2,937 research outputs found

    Advances and Technologies in High Voltage Power Systems Operation, Control, Protection and Security

    Get PDF
    The electrical demands in several countries around the world are increasing due to the huge energy requirements of prosperous economies and the human activities of modern life. In order to economically transfer electrical powers from the generation side to the demand side, these powers need to be transferred at high-voltage levels through suitable transmission systems and power substations. To this end, high-voltage transmission systems and power substations are in demand. Actually, they are at the heart of interconnected power systems, in which any faults might lead to unsuitable consequences, abnormal operation situations, security issues, and even power cuts and blackouts. In order to cope with the ever-increasing operation and control complexity and security in interconnected high-voltage power systems, new architectures, concepts, algorithms, and procedures are essential. This book aims to encourage researchers to address the technical issues and research gaps in high-voltage transmission systems and power substations in modern energy systems

    Ultrasonic-Based Condition Assessment of Wooden Utility Poles

    Get PDF
    More than 300 million utility poles shoulder the utility grid in the United States. However, the ineffectiveness of the current inspection process causes roughly a third of utility poles removed from the service deemed suitable for reuse. Due to the utterly essential role of the power infrastructure, budget shrinkage, and the structural degradation of the modern distribution grid, this Ph.D. dissertation addresses the challenges by proposing a physics-based signal analysis method with a jointly developed ultrasonic UB1000 system c to enhance the objectivity in ultrasonic-based nondestructive evaluation (NDE). The proposed methodology has been deployed commercially in the field and featured in articles by the Missouri Public Utility Alliance and the Western Cooperative Electric. This dissertation proposes embedded waveguide as an ultrasonic radiation source. A systematic analytical model is developed based on the classical elastodynamic formulation to study the excitation and the propagation characteristics of the resulted elastic wave. Based on the steady-state assumption with a set of half-space boundary and interface loading conditions, the obtained closed-form displacement field yields the diffusive property of the shell region propagation as a function of the Poisson’s ratio. The diffusive property is discovered under the quasi-steady load condition, a reasonable model to describe the behavior of a narrow-band ultrasonic transducer. The estimated diffusive propagation is demonstrated through the numerical finite element method (FEM). This study developed the first high-fidelity numerical model of a wooden pole crosssectional region. It is capable of modeling a porous orthotropic medium under the cylindrical symmetry enabling high moisture content and/or incipient decay conditions to be simulated. Using a transient imposed boundary condition, the model uncovers different arrival wave modes resulted from propagating in various regions within the cross-section. By dissecting the waveform and isolating the corresponding arrival wave, it allows a direct examination of the wave energy content within the shell region, which is a critical area in the cross-section that dictates the overall strength of a wooden pole. By modifying the physical and the poroelastic properties of the medium to simulate the incipient decay and high moisture content, this study discovers a correlation between the selected features within the received waveform and the physical property of the medium (e.g., modulus of elasticity and the moisture saturation levels). The findings from both the numerical and analytical approaches motivate the proposed physics-based signal analysis to extract both the temporal and spectral information at the resonant frequency of the ultrasonic wave via the time and frequency (TF) transformation. A comparative study using the numerical results was performed to examine the Short Time Fourier Transformation (STFT) and Gabor Continuous wavelet transform (GCWT). Due to its superior temporal and spectral resolution, the GCWT is selected to analyze signals from different simulated conditions. The results produce a pronounced difference in the selected features in all the different simulated cases, suggesting a viable analysis approach for characterizing the medium. Based on the proposed physics-based signal analysis approach, this work develops and details a corresponding pole analysis algorithm. The experiments were carried out with specimens of different known Groundline(GL) conditions (healthy, decay and highmoisture) to examine the efficacy of the proposed waveguide design and the associated analysis algorithm. The collected signals are fed through the GCWT analysis algorithm to extracted the features sensitive to those conditions. The results suggest a high moisture content pole would have a typical energy attenuation of around 35% compared to a healthy pole with low moisture content, while the time when the peak energy occurs is relatively the same in both cases. In a decay wood specimen, the result suggests an 11% latency in peak energy time-of-flight (TOF), 50% energy reduction and a 50% increase in diffusivity by measuring the full width half maximum (FWHM) around the energy peak. A further refinement of the analysis places the peak energy TOF and energy reduction levels as the selected features on a feature space to assess fifteen poles with known categories. A clear decision boundary is discovered prompting a future research opportunity of using linear and/or non-linear classifiers to determine the wooden pole at the GL region

    Characterization, Classification, and Genesis of Seismocardiographic Signals

    Get PDF
    Seismocardiographic (SCG) signals are the acoustic and vibration induced by cardiac activity measured non-invasively at the chest surface. These signals may offer a method for diagnosing and monitoring heart function. Successful classification of SCG signals in health and disease depends on accurate signal characterization and feature extraction. In this study, SCG signal features were extracted in the time, frequency, and time-frequency domains. Different methods for estimating time-frequency features of SCG were investigated. Results suggested that the polynomial chirplet transform outperformed wavelet and short time Fourier transforms. Many factors may contribute to increasing intrasubject SCG variability including subject posture and respiratory phase. In this study, the effect of respiration on SCG signal variability was investigated. Results suggested that SCG waveforms can vary with lung volume, respiratory flow direction, or a combination of these criteria. SCG events were classified into groups belonging to these different respiration phases using classifiers, including artificial neural networks, support vector machines, and random forest. Categorizing SCG events into different groups containing similar events allows more accurate estimation of SCG features. SCG feature points were also identified from simultaneous measurements of SCG and other well-known physiologic signals including electrocardiography, phonocardiography, and echocardiography. Future work may use this information to get more insights into the genesis of SCG
    • …
    corecore