generalized admissibility condition for graphs. They also show that this leads to a

5-approximation algorithm for the problem of minimizing the number of rounds when

the cut condition is not satisfied.

In our case, we provide a 4-approximation algorithm to the minimum number of

rounds needed to schedule all flows unsplittably. When the set of flows is admissible,

Du et al. proved in [11] that [17k-51 switches are sufficient to unsplittably schedule
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all flows. This implies that 3 rounds are also sufficient since 3 rounds are equivalent to

3k switches. For the sake of completeness, we provide a simple polynomial time algo-

rithm that unsplittably schedules an admissible set of flows using 3k switches. Note

that when the set of flows is admissible, a polynomial time algorithm that sched-

ules all flows in r rounds implies a !-approximation algorithm for the problem of

maximizing throughput, simply by choosing the round with the maximum through-

put, which contains at least } of the sum of all flows. As a consequence, we have a

}-approximation algorithm for the problem of maximizing throughput when the set

of flows is admissible.

We first describe an offline 4-approximation algorithm to the minimum number

of rounds needed to schedule any set of flows:

Algorithm B:

This algorithm consists of a number of rounds. In each round we run Algorithm A

on the remaining flows. We stop when all flows have been scheduled.

First we prove a simple lemma.

Lemma 6.3 If a and b are two integers greater than 0 then L) +1 ;> .

Proof: a - 1 can be written as q x b + r where both q and r are non-negative

integers and r < b. Then Mb1J = q. Finally, I - ____ = q+ 1 <Iq+ 1. U

Theorem 6.3 There exists a 4-approximation algorithm for the problem of minimiz-

ing the number of rounds in scheduling unsplittable flows.

Proof: Assume that Algorithm B stops after r rounds. Let f be a flow that

is scheduled in the r'h round. Then we know that in the first r - 1 rounds, flow f
cannot be scheduled, and as a consequence, it has a blocking link in every switch

during all r - 1 rounds. Since Algorithm B runs Algorithm A in every round, the

blocking factor 0 must be greater than . by Lemma 6.2. This implies that the total

amount of flow coming from the input port of f or going to the output port of f is
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more than x k x (r - 1) = (T) x 2k during the first r - 1 rounds. In one round

however, we cannot schedule more than 2k amount of flow for any pair of input and

output ports. This means that we cannot optimally have less than []j + 1 rounds

to schedule all the flows including flow f. By Lemma 6.3, this is at least L. Therefore,

we have the result since Algorithm B is a polynomial time algorithm. U

Next, we present an algorithm that unsplittably schedules an admissible set of

flows in 3 rounds. As in the previous algorithms, this algorithm relies on the idea of

dividing the flows into two groups.

Algorithm C:

We divide the flows into two groups: large flows and small flows. Flows that are

greater than 1 are considered large, all other flows are considered small. The algo-

rithm starts by scheduling large flows first using the rearrangeability property of a

clos network (Slepian-Duguid theorem [26]): Since at most 3k - 1 large flows can

exist at any port (and each is at most 1), we can unsplittably schedule the large flows

using at most 3k - 1 switches, or alternatively 3k switches. Then the small flows are

scheduled in an arbitrary way. The 3k switches correspond to the 3 rounds.

Lemma 6.4 Let F be a set of flows. If no flow f c F can be scheduled and each

flow f £ F is at most B, then the blocking factor 0 satisfies 03> S - B, where S is

the speedup.

Proof: Assume the opposite. By definition of the blocking factor, there exists

a flow f e F and a switch s such that u(insf) < S - B and u(outf) < S - B.

Therefore, we can assign f to switch s without violating any link capacity (recall that

any flow in F, in particular flow f, is at most B). This is clearly a contradiction since

flow f cannot be scheduled. Therefore, the blocking factor / satisfies /3> S - B. U

Theorem 6.4 Algorithm C unsplittably schedules any admissible set of flows in at

most 3 rounds.
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Proof: It is enough to show that with Algorithm C, no small flows can be left

out. To prove this fact, let F be the set of small flows that cannot be scheduled

with Algorithm C. Applying Lemma 6.4 to F, B = -, and S = 1, we obtain that the

blocking factor 0 satisfies #3> in all 3 rounds. Consider a flow f E F. Since f has3

a blocking link in every switch in all 3 rounds, and the blocking factor is more than

, the amount of flow coming from the input port of f or going to the output port of

f is more than x k x 3 = 2k. From the admissibility condition however, we know3

that at most 2k amount of flow can exist for any two ports. This is a contradiction.

Therefore, the set F has to be empty. U

Corollary 6.1 There exists a i-approximation algorithm for the problem of maximiz-

ing the throughput in scheduling unsplittable flows when the set of flows is admissible.

Proof: By Theorem 6.4, Algorithm C schedules an admissible set of flows in 3

rounds. The Corollary is true since Algorithm C is a polynomial time algorithm and

the round with the maximum throughput among all rounds has to contain at least 1
3

of the total amount of flows in the admissible set. U

In comparison with the work in [10], a 1-japproximation algorithm is obtained

for the problem of maximizing throughput in a general graph with a single source,

when the cut condition is satisfied.

Theorem 4 also implies that a speedup of 3 is sufficient to unsplittably schedule an

admissible set of flows. This can be achieved by superposing all 3 rounds together to

get the effect of one round where each link has capacity 3. In the following section, we

prove a stronger result, namely that any greedy algorithm can unsplittably schedule

an admissible set of flows with a speedup of 3.

6.5 Speedup

As mentioned before, Du et al. proved in [11] that a speedup of 2 is enough to

unsplittably schedule an admissible set of flows. Note that 2 is also a lower bound on

the speedup required to unsplittably schedule an admissible set of flows. To see this,
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consider k +1 flows from input port i to output port j, each of size k+. Since there

are k switches only, at least 2 flows must be assigned to the same switch. Therefore,

the minimum speedup required is 2kI. For any c > 0, by choosing a large enough k,

we can make 2 = 2-- c. Therefore, 2 is a tight lower bound on the speedup required

to unsplittably schedule an admissible set of flows. In this section, we concentrate on

greedy algorithms. We prove that any greedy algorithm can schedule an admissible

set of flows when the speedup is at least 3.

Theorem 6.5 Any greedy algorithm can unsplittably schedule an admissible set of

flows with a speedup S > 3.

Proof: Let F be the set of flows that cannot be scheduled using the greedy

algorithm. Applying Lemma 6.4 to F, B = 1, and S = 3, we obtain that the blocking

factor 0 satisfies f > 2. Consider a flow f C F. Since f has a blocking link in

every switch, and the blocking factor is more than 2, the amount of flow coming from

the input port of f or going to the output port of f is more than 2k. From the

admissibility condition however, we know that at most 2k amount of flow can exist

for any two ports. This is a contradiction. Therefore, the set F has to be empty. M

The implication of Theorem 6.5 is that, with flows appearing and disappearing,

a simple online algorithm can continue to schedule all flows, provided that at any

time, the set of existing flows is admissible. Note that the online algorithm has to

be non-oblivious (see Section 6.1 for the definition of oblivious). We can prove that

S = 3 is actually a lower bound for two natural classes of greedy algorithms. We

call these two classes packing and load balancing. We begin by defining a packing

algorithm:

Definition 6.3 (packing) A packing algorithm is a greedy algorithm by which, when-

ever possible, a new flow f is assigned to a switch s such that either u(insf) : 0 or

u(outs,f) : 0.

For instance, a greedy algorithm that, whenever possible, does not utilize a link

that is so far unutilized, is a packing algorithm. Similarly, the greedy algorithm that
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assigns a flow f to a switch s that maximizes max(u(in,), u(out8 ,f)) is a packing

algorithm.

Next, we define a load balancing algorithm:

Definition 6.4 (load balancing) A load balancing algorithm is a greedy algorithm

by which, whenever possible, a new flow f is assigned to a switch s such that u(inf) =

0 and u(outs,f) = 0. If this is not possible, then f is scheduled in such a way to keep

the maximum used link capacity at a minimum.

For instance, the greedy algorithm that assigns a flow f to a switch s that minimizes

max(u(in,f), u(outs,f)) is a load balancing algorithm.

We have the following results:

Theorem 6.6 There is no packing algorithm that can schedule every admissible set

of flows with a speedup S < 3.

Proof: The proof is by choosing a speedup S = 3 - E for any E > 0 and

constructing an admissible set of flows that will cause the packing algorithm to fail

in scheduling all the flows. We will assume that k is even and that > S = 3 -

which can be obtained with a large enough k. We also require a large enough number

N of input and output ports such that N> k x Ck + 2. Let i1 , i 2 , ... , iN denote the

input ports. Similarly let Ji, j2, ... , IN denote the output ports. For each I = 1...N- 1,

we receive k flows of size k from input port it to output port jj. Since 3k > 3 -k+1 k+1

at most 2 flows from i1 to 11 can be assigned to a single switch. Moreover, since the

algorithm is a packing algorithm, once a flow from i1 to J is assigned to a switch s,

the next scheduled flow from i to JI will be assigned to switch s as well. Therefore,

exactly switches will be used to schedule the k flows from i1 to i for 1 = 1...N - 1.

C represents all possible ways of choosing 2 switches among k switches. Since we
22

have N - 1 ;> k x C ± 1, at least k + 1 (i1, I') pairs will utilize the same L switches
22

Si, S2, ... , sk. Let pi, P2, ... ,Pk+1 be the input ports of these k + 1 pairs. Now for
2

I = 1...k+ 1, we receive a flow of size k from p to jN. Note that the admissibilityk+s

condition still holds because (k + 1) xk = k. Since 3k~ > 3 - c, switches s, 2k+1 k+1 2 .
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s cannot be used to schedule any of the new k + 1 flows. Hence, exactly k switches

are available to schedule the k + 1 flows. Each of the available k switches can hold at

most 2 of the k +1 flows since 3k > 3 - E. Therefore, one of the k +1 flows cannot

be scheduled.

Theorem 6.7 There is no load balancing algorithm that can schedule every admis-

sible set of flows with a speedup S < 3.

Proof: The proof is similar to the one for packing algorithms. We assume that

the number of ports is this time N = 2NO +1, where No > k x C' + 1. So for each

1 = 1...No, we can define the input ports i and i,+N, and the output ports j and

jl+N 0. The idea is to make the load balancing algorithm utilize 2 switches in the same

way presented in the previous proof. We will illustrate how this can be done for one

input-output pair (i10 , 'i). We first receive K flows of size k from i 0 to 'I0. By the2 k+13

definition of a load balancing algorithm, these flows will be assigned to § different

switches, say s1 , s2 ,..., sk. Next we receive L flows of size E < + from input port
22+

2 1O+NO to output port 311. The load balancing algorithm will schedule these flows using

the other switch +1 ,k.Next we receive K flows of size from2h thr sices, say 5S**, 5k w 2 -F

input port i1o+NO to output port .P+No. The load balancing algorithm will schedule

the new flows using the switches s1 , s2 ,..., s. Next, we receive t flows of size 1 from

input port iO+N 0 to output port ' +No- If the load balancing algorithm assigns any

of these new flows to any of the switches si, S2 ,- S, then the maximum used link

capacity will be 1 + k. Therefore, the load balancing algorithm will schedule the

new flows using switches sk+1, sk+2 --- ,.k, making the maximum used link capacity

+ c < 1 + . Finally, we receive t flows of size I from input port i 0 to output

port jlo+N?. The load balancing algorithm will schedule these flows using the switches

s1 , s2 ,-.., s, making the maximum used link capacity 2 I as opposed to A + 1

in case it assigns any of these flows to any of the switches sk+1, S±2'*---..k- We

can repeat this process for all I = 1....No yielding to a situation similar to the one

described in the previous proof, where at least k +1 pairs (i,, J), with a 2Lt amount

of flow from i1 to jj, utilize the same k switches. Note that the admissibility condition
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holds everywhere.

6.6 Summary

We addressed a setting of parallel switches in which flows cannot be split across mul-

tiple switches. This offers the advantage of eliminating re-sequencing at the output

in traditional packet switching and provides a framework for optical switches where

flows are naturally unsplittable. Most of the questions regarding scheduling unsplit-

table flows are NP-hard. We looked at some approximation algorithms for different

aspects of the problem of scheduling unsplittable flows. We proved that a general no-

tion of an online algorithm cannot achieve any fraction of the maximum throughput

possible, and presented some simple offline approximation algorithms for maximizing

throughput. We also looked at how to approximate the number of rounds needed to

schedule all the flows using an offline algorithm. Finally, we showed that any online

algorithm can schedule an admissible set of flows with a speedup of 3, and that S = 3

is actually a lower bound on some natural classes of online algorithms.
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Chapter 7

Conclusion

A major drawback of the traditional output queuing technique is that it requires a

switch speedup of N, where N is the size of the switch. This dependence on N makes

the switch non-scalable at high speeds. Input queuing has been suggested instead.

The introduction of input queuing creates the necessity for developing switching al-

gorithms to decide which packets to keep waiting at the input, and which packets

to forward across the switch. Input-output queuing is a more general model where

queues are used at both input and output ports. Moreover, input-output queuing

allows the possibility to have a speedup S that is not necessarily dependent on N.

Switching in an input-output queued switch has been abstracted in literature as a

computation of matchings in which input and output ports are matched together

(see chapter 1). Some switching algorithms still require the switch to operate at a

speed higher than the line speed to achieve basic guarantees. In other words, they

require a switch speedup S > 1 such that the switch computes successive matchings

every } time units. In this thesis, we abstracted many of these algorithms as families

of algorithms, and established some lower bounds on the speedup required by these

families of algorithms to guarantee throughput.

A practical family of algorithms, priority switching algorithms, have been pro-

posed in literature [6], [16], [18] to overcome the high computational complexity of

traditional switching algorithms [21], [23], [24] (these are usually based on computing

a maximum weighted matching). A priority switching algorithm computes a matching
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by assigning priorities to the different input-output pairs and adding the pairs to the

matching in order of their priorities. We proposed two priority switching algorithms

that provide throughput with a speedup S = 2 and a delay guarantee with a speedup

S > 2 under appropriate traffic models. They offer the advantage of requiring smaller

amount of state information than other priority switching algorithms.

An even more practical family of algorithms, iterative switching algorithms, have

been also suggested in literature. These algorithms, due to their distributed nature,

do not require global computation of matchings; however, they require multiple itera-

tions to provide high throughput. We proposed an iterative switching algorithm that

provides high throughput in practice with one iteration only. The algorithm will also

provide, with only one iteration, throughput with a speedup S = 2 as well as a delay

guarantee with a speedup S> 2 under an appropriate traffic model. The property of

requiring one iteration only makes it possible to scale the switch at higher speeds.

We investigated the use of multiple input-output queued switches with no speedup

in parallel in order to achieve a delay guarantee while eliminating the speedup require-

ment imposed on the switch. We pushed further the idea of using parallel switches

(not necessarily input-output queued) to exploit a setting in which flows cannot be

split across multiple switches.

7.1 Some Lower Bounds on Speedup

We proved lower bounds on the speedup required by several classes of switching

algorithm to achieve a weak notion of throughput (definition appears in Chapter 1).

* A class of priority switching algorithms that uses a priority scheme based on

the output queues of the switch requires a speedup of 2 (a tight bound).

* An algorithm that computes a maximum size matching requires a speedup of 2

(a tight bound).

" A class of priority switching algorithms that uses a priority scheme based on

the sate of the input queues of the switch requires a speedup of 1.5 (not known
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to be a tight bound).

The above results motivated us to consider the use of parallel switches to accom-

modate for speedup.

7.2 Two Priority Switching Algorithms

We presented two priority switching algorithms that provide strong throughput (def-

inition appears in Chapter 1) with a speedup S = 2 and a delay guarantee with a

speedup S > 2, under appropriate constant burst traffic models. Both algorithms

offer the advantage of not requiring extensive state information like the age of pack-

ets (as in the [6] and [18]), the length of the input queues (as in [16]), or the length

of the output queues (as in [18]). Moreover, they do not require the traffic to be

constantly backlogged as it is the case for the algorithm in [16]. The running time

of both algorithms is O(N 2) in the RAM model of computation and their memory

requirement is O(N 2 log N). The communication complexity of both algorithms is

O(Nlog N) which is optimal if we consider the Q(Nlog N) amount of communica-

tion required to specify a matching for the switch in order to configure the input and

output ports appropriately. Therefore, both algorithms offer a better communication

requirement compared to the previous algorithms in which more information needs

to be communicated, like the age of packets for instance.

7.3 An Iterative Switching Algorithm

We developed an iterative switching algorithms that, with a particular priority scheme,

provides strong throughput (definition appears in Chapter 1) with a speedup of 2 and

a delay guarantee with a speedup S> 2 under an appropriate constant burst traffic

model. The switching algorithm requires O(log N) computational complexity with

appropriate parallelism. This algorithm offers the advantage of not requiring more

than one iteration to provide high throughput, and outperforms other iterative al-

gorithms when the number of iterations is limited to one. Moreover, it provides
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theoretical guarantees (with a speedup of 2) under non-uniform traffic pattern, un-

like existing iterative switching algorithms which provide theoretical guarantees under

uniform traffic patterns only.

7.4 Switching Using Parallel Switches

We suggested a scheme that eliminates the need for speedup by using k = [Si parallel

input-output queued switches with no speedup, where S is the speedup of the original

switch. The key to our approach was to apply the same matching in all the parallel

switches. By adapting existing switching algorithms for the single switch setting to

hold their matching constant for a number of times, we were able to apply the same

matching is all switches, and guarantee a bounded delay on every packet. The addi-

tional communication cost between the switching algorithm and the parallel switches

is 0 (N log kN). This is to be compared to the Q (N log N) amount of communication

needed in a single switch for the algorithm to specify a matching. Our approach offers

the advantage of using a constant number of parallel layers independent of N, the size

of the switch. This was not the case in [14] and [15], which emulate output queuing

for a high line speed using O(N) output queued switches running at a lower speed

with no memory speedup. The bandwidth requirement of the architecture proposed

here is kNR where R is the line speed. The authors of [15] succeeded in reducing

this bandwidth requirement to NR only at the expense of allowing packets to arrive

in an out-of-order fashion with a bounded delay of O(N 2).

7.5 Unsplittable Flows

We addressed a setting of parallel switches in which flows cannot be split across mul-

tiple switches. This offers the advantage of eliminating re-sequencing at the output

in traditional packet switching and provides a framework for optical switches where

flows are naturally unsplittable. Most of the questions regarding scheduling unsplit-

table flows are NP-hard. We looked at some approximation algorithms for different
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aspects of the problem of scheduling unsplittable flows. We proved that a general no-

tion of an online algorithm cannot achieve any fraction of the maximum throughput

possible, and presented some simple offline approximation algorithms for maximizing

throughput. We also looked at how to approximate the number of rounds (the num-

ber of times the switches are used) needed to schedule all the flows using an offline

algorithm. Finally, we showed that any online algorithm can schedule an admissible

(defined in Chapter 6) set of flows with a speedup of 3, and that S = 3 is actually a

lower bound on some natural classes of online algorithms.
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