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Power quality (PQ) monitors installed in transmission and distribution

systems record disturbance events occurring in the system, such as root mean

square (RMS) variations and transients caused by short-circuit faults, trans-

former energizing, or capacitor switching around the clock, resulting in a large

amount of data. Although the collected data contain valuable information

about the system, they are often merely stored without any further analysis.

Analysis of these data presents opportunities for improving the performance

of power systems as well as for monitoring the health of the grid as a whole.

The general objective of this proposal is to develop algorithms that make use

of three phase voltage and current measurements recorded from the power

quality monitors. Specifically, algorithms are developed for the analysis of (1)

short circuit faults with their locations (fault analytics) and (2) overcurrent

protection devices installed in the system (device analytics). The fault analyt-

ics module is used to identify fault events among other power quality events
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and estimates the location to the fault occurring in the system. The proposed

method uses variable window size in calculating phasors and estimates a single

fault location that is more accurate than the multiple locations estimated by

the conventional approach using Fourier and cosine filters. The device ana-

lytics module aims to evaluate the overcurrent protection devices operating

to isolate short-circuit faults from the system. This module identifies recloser

and fuse operations and estimates the empirical inverse time-current charac-

teristics of the devices. The results of the device analytics are used to evaluate

device opening intervals and coordination and to further narrow down fault

location because faults are located downstream from the clearing device. Fi-

nally, the dissertation presents a data analytics framework and an open power

quality disturbance event schema. The schema is developed to promote the

sharing of data recording PQ disturbance events and the metadata providing

descriptive and quantitative analysis of the events.
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Chapter 1

Introduction

1.1 Motivation and Objective

Power quality (PQ) monitors and intelligent electronic devices such as

digital relays and digital fault recorders collect a large amount of data, provid-

ing the foundation for detailed analysis of power system disturbances. Knowl-

edge extracted from the data also provides insights to help understand the

power system conditions and how to prevent possible disturbance events from

recurring. For example, the voltage and current measurement data collected

during capacity switching operations are used to estimate system parameters

such as damping factors and resonant frequencies. Authors in [1, 2, 3] present

signal processing techniques such as Hilbert and wavelet transforms to estimate

the magnitude and time constants of the system damping factor.

Similarly, fault events captured by power quality monitors and digital

relays have been used in various perspectives for enhancing the reliability of

the system operation. Most fault-locating algorithms use voltage and current

recorded during short-circuit faults. Since the relationship between the voltage

and current during a fault event is defined by the circuit model, advanced

algorithms are proposed to minimize the error estimates coming from uncertain
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parameters in the system. The sources of errors may include inaccurate phasor

estimation, fault resistance, and line impedance [4, 5, 6, 7]. The fault records

can be used to estimate circuit parameters such as line impedance [8] and

fault resistance [6, 9]. These algorithms use measurements captured from one

or both ends of the power line and are used to evaluate predefined parameters

and zone settings within digital distance relays.

The objective of this dissertation is to develop data analytics tools

that provide analysis of the short-circuit faults and the overcurrent protection

devices clearing the fault. The raw input datasets used for these applica-

tions are three phase instantaneous voltage and current waveforms captured

by power quality monitors, containing a wide variety of power quality distur-

bance events. Data analytics tools presented in this dissertation examine the

raw datasets collected from power quality monitors, extract knowledge, and

provide actionable insights. Utility operators can make use of the fault ana-

lytics tool to accurately detect and locate the fault in the system to expedite

service restoration and improve reliability. Also, analytics of the overcurrent

devices can be used to identify the device clearing the fault, which also helps

narrow down the fault locations; evaluate protection coordination and breaker

opening intervals; and monitor the health conditions of the devices installed

in the system.

The dissertation is organized as follows. Chapter 2 presents fault ana-

lytics: detection and location of short-circuit faults. Chapter 3 provides device

analytics: evaluation and identification of overcurrent protection devices. Fi-
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nally, Chapter 4 proposes a power quality data analytics framework and a

database schema, power quality linked data (PQLD).

1.2 Contribution

1.2.1 DC Offset Removal Algorithm for Locating Momentary Faults

The fault analytics module presents a DC offset removal algorithm to

improve the fault location estimates of momentary faults. For a momentary

fault, the data are limited because of its short duration, and the phasor es-

timation is complicated by the exponentially decaying DC offsets. The fault

analytics module accurately detects fault inception and clearing times, esti-

mates the voltage and current phasors during short-circuit conditions, then

provides the input voltage and current phasors to existing impedance-based

fault location algorithms, such as the Takagi method [5, 10]. The algorithm

uses the RMS-wavelet method for fault detection and estimates voltage and

current phasors using the nonlinear least squares algorithm. The proposed

method uses a variable window size in calculating phasors and estimates a

single fault location that is more accurate than the multiple locations esti-

mated by the Fourier and cosine filters. The method is validated using both

simulated and field data.

For the bolted fault, the test results showed that the proposed method

provides a vast improvement over the Fourier filter. The proposed method

determined a location that was more than 10% closer to the actual location

than the worst-case estimate given by the Fourier filter. When there is a

3



fault resistance, the fault location accuracy of the proposed method does not

significantly improve because of other sources of error, such as load current

and system nonhomogeneity. Nonetheless, the proposed method can avoid

scenarios where phasor estimations contribute additional errors. In the test

case, the worst error using the Fourier and cosine filters was -16.72% and -

4.76%, respectively, and the worst error using the proposed method was 2.23%.

The test also showed that the proposed method can be applied in fault events

where the duration is less than a cycle. The cosine filter requires the greatest

number of data points, one and a quarter cycles, and therefore resulted in a

large error of 60%. The proposed method improved the location accuracy by

more than 58%, and the error was only -1.67%. The algorithm is described in

Chapter 2 and was published in [7].

1.2.2 Identification and Evaluation of Overcurrent Protection De-
vices

The device analytics module presents algorithms to identify and eval-

uate overcurrent protection devices (recloser and fuse) clearing the fault. The

contribution consists of two parts. First, the rule-based method is presented

to identify the type of device clearing the fault (recloser or fuse). Necessary

features that characterize the fault-clearing devices are calculated from the

input voltage and current waveforms. The rule-based expert system then uses

these features to determine whether the fault was cleared by a recloser or a

fuse.
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Second, the methodology for estimating empirical inverse time-current

characteristics (TCC) curve of the recloser is proposed. Data preprocessing

techniques are presented to estimate the current flowing through the recloser

and to detect the fault inception and clearing times related to the breaker

operating time and delay. Then, a nonlinear least squares algorithm is for-

mulated to estimate the TCC curve parameters of the reclosers clearing the

fault. The estimated TCC parameters are used to construct an empirical TCC

curve. The empirical TCC curve is then used to evaluate opening intervals of

breakers and identify the device (TCC curve) clearing the fault.

The proposed algorithms require only the voltage and current measure-

ments from the substation. No other information, such as the circuit model or

load allocation, is required. As opposed to the method presented in [11], where

prior knowledge of the TCC curves is assumed, the approach does not require

the TCC curve information because the curves are automatically constructed

from the field data. The efficacy of the algorithms is validated using simulated

data, event reports generated from a digital relay test bench, and field events

collected from 24.9 kilovolt (kV) distribution circuits. The algorithm for iden-

tifying the type of device is published in [12]. The algorithm developed for

estimating the empirical TCC curve is in preparation for submission.

5



1.2.3 Data Analytics Framework for Power Quality Disturbance
Events

Although power quality (PQ) disturbance events such as RMS vari-

ations and transients occur in transmission and distribution systems, these

datasets are mostly managed through proprietary solutions in different data

formats. In this dissertation, an open schema, power quality linked data

(PQLD), is presented to manage voluminous PQ disturbance events in power

systems. The schema promotes sharing of power quality data and combines

analyses of data from multiple sources. PQLD takes an incremental approach

to data publishing and can be implemented using freeware software such as

MongoDB and Python.

The proposed schema defines five classes to store the metadata asso-

ciated with PQ disturbance events: event, time-series, description, software

analysis, and Institute of Electrical and Electronics Engineers (IEEE) distur-

bance classification. The classes that form the schema are presented and then

demonstrated using actual disturbance events captured from a distribution

system. This work is published in [13].

1.3 Literature Review

1.3.1 DC Offset Removal Algorithm for Locating Momentary Faults

Several improved methods have been presented to eliminate the effect

of the DC offset. The digital mimic filter proposed in [14] is a type of high-pass

filter implemented in combination with the conventional full-cycle or half-cycle

6



discrete Fourier transform (DFT) filter. The low-frequency DC offset terms

are suppressed using the predetermined range of the time constants. Other

research in [15, 16, 17, 18, 19] derives the phasor at the fundamental fre-

quency by estimating parameters associated with the DC offsets. Authors in

[15] investigate the DC offset removal algorithm that requires one cycle or

half a cycle plus two sample points. The method takes advantage of the two

additional sample points and uses their DFT coefficients to derive the param-

eters associated with the DC offset. [16] takes a similar approach, where the

DC offsets are estimated by subtracting odd-sample-set DFT coefficients from

the even-sample-set DFT coefficients. In [18] and [19], one-cycle averages of

the fault current waveform are taken to eliminate sinusoidal components and

estimate the DC component. Authors in [20, 21, 22] use the least squares ap-

proach, where multiple time-domain current waveforms containing DC offsets

are used to estimate the DC offset parameters and the phasors at the funda-

mental frequency. [17] presents three simplified methods that approximate the

exponential DC offset to a simpler form to reduce computation burden. [20]

linearizes the exponential decaying DC offset by using a Taylor series before

implementing the least squares filter in a recursive manner.

The methods described above have been developed primarily for im-

plementation in real-time protective relaying applications. The accuracy of

the phasor estimation methods must be balanced with the relay’s objective of

detecting a fault as quickly as possible. Therefore, the algorithms are limited

by the computation time and the speed of switching operation. For the pur-
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pose of fault location, there is less restriction on the computation time; it can

be done in seconds or minutes [4] as opposed to milliseconds (ms) or cycles

for protective relaying applications. Thus, more accurate methods can be em-

ployed to reject DC offset and improve estimation results. The method used

in the fault analytics module consists of exact detection of the fault inception

and clearing times using an RMS-wavelet method and phasor estimations us-

ing the nonlinear least squares method. As a result, the algorithm provides

more accurate fault location estimates.

1.3.2 Identification and Evaluation of Overcurrent Protection De-
vices

Very little research has been done on identifying the type of fault clear-

ing devices in distribution systems. In [11], estimated fault current and dura-

tion are compared with the fault clearing time in the TCC curves of the pro-

tective devices. Although the approach is successful in most cases, the method

requires prior knowledge of the TCC curves for all protective devices. In addi-

tion, as the number of protective devices increases, having various TCC curves

reduces the margin between the decision boundaries. Because [11] makes a few

assumptions in estimating fault current and fault duration, the classification

accuracy is affected. The approach presented in this dissertation uses features

derived from the input measurements and identifies the device by using an

algorithm that emulates the decision-making process of those with expertise

in power systems [23]. Since the identification is rule-based, it is scalable,

debuggable, and highly interpretable compared with other complex classifiers
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that use neural networks [24, 25] or support vector machines [26, 27].

In [28], an adaptive neuro fuzzy inference system was used to model the

desired TCC curve. This dissertation proposes to estimate the TCC curve pa-

rameters of an overcurrent relay/reclosers installed and operating in distribu-

tion systems, based on IEEE Standard C37.112-2018 [29]. Since the proposed

algorithm is based on the IEEE standard, the applications are easy to inter-

pret and debug. Data preprocessing is also presented, where the fault clearing

times and load currents are estimated to formulate the estimation algorithm.

The data used are time series voltage and current data captured from a single

monitoring location at the substation.

This dissertation presents two possible applications using the empiri-

cal TCC curve: evaluating opening intervals of breakers and identifying the

device (TCC curve) clearing the fault. Existing algorithms for evaluating and

monitoring breaker performances include using current coil data [30, 31] and

analyzing event reports generated from digital relays [32]. In [12], rules are

developed using extracted features such as real and reactive power differences

to identify whether a recloser or fuse has cleared the fault. This approach can

be used with existing algorithms to further narrow down the specific device

and operating curve that clear the fault.
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1.3.3 Data Analytics Framework for Power Quality Disturbance
Events

Utility companies install and manage their own database software, re-

lying on unpublished schemas, and have each developed proprietary–privately

owned and controlled–software for accessing data [33] containing power quality

disturbance events. Such proprietary storage limits the opportunities to share

data and combine analyses of data from multiple sources, resulting in dimin-

ished ability to assess the robustness of large power grids. Recognizing such

shortcomings, power companies have developed additional proprietary applica-

tions and adopted standards such as the IEC 61970 and IEC 61968, known as

the Common Information Model (CIM). CIM defines class attributes and re-

lationships in the Unified Modeling Language (UML). These semantic models

are used to describe power system components, customer billing, and electric-

ity markets and are expressed using Extensible Markup Language (XML) and

Resource Description Frame (RDF) formats [34] for data exchange. Recent

works [35, 36] propose using a CIM-oriented graph database framework to

efficiently retrieve and store largely connected datasets in power systems.

The use of proprietary standards has limited the availability of PQ data

to external researchers. Some data has been made publicly available through

efforts such as the DOE/EPRI National Database Repository of Power System

Events [37]. To further such initiatives and to promote the sharing of PQ data,

power quality linked data (PQLD)–an open, documented database schema–is

presented to catalog and describe PQ disturbance events. The schema is based
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on open standards such as Linked Open Data (LOD) [38] and implemented

using freeware software such as MongoDB and Python. While security-related

arguments have been advanced in the past to promote proprietary software,

counterarguments from the open source perspective have gained prominence

in the past decade [39]. Swire presents an insightful cost-benefit analysis for

assessing the impact of openness and security [40].
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Chapter 2

Fault Detection and Location

2.1 Introduction

1 Electrical faults refer to any abnormal current condition in power sys-

tems. These faults involve short-circuit conditions between phase conductor(s)

and ground or between two or more conductors. For example, an untrimmed

tree can touch uninsulated conductors. A conductor may come in contact with

another conductor during stormy weather conditions. The most common fault

type is single line-to-ground faults, covering 70% to 80% percent of all fault

events, followed by line-to-line faults and three-phase faults [41].

Fault currents can cause damage to equipment and devices installed

in a power system [41]. When a fault remains in the system for too long

and the fault magnitude is high, the heat can damage equipment devices such

as transformers, conductors, and capacitors. In addition, the system voltage

level deviates from its nominal value during fault conditions because of the

1Parts of this chapter have been published in K. W. Min and S. Santoso, “DC offset
removal algorithm for improving location estimates of momentary faults,” IEEE Trans. on
Smart Grid, vol. 9, no. 6, pp. 5503-5511, Nov. 2018 and K. W. Min, S. Santoso, and L.
Biyikli, “Identifying fault clearing operations in distribution systems,” in Proc. IEEE Power
Energy Soc. General Meeting, July 2016, pp. 1-5. The author of this dissertation analyzed
the data, developed the algorithms, and validated the analytical results in the papers.
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fault current and the system equivalent impedance. The deviations can also

cause malfunctions in voltage-sensitive loads such as motor drives. Typically,

protection equipment devices are installed in the systems to detect and isolate

the faults for these reasons. Most protective devices isolate faults based on

inverse time-current characteristics, clearing the fault faster for higher-fault

current. Fig. 2.1 illustrates a single line-to-ground fault with the magnitude

of 530 amperes (A), which lasted for 12 cycles until a protective device cleared

the fault.

Figure 2.1: Fault current RMS (above) and instantaneous (below).

In this chapter, the data analytics algorithms for analyzing short-circuit

faults are presented. These algorithms are implemented and automated to
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detect and locate short-circuit conditions in power systems. The inputs of

the fault analytics module are instantaneous phase A, B, and C voltage and

current waveforms.

First, methods for estimating phasor inputs are described. The phasors

are then used to calculate necessary features for the short-circuit analysis, such

as RMS voltage and current variations, fault magnitude and duration, and the

real and reactive power demands in the circuit.

Next, fault detection methods are described. The approach includes

using pickup thresholds in RMS voltage and current and filtering out inrush

currents, which could be mistakenly considered as fault events. In addition,

the discrete wavelet transform is used to accurately detect the fault inception

and the clearing times in the fault event recordings.

Finally, the fault-locating algorithm is proposed. The algorithm uses

the RMS-wavelet method for fault detection and estimates voltage and current

phasors using a nonlinear least squares algorithm. The application results

show improved location estimates over the conventional methods, especially

for momentary faults where the exponentially decaying DC offset has not fully

decayed in the voltage and current measurements.

Short-circuit faults are closely related to protection device operations

because the fault currents severely damage the system if not isolated as quickly

as possible. The data analytics to identify and evaluate the operations of

protection devices are described in Chapter 3.
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2.2 Phasor Conversion

This section describes three methods that are used to estimate phasors

from the instantaneous waveforms: the Fourier filter, the cosine filter, and the

least squares algorithm. Each of these phasor computing methods is described

in the following sections. Before analyzing the data files, the input voltage and

current waveforms are resampled so the sampling frequencies are an integer

multiple of 60 hertz (Hz). Typical target sampling frequencies are 16, 32, 64,

128, or 256 samples per cycle. For example, the raw datasets used in Chapter

3 have a sampling frequency of 500,000 samples per 30 seconds (sec), which

corresponds to 277.78 samples per cycle. The datasets are resampled to 256

samples per cycle, or 15.36 kilohertz (kHz).

2.2.1 Fourier Filter

Fourier filters are finite impulse response filters whose coefficients are

derived by sampling a cosine and a sine wave [42]. The filter is used to fil-

ter harmonics and DC offsets and calculate the phasor at the fundamental

frequency. The filter output at time sample m is expressed as

iout,cosine(m) =

√
2

N

N∑
k=1

iin(m−N + k)× cos(
2π(k − 1)

N
) (2.1)

iout,sine(m) =

√
2

N

N∑
k=1

iin(m−N + k)× sin(
2π(k − 1)

N
) (2.2)

where N is the number of samples per cycle.
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The fundamental phasor Icosine can be calculated from the two samples,

iout,cosine(m) and iout,sine(m) as in (2.3).

Ifourier = iout,cosine(m) + jiout,sin(m) (2.3)

The phasor magnitude and the phasor angle are calculated as

|Ifourier| =
√
iout,cosine(m)2 + iout,sine(m) (2.4)

∠Ifourier = arctan
iout,cosine(m)

iout,sine(m)
(2.5)

2.2.2 Cosine Filter

Cosine filters, popularly implemented in commercial relays, are finite

impulse response filters whose coefficients are derived by sampling a cosine

wave. Similarly to the Fourier filter, the cosine filter is used to filter harmonics

and DC offsets and calculate the phasor at the fundamental frequency, but it

often shows improved performance over the Fourier filter in phasor estimations

[42]. The filter output at time sample m is expressed as

iout(m) =

√
2

N

N∑
k=1

iin(m−N + k)× cos(
2π(k − 1)

N
) (2.6)

where N is the number of samples per cycle.

The fundamental phasor Icosine can be calculated from the two samples,

iout(m) and iout(m−N/4) as in (2.7).

Icosine = iout(m) + jiout(m−
N

4
) (2.7)
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Figure 2.2: a) Input fault waveforms, b) RMS current calculated from Fourier
and cosine filters

The phasor magnitude and the phasor angle are calculated as

|Icosine| =
√
iout(m)2 + iout(m−

N

4
)2 (2.8)

∠Icosine = arctan
iout(m)

iout(m− N
4

)
(2.9)

In contrast to the Fourier filter, both the real and the imaginary parts

of the phasors are estimated by multiplying the input voltage and current

measurements by the coefficients of a cosine function.

The Fourier and cosine filters assume the input signal is periodic.

Therefore, these two filters cannot fully remove nonperiodic signals such as

exponentially decaying DC offsets. For example, when we calculate the RMS

current magnitudes to the instantaneous current samples in Fig. 2.2(a), the

RMS outputs depicted in Fig. 2.2(b) fluctuate because the DC offset makes

the input waveform aperiodic.

17



2.2.3 Least Squares Algorithm

Least squares algorithms fit multiple measurement points to a prede-

fined function, which includes the sinusoidal function at the fundamental fre-

quency. Other components such as an exponential decaying DC offset or the

harmonics can be added to the predefined function. Any components that are

not modeled in the predefined function are considered as noise. For exam-

ple, during a short-circuit fault, the fault current consists of a sinusoidal at

the fundamental frequency plus an exponential decaying DC offset. Therefore,

defining fault current as β1 cos(2πfti+β2)+β3e
−β4ti , a least squares algorithm

can be used to estimate the parameters (β1, β2, β3, β4) using the measurements

yi and the following quadratic loss function.

minimize
β1,β2,β3,β4

∑
i

[
yi − β1 cos(2πfti + β2)− β3e

−β4ti
]2

subject to β4 > 0 (2.10)

The output parameters, β1 and β2, are then used in estimating the phasors at

the fundamental frequency during the fault as (2.11), whereas parameters β3

and β4 represent the magnitude and the decaying constant of the DC offset.

I =
β1√

2
∠β2 (2.11)

Fig. 2.3 illustrates the fitted curve (β1 cos(2πfti + β2) + β3e
−β4ti), DC

offset (β3e
−β4ti), and symmetrical sinusoidal (β1 cos(2πfti+β2)) using the fault

waveforms extracted from Fig. 2.2(a). As opposed to the Fourier and the

cosine filters, the least squares algorithm estimates a single current magnitude
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(2.656kA) after removing the DC offset. The trust-region-reflective algorithm

[43, 44] can be used to solve the optimization problem defined in (2.10).
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Figure 2.3: Fault current decomposed into exponentially decaying DC offset
plus symmetrical sinusoidal.
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2.3 Fault Detection, Type, and Relative Location

This section describes the methods for detecting fault events using

thresholds in RMS voltage and current. The fault type (single line-to-ground,

line-to-line, double line-to-ground, or three-phase fault) and the relative lo-

cation (with respect to the monitoring location) are also estimated from this

process. It is assumed the monitored circuit is radial.

First, voltage sag and interruption, or just voltage events, are detected

using a threshold in RMS voltage. In IEEE Standard 1159-2009 [45], a voltage

sag is defined as a drop in RMS voltage to between 0.1 and 0.9 per unit and a

voltage interruption below 0.1 per unit. Therefore, 90% of the rated voltage is

used as the voltage threshold to capture all voltage variation events as defined

in [45]. Most of the voltage events are associated with faults, whether upstream

or downstream of the monitoring location. Moreover, magnetizing or inrush

currents from big loads such as motors and transformers may also cause the

voltage level to decrease below 90%.

Similarly, a threshold in RMS current is used to detect faults occurring

downstream from the monitoring location. This threshold should be higher

than the maximum load current of the circuit. A current event is defined to

have occurred when the RMS magnitude exceeds the current threshold value.

We can use the simple rules summarized in Tables 2.1 and 2.2 to cat-

egorize the type and relative location of the fault. The rules require both the

current event and the voltage event to occur for a fault to be categorized as
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a downstream fault. For an upstream fault, the current event should not be

detected while the voltage event is detected. In addition, the zero-sequence

current events are used to identify whether the fault involves the ground.

Table 2.1: Downstream fault categorization

Fault
Type

Event
Ia

Event
Ib

Event
Ic

Event
Iz

Event
Va

Event
Vb

Event
Vc

SLG
A-φ

TRUE – – TRUE TRUE FALSE FALSE

SLG
B-φ

– TRUE – TRUE FALSE TRUE FALSE

SLG
C-φ

– – TRUE TRUE FALSE FALSE TRUE

LL
AB-φ

TRUE TRUE – FALSE TRUE TRUE FALSE

LL
BC-φ

– TRUE TRUE FALSE FALSE TRUE TRUE

LL
CA-φ

TRUE – TRUE FALSE TRUE FALSE TRUE

LLG
AB-φ

TRUE TRUE – TRUE TRUE TRUE FALSE

LLG
BC-φ

– TRUE TRUE TRUE FALSE TRUE TRUE

LLG
CA-φ

TRUE – TRUE TRUE TRUE FALSE TRUE

LLL
ABC-φ

TRUE TRUE TRUE FALSE TRUE TRUE TRUE

LLLG
ABC-φ

TRUE TRUE TRUE TRUE TRUE TRUE TRUE
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Table 2.2: Upstream fault categorization

Fault
Type

Event
Ia

Event
Ib

Event
Ic

Event
Iz

Event
Va

Event
Vb

Event
Vc

SLG
A-φ

FALSE FALSE FALSE – TRUE FALSE FALSE

SLG
B-φ

FALSE FALSE FALSE – FALSE TRUE FALSE

SLG
C-φ

FALSE FALSE FALSE – FALSE FALSE TRUE

LL(G)
AB-φ

FALSE FALSE FALSE – TRUE TRUE FALSE

LL(G)
BC-φ

FALSE FALSE FALSE – FALSE TRUE TRUE

LL(G)
CA-φ

FALSE FALSE FALSE – TRUE FALSE TRUE

LLL(G)
ABC-φ

FALSE FALSE FALSE – TRUE TRUE TRUE

Note that it is possible that a fault may occur without causing voltage

events on any phases. This would not be categorized as a fault event according

to the given rule. However, these types of faults are not of concern because

they are not defined as disturbance events according to [45].
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2.3.1 Inrush Current

In this section, two types of inrush currents–reenergizing inrush and

voltage recovery inrush currents–are described. Inrush currents cause current

and voltage events and can be misclassified as faults.

2.3.1.1 Reenergizing Inrush Current

When reclosers reenergize the circuit after a short interruption, magne-

tizing and inrush currents associated with the reenergizing of the transformers

or big loads causes high current disturbances. These inrush currents gradu-

ally decrease as the load is successfully reenergized. An example waveform

is shown in Fig. 2.4. The first disturbance is a fault, followed by the inrush

event. The inrush can cause high current disturbances and exceed the current

threshold. Therefore, the inrush event is separated from the fault event using

the skewness of the current distributions.

Note that the high currents in inrush events gradually decrease as the

load is successfully reenergized. On the other hand, the magnitude of the fault

current is nearly consistent until it is cleared by the protective device. There-

fore, the histograms of the two current disturbance events are compared to

classify fault events from inrush events. The skewness of the inrush (usually a

positive value) is greater than that in the fault event (usually a negative value).

The implementation process is shown in algorithm 1, and the histograms are

illustrated in Fig. 2.5 and Fig. 2.6.
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Figure 2.4: Fault event followed by successful load reenergizing.

Algorithm 1 Inrush Detection

1: for every detected current RMS event do
2: Normalize all values in the range of [0, 1]
3: Sample the portion in the range of 0.2 < irms < 1
4: Calculate γevent =

1
n

∑n
k=1(ik−ī)3

(
√

1
n

∑n
k=1(ik−ī)2)3

5: if γevent < θ then
6: Event is a fault
7: else
8: Event is an inrush
9: end if

10: end for
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Figure 2.5: Fault current and its histogram.

Figure 2.6: Inrush current and its histogram.
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2.3.1.2 Voltage Recovery Inrush Current

Short-circuit faults cause voltage sags in the faulted phases. The volt-

age level returns to its nominal value when a protective device clears the fault.

This recovery voltage causes transformer and motor inrush currents similar to

those in the reenergizing scenario. The magnitude of the recovery inrush may

exceed the threshold used to discriminate downstream and upstream faults.

Fig. 2.7 shows a double line-to-ground fault on phase BC occurring upstream

from the monitoring location. When the fault is cleared at time 25.09 sec, the

magnitude of the recovery inrush current on phase B and phase C are 134.6 A

and 211.7 A, respectively. The load currents on phase B and phase C before

the fault are 41.31 A and 61.39 A, respectively.

Voltage recovery inrush current is detected using the same approach as

for the reenergizing inrush current. The skewness parameter is used to identify

the event.
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Figure 2.7: Voltage recovery inrush current exceeding three times the load
current.

2.3.2 Fault Detection

In this section, two methods used to detect the fault inception time and

the fault clearing times–RMS-based and RMS-wavelet methods–are presented.
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2.3.2.1 RMS-Based Method

The simplest way to calculate fault inception and the clearing time is

to have a pickup threshold and compare it with the RMS current magnitudes.

The first and last samples exceeding the RMS current threshold are assumed

to be the fault inception time and fault clearing time, respectively. These

two indices are denoted as nps and npe throughout the chapter. Although

this approach is affected by the window size of RMS calculation, the method

can estimate the fault inception time and clearing time in any unexpected

scenarios such as in the presence of current transformer (CT) saturation or

evolving faults. Therefore, this method is preferred when the reliability of the

estimation is an important issue. Fig. 2.8 shows the procedure.
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Figure 2.8: RMS-based fault duration calculation.
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2.3.2.2 RMS-Wavelet Method

RMS-based fault detection is mostly successful in detecting the faults.

However, the method requires a window for converting the time-domain wave-

forms into the RMS domain. In order to estimate the exact fault inception

and clearing times, the offsets caused by the window size must be corrected.

Therefore, the RMS-wavelet method is proposed for detecting fault events.

Note that the discrete wavelet transform used alone can detect other power

quality events as well as fault events. The discrete wavelet transform is used

only to correct the time offsets of the fault events detected from the RMS

pickup value. The time index where the wavelet coefficients have higher val-

ues among the neighbors is chosen to be the corrected location of the fault

inception time or clearing time. Discrete wavelet transform can be imple-

mented using high-pass and loss-pass filters as in (2.12)-(2.13), where g and h

denote low-pass and high-pass filters, respectively. The outputs of the high-

pass filter are referred to as detail coefficients, and the outputs of the low-pass

filter are referred to as approximation coefficients.

yhigh[n] =
∑
k

x(k)g(2n− k) (2.12)

ylow[n] =
∑
k

x(k)h(2n− k) (2.13)

Equations (2.12) and (2.13) show a single-level decomposition of signal

x. This decomposition can be cascaded to get higher-frequency resolution.

For power quality disturbance analysis, first-level detail coefficients are usually
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sufficient for localizing the events [46]. Selection of the mother wavelet is an

important task when wavelet transform is applied for power quality event

detection. It has been presented in [46, 47] that Daubechies wavelets are a

good candidate for power quality applications. The Daubechies wavelets with

filter length of four, or db2, are used for better localization of fault inception

time and clearing time. Using the wavelet coefficients, the exact fault inception

(nws) and clearing times (nwe) can be estimated by using (2.14) with nps and

npe as the input parameter np, respectively.

nw = np − n0 + 2∆nw (2.14)

∆nw = arg max
n

|φ(n)|2 (2.15)

φ(n) =
∑
k

i(k)′g(2n− k) (2.16)

i(n)′ =

{
i(n+ np − n0 + 1) if 0 ≤ n ≤ n0 − 1

0 otherwise
(2.17)

In Fig. 2.9(a), the first time index that exceeds the RMS pickup value is

at 3.0042 sec. The wavelet transform is performed at current samples extracted

from t = 3.0042 - t0 (t0 is chosen to be the window size used in the RMS

computation) sec to t = 3.0042 sec. In Fig. 2.10(a), the wavelet coefficient

has the highest value when the corrected time is -4.2 ms. The fault inception

time (tf,start) is adjusted to 3.0000 sec. A similar approach is performed when

the current drops below the RMS pickup value to correct the fault clearing

time (tf,end). From Fig. 2.9(b) and Fig. 2.10(b), the fault clearing time (tf,end)

is estimated to be at 3.0533 sec after applying the wavelet transform. The fault
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Figure 2.9: Fault current detection in RMS domain: (a) first index above
threshold, instantaneous (top) and RMS (bottom); (b) last index above thresh-
old, instantaneous (top) and RMS (bottom).

inception time (tf,start) and the clear time (tf,end) are then passed to the curve-

fitting module. Fig. 2.10(c) shows the detected fault waveform. Table 2.3 lists

the first and the last time indices exceeding the RMS pickup value when RMS

was calculated using the Fourier filter and the cosine filter, and the corrected

times using the wavelet transform.
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Figure 2.10: Corrected fault inception and clearing time using wavelet trans-
form: (a) fault inception time; (b) fault clearing time; (c) detected fault wave-
form.
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Table 2.3: Corrected fault inception time and clearing time

Fourier Cosine Corrected time

Fault inception
time

3.0042 3.0046 3.0000

Fault clearing
time

3.0652 3.0694 3.0533

2.4 Fault Location

Impedance-based fault-locating methods require the voltage and the

current phasors at the fundamental frequency as the input. A common ap-

proach to estimating the fault locations is to select a cycle during a fault

and use the current and voltage phasors at the chosen time sample as the

inputs to the fault-locating algorithms. This section proposes the use of the

RMS-wavelet fault detector and the least squares phasor estimating algorithm

described in Section 2.2.3 and Section 2.3.2.2 to determine the location to the

fault. This approach results in improved location estimates for momentary

faults where the data are limited because of the short duration and the pha-

sor estimation is complicated by the exponentially decaying DC offsets. The

proposed method uses variable window size in calculating phasors and esti-

mates a single fault location that is more accurate than the multiple locations

estimated by the Fourier and cosine filters. The method is validated using

simulated and actual field data.
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2.4.1 Problem Description

In the event of a momentary fault in a transmission or distribution

feeder, impedance-based fault location algorithms are widely used by utilities

and in microprocessor-based relays to estimate the distance to the fault [48].

These phasor-based algorithms require the input of fundamental frequency

voltage and current measurements captured during a fault to estimate the

apparent impedance from the monitoring location to the faulted point. Given

the line impedance in ohms per unit distance, the corresponding distance to

the fault can be easily obtained. For example, consider the Takagi method

popularly implemented in commercial relays [5]. The distance to the fault, d,

is estimated as

d =
imag(V × I∗sup)

imag(Zline,1 × Is × I∗sup)
(2.18)

where: Isup = I − Ipreflt; Is = I + (
Zline,0
Zline,1

− 1)I0;

the asterisk ∗ denotes a complex conjugation operator.

From (2.18), the voltage and current phasors during a fault play an

important role in accurately estimating the distance to the fault. Phasor

computation, however, is complicated by the presence of an exponentially

decaying dc offset, which makes the fault current asymmetrical in the first

few cycles, as shown in Fig. 2.11. To filter out the DC offset and preserve

34



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Time (second)

-4

-2

0

2

4

6

C
u
rr

e
n
t 
(k

A
)

Figure 2.11: Asymmetrical fault current.

the accuracy of the fault location algorithms, Fourier and cosine filters are

commonly used by phasor estimation algorithms in relays [10]. The Fourier

filter requires one cycle of waveform data to extract the magnitude and phase

angle of fundamental frequency voltage and current. The cosine filter needs one

cycle and an additional quarter cycle to calculate the fundamental frequency

magnitude and the phase angle. The phasor outputs, I, of the Fourier and

cosine filters at time index m are determined using (2.3) and (2.7).

Fig. 2.12 shows the fault current magnitude of the waveform shown

in Fig. 2.11 obtained by applying the Fourier and cosine filters. It can be

observed that after the DC offset has fully decayed, the fault current is 2.65

kA. However, when DC offset is present, the worst-case fault current estimates

using the Fourier and cosine filters are 3.02 kA and 2.71 kA, respectively. From

this perspective, the cosine filter does a better job of eliminating the DC offset.
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Figure 2.12: Fault current magnitude estimated by Fourier filter and cosine
filter.

In summary, a decaying DC offset affects the accuracy of the voltage

and current phasors computed using the Fourier and cosine filters, particu-

larly in the case of momentary faults. This in turn degrades the accuracy of

impedance-based fault location algorithms. Therefore, the problem addressed

in this section can be stated as follows: given the three-phase voltage and

current waveforms recorded by a relay at the monitoring location, eliminate

the DC offset and use only the symmetrical AC fault voltage and current to

determine the location of momentary faults.

2.4.2 Exponential Decaying DC Offset in Fault Waveforms

When a fault occurs in a transmission or distribution feeder, the fault

current consists of an AC symmetrical component and a DC offset that decays

exponentially with a time constant. Consider a simple distribution feeder

shown in Fig. 2.13. For a three-phase fault, the current during fault is as

follows [41]:
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Figure 2.13: Simple distribution feeder.

i(t) = Ae−
wt

X/R +
∑
n

Bn sin(nwt+ θn) (2.19)

= idc(t) + iac(t) (2.20)

where, idc = Ae−wt/(X/R), iac =
∑

nBn sin(nwt+ θn)

The iac in (2.20) represents the symmetrical or steady-state AC fault

current, while idc represents the exponentially decaying DC offset. Since cur-

rent in an inductor cannot change instantaneously, DC offset (idc) appears

when the value of iac at fault incidence is different from the value of load

current before the fault. Therefore, the initial magnitude of the DC offset

depends on the fault incidence angle. Then the DC offset decays with a time

constant dependent on the X/R ratio of the system at the faulted point. The

higher the X/R ratio, the longer it takes for the offset to decay.

The proposed approach to eliminating the DC offset in fault location

estimates is as follows. First, the exact fault inception time and fault clearing

time are estimated using the RMS-wavelet method presented in Section 2.3.2.2.

Then, the faulted section of the waveforms is fitted to an exponential decaying
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function plus a sinusoidal using the nonlinear least squares algorithm defined in

Section 2.2.3. Finally, the phasors are estimated and applied in fault-locating

algorithms.

2.4.3 Application of DC Offset Removal Algorithm Using Simu-
lated Fault Data

This section validates the efficacy of the proposed method using simu-

lated data acquired from a time-domain simulation in [49]. A simple two-bus

transmission system was modeled at the nominal voltage rating of 69 kV, as

shown in Fig. 2.14. Single line-to-ground faults are simulated 10 miles away

from Terminal G, where the measurements are recorded. Three cases are con-

sidered in this section: bolted fault (case 1), fault with resistance (case 2),

and fault with duration less than one cycle (case 3). The modeling parameters

are summarized in Table 2.4. Since the Fourier and cosine filters are most

commonly used in commercial relays, the location estimates of the proposed

method are compared with the results of these two filters.

For cases 1 and 2, the fault duration used in the simulation is 10 cycles.

Note that in the actual application of the proposed method, it is likely that

only a few cycles of fault waveforms are available. Longer fault duration was

used in the two cases to show the results both when DC offset is present in the

waveforms and after it dies out. Throughout the demonstration, the Takagi

method [5] is used in fault location evaluation.
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Figure 2.14: Simple two-bus transmission system.

Table 2.4: Modeling parameters

Modeling Parameter Value

ZG,1 0.2616 + j 3.7409 Ω

ZG,0 0.7848 + j 11.2226 Ω

ZH,1 0.6512 + j 3.6930 Ω

ZH,0 1.9535 + j 11.0791 Ω

Zline,1 0.1588 + j0.5185 Ω/mile

Zline,0 0.5260 + j1.5075 Ω/mile

Sampling Frequency 128 samples per cycle

Line Length 30 miles

Fault Location (m) 10 miles (from Terminal G)

Fault Duration (tf ) 10 cycles / 0.8 cycles

Fault Resistance (Rf ) 0 Ω/5 Ω

2.4.3.1 Case 1: Bolted Fault (Rf = 0)

The fault current and voltage waveforms used in the demonstration are

shown in Fig. 2.15. The phasors are calculated using the Fourier, cosine, and

proposed methods. The calculated phasors were given as inputs to the Takagi

method to estimate the fault location. The results are shown in Fig. 2.16 and

Table 2.5. The percentage error is defined as

% Error =
Estimated Fault Location− Actual Location

Actual Fault Location
× 100 (2.21)
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Figure 2.15: Simulated fault waveforms for test case Rf = 0.

Table 2.5: Location estimates case Rf = 0

Actual Location 10 miles

Estimated Loca-
tion

Fourier Cosine Proposed

Min. Est. 8.7265 9.7786

(% Error) (-12.74) (-2.21) 9.9947

Max. Est. 11.1387 10.1649 (-0.05)

(% Error) (11.39) (1.65)
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Figure 2.16: Fault location estimates comparison for test case Rf = 0.

A sliding window approach was used for the fault locations estimated

by the Fourier and cosine filters. Since they use one cycle and one and a

quarter cycles of data points, respectively, these two filters have a wide range

of location estimates, which rely on the location of the sliding window. On the

other hand, the proposed method adjusts its window size to the entire fault

waveforms’ duration, and therefore it yields a single-value estimate of the fault

location.
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Figure 2.17: Error estimates and sampling frequency.

As seen in Fig. 2.16, the location estimates derived from the Fourier

and cosine filters have oscillations and are centered at the actual fault location,

10 miles. In the worst case, the Fourier filter overestimated and underesti-

mated the fault location by 11.39% and −12.74%, respectively. The location

estimates of the cosine filter oscillate in a range resulting in maximum and

minimum errors of 1.65% and −2.21%. On the other hand, the fault location

estimated by the proposed method was 9.9947 miles, and the error is only

−0.05%.
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It should be noted that when there is no DC offset in the fault wave-

forms, the Fourier and cosine filters produce location estimates identical to the

proposed method. This can be seen from the latter portion of the illustration

(Time > 3.1 sec) in Fig. 2.16, where the fault locations estimated by all three

methods are identical.

Fig. 2.17 depicts the location estimation results according to the sam-

pling frequency of the measurement device. A higher sampling frequency en-

ables more samples to be involved in phasor estimations, and therefore the

phasors and the estimated fault locations are more accurate. In this evalua-

tion, the error estimate of the proposed method is 5% for the sampling rate

of 4 samples per cycle. The error reduces to -0.11% when the sampling rate

increases to 16 samples per cycle, then marginally improves as the sampling

frequency is further increased. The error estimate is -0.05% when the sampling

rate is 128 samples per cycle.

2.4.3.2 Case 2: Fault with Resistance (Rf = 5Ω)

The location results for case 2 are shown in Fig. 2.18 and Table 2.6.

Note that the chances of the DC offset being present in the waveforms are less

for higher-resistance faults. The increase in fault resistance reduces the X/R

ratio during the fault, and the DC offset dampens more quickly than in the

bolted fault case. In Fig. 2.18, the Fourier and cosine filters produce location

estimates identical to the proposed method at Time > 3.05 sec, whereas for

the bolted fault case in Fig. 2.16, this occurs at Time > 3.1 sec.
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Figure 2.18: Fault location estimates comparison for test case Rf = 5.

Similarly to the case where Rf = 0Ω, the Fourier and cosine filters

produce a wide range of location estimates. As shown in Table 2.6, the error

ranges of the Fourier and cosine filters are from -16.72% to 5.92% and from

-4.76% to 3.50%, respectively. The proposed method, on the other hand,

successfully removes the DC offset and produces an accurate estimation result,

with the error being only 2.23%.

It should be noted that the errors originate from two sources in this

simulation environment: one from the inaccurate phasor calculation due to
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Table 2.6: Location estimates case Rf = 5

Actual Location 10 miles

Estimated Loca-
tion

Fourier Cosine Proposed

Min. Est. 8.3283 9.5239

(% Error) (-16.72) (-4.76) 10.2230

Max. Est. 10.5922 10.3504 (2.23)

(% Error) (5.92) (3.50)
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Figure 2.19: Error estimates and fault resistance.
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the presence of the DC offset, and the other from the assumptions made in the

fault-locating algorithm, the Takagi method. The Takagi method assumes a

homogeneous system, where the local and the remote source impedances have

the same impedance angle as the power line [50]. This assumption is violated,

as the simulated system is nonhomogeneous. Fig. 2.19 shows that the increase

in fault resistance increases the errors caused by the system nonhomogeneity.

2.4.3.3 Case 3: Fault with Duration Less Than One Cycle

In this scenario, a bolted fault with a short duration of less than one

cycle is simulated. The voltage and the current waveforms are shown in Fig.

2.20. Recall that the Fourier and cosine filters require one cycle and one and

a quarter cycles of data points, respectively, during the fault to calculate the

fundamental phasors. Since the fault duration used in this case is less than

one cycle, the requirements are not fulfilled. Therefore, for this case only,

both the data points during the fault and after the fault clearance are used in

calculating phasors using the Fourier and cosine filters, as shown in Fig. 2.20.

The location results for the Fourier, cosine, and proposed methods are

shown in Table 2.7. The estimates of both the Fourier and cosine filters are

severely affected by the short fault duration. The cosine filter, which requires

one and a quarter cycles of data points, provides the least accurate estimate,

with 60.58% error. On the other hand, the proposed method adjusts its win-

dow size and uses only the data points during the fault to estimate the phasors,

giving a very accurate fault location result with only -1.67% error.
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Figure 2.20: Simulated fault waveforms for short-duration fault case.

Table 2.7: Location estimates case short-duration faults Rf = 0

Actual Location 10 miles

Fourier Cosine Proposed

Estimated Loca-
tion

11.9027 16.0583 9.8331

(% Error) (19.03) (60.58) (-1.67)

2.4.4 Application of DC Offset Removal Algorithm Using Field
Data

In this section, actual field data collected from transmission and dis-

tribution systems are used in the demonstration. The datasets include single
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Figure 2.21: Utility test case 1: recorded waveforms.

line-to-ground faults, which were cleared by the protective device within a few

cycles. The faults are cleared before the DC offsets completely die out, which

is a good condition for evaluating the proposed method.

2.4.4.1 Utility Test Case 1

Test case 1 considers a single line-to-ground fault that occurred on the

phase A line of a 161 kV transmission system. The transmission line is 21.15

miles long, and the positive-sequence and zero-sequence line impedances are
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z1 = 0.1504 + j0.7883 Ω/mile and z0 = 0.7192 + j2.4798 Ω/mile, respectively.

The load current was 148 A before the fault. When a fault occurs, the fault

current magnitude of 3.4 kA caused the breaker at the substation to trip after

3.5 cycles. The voltage and current waveforms are recorded by the digital fault

recorder (DFR) at the substation and are shown in Fig. 2.21. The sampling

frequency of the DFR is 100 samples per cycle. The actual fault location was

known to be 14.90 miles away from the substation.

Fig. 2.22 shows the illustrative results of the least squares algorithm. In

Fig. 2.22(a), the RMS-wavelet method was applied to the fault current wave-

form to obtain the exact fault inception time and clearing time. Then these

time indices were used to extract fault waveforms in phase A current, phase A

voltage, and the zero-sequence (neutral) current waveforms. These waveforms

were then decomposed into the DC offset and the sinusoidal waveform shown

in Fig. 2.22(b)-2.22(d).

Fig. 2.23 and Table 2.8 show the fault location estimation results of

the Fourier, cosine, and proposed methods. As described in Section 2.4.3, the

Fourier and cosine filters output a wide range of location estimates compared

with the proposed method. The maximum estimate errors of these two filters

were 5.27% and 2.69%, respectively. On the other hand, the fault location

estimated using the proposed method was 14.8428 miles, with -0.38% error.
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Figure 2.22: Utility test case 1: DC offset removal: (a) fault detection; (b)
curve-fitting phase A current; (c) curve-fitting zero sequence current; (d) curve-
fitting phase A voltage.

Table 2.8: Location estimates utility test case 1.

Actual Location 14.90 miles

Estimated Loca-
tion

Fourier Cosine Proposed

Min. Est. 14.5364 14.7443

(% Error) (-2.43) (-1.04) 14.8428

Max. Est. 15.6835 15.3001 (-0.38)

(% Error) (5.27) (2.69)
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Figure 2.23: Utility test case 1: fault location estimates: (a) estimates over
time (sample); (b) ranges of estimates. Unlike estimates from Fourier and
cosine filters, the proposed method produces a steady single-value estimate
closest to the actual fault location.
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2.4.4.2 Utility Test Case 2

Test case 2 considers a single line-to-ground fault that occurred on

the phase B line of a 25 kV distribution system. The positive sequence and

zero sequence line impedances are z1 = 0.1308 + j0.5546 Ω/mile and z0 =

0.4029 + j1.8619 Ω/mile, respectively. The load current was 36 A before the

fault. The fault current magnitude was 2.3 kA and lasted for 2.5 cycles before

the protection device cleared the fault. The waveforms recorded by a digital

relay at the substation are illustrated in Fig. 2.24. The sampling frequency

of the relay is 32 samples per cycle. The actual fault location was 2.67 miles

from the substation.

The fault location results of the Fourier, cosine, and proposed methods

after repeating the same procedure and eliminating the DC offset are shown

in Table 2.9. In this scenario, the proposed method successfully removes the

DC offset but does not significantly improve the location estimates because

the Takagi method underestimates the fault location. The cause of underes-

timation may come from the tapped loads along the feeder, nonhomogeneous

line impedance, or other factor. The largest underestimation errors for the

Fourier and cosine filters are -9.90% and -7.34%, respectively, and the pro-

posed method underestimates the fault location by -5.56%. The estimation

results are depicted in Fig. 2.25.

The output of the impedance-based fault-locating algorithms is the

distance between the fault and the monitoring location where the voltage and

currents are recorded. Line crews can be sent to known fault locations to clear
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Figure 2.24: Utility test case 2: recorded waveforms.

the root causes of the faults and prevent their recurrence. In a distribution

system, more than one possible fault location may exist because of lateral

branches connected to the primary feeder. In such scenarios, customer outage

calls or fault indicators mounted on the lines can be used to narrow down the

possible fault locations[51, 52, 53, 54].
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Figure 2.25: Utility test case 2: fault location estimates: (a) estimates over
time (sample); (b) ranges of estimates. The proposed method produces an
accurate single-value estimate.

Table 2.9: Location estimates utility test case 2.

Actual Location 2.67 miles

Estimated Loca-
tion

Fourier Cosine Proposed

Min. Est. 2.4056 2.4741

(% Error) (-9.90) (-7.34) 2.52

Max. Est. 2.9722 2.8625 (-5.56)

(% Error) (11.32) (7.21)

2.5 Summary

This chapter has presented data analytics algorithms for detecting and

locating faults in the monitored circuit. The proposed method consists of ex-

act detection of the fault inception and clearing times using an RMS-wavelet

method and phasor estimations using the nonlinear least squares method. Re-

sults indicate the success of the proposed approach in eliminating the DC
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offset, and the fault location estimates were observed to be closer to the ac-

tual location of the fault, especially for low-resistance faults. The proposed

approach is evaluated using a time-domain simulation implemented in [49] and

actual fault events.

The error estimates of the proposed method are less than 5.6% in all

considered cases, whereas the errors when using conventional Fourier and co-

sine filters can be as high as 16.7% and 7.3%, respectively. In addition, the

method can be applied to short-duration (less than one cycle) fault events

where the Fourier and cosine filters cannot be applied, because these filters

require a minimum of one cycle or one and a quarter cycles of data points,

respectively, to calculate the fundamental phasors.
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Chapter 3

Identification and Evaluation of Overcurrent

Protection Devices

3.1 Introduction

1 Overcurrent protection devices are installed in distribution systems

to isolate the faulted section from the electric power network. When a fault

occurs in a radial distribution system, protective devices such as a recloser

or a fuse isolate the fault to prevent electric devices such as transformers,

conductors, and capacitors from overheating and to quickly restore power [55,

41]. The speed at which the devices operate must be quick to reduce the

duration of power quality problems such as voltage sags and interruptions.

The protective devices are coordinated with other devices located downstream

and upstream in the system to minimize the number of customers affected

by fault conditions and improve system reliability. Normally, the protective

devices are coordinated such that the device closest to the fault operates faster

than the devices located farther upstream, with the exception of the fuse-saving

scheme, where the upstream recloser operates faster than the fuse [41].

1Parts of this chapter have been published in K. W. Min, S. Santoso, and L. Biyikli,
“Identifying fault clearing operations in distribution systems,” in Proc. IEEE Power Energy
Soc. General Meeting, July 2016, pp. 1-5. The author of this dissertation analyzed the
data, developed the algorithms, and validated the analytical results in the paper.
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This chapter describes the data analytics algorithms for evaluating over-

current protection devices in distribution systems. First, rule-based screening

module is presented. This tool is used to identify the type of protective device

clearing the short-circuit fault. Necessary features that characterize fault-

clearing devices are calculated from the input voltage and current waveforms

captured at intelligent electronic devices (IED) such as digital relays, digi-

tal fault recorders, and power quality monitors. The rule-based expert system

then uses these features to determine whether the fault was cleared by recloser

or fuse or if it was self-cleared. In the second part of this chapter, a methodol-

ogy is proposed to estimate the empirical inverse time-current characteristics

(TCC) of overcurrent relay/reclosers installed in distribution systems. The

datasets recording -clearing operations of overcurrent relay/reclosers are used

for this purpose. The empirical TCC curves can be used to evaluate opening

intervals of breakers and identify the device (TCC curve) clearing the fault.

3.2 Protection Devices and Coordination in Distribu-
tion Systems

The most common types of protective devices in distribution systems

are fuses and reclosers. A fuse is a device that is relatively inexpensive and

maintenance-free compared with other devices, such as reclosers. Fault is

isolated when a fuse link (typically tin, silver, or copper) melts from the heat

caused by the fault current. The melting time is determined by the magnitude

of the fault current and the TCC of the device. Typically, the TCC curve is
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Figure 3.1: Recloser and fuse installed in the distribution system.

inversely proportional to the magnitude of the fault current. The interruption

time is shorter for high fault current and longer for low fault current.

A recloser is a special type of circuit breaker used to clear momentary

faults in a distribution system. The device repetitively opens and recloses a

predetermined number of times (three or four) at fault conditions, until the

fault current extinguishes. If the fault is not cleared until the last operation,

the recloser locks out. More than 75% of the faults in distribution systems are

temporary. Therefore, in most cases, a recloser can successfully clear the fault

and reenergize the circuit on its first operation. Reclosers can operate on fast

or delayed TCC curves. Typical sequences are one fast and three delayed or

two fast and two delayed operations. If the recloser fails to clear the fault in its

fast operations, the delayed curve allows other protective devices in the system

to clear the fault. Reclosers also operate on TCC curves that are coordinated

with other protection devices located upstream and downstream.
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Figure 3.2: Recloser-fuse coordination in a fuse-saving scheme.

Protection devices in distribution systems are coordinated to minimize

the service outage and number of affected customers from the fault. In general,

protection devices are coordinated so that the equipment closest to the fault

operates to isolate the fault from the system [41]. A fuse-saving scheme is one

in which the recloser and the fuse located downstream from this recloser are

coordinated so that the recloser clears the fault before the fuse melts. Fig. 3.2

shows the TCC curves of the reclosers and fuse in a fuse-saving scheme. The

recloser and fuse are coordinated so that both the minimum melting time and

total clearing time of the fuse lies in between the fast and slow curves of the

recloser [56]. This coordination ensures that the recloser clears the fault for

momentary faults, and the fuse clears the fault for permanent faults.
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3.3 Identifying Fault-Clearing Operations in Distribu-
tion Systems

In this section, the algorithm for identifying fault-clearing operations

is presented. The inputs of the algorithm are three-phase voltage and current

waveforms recording recloser and fuse operations. The output of the algorithm

is the classification result: whether the fault was cleared by a recloser or a fuse.

Recloser and fuse operations can be characterized using features such as load

demand, inrush current, and fault duration. These features are calculated for

each recorded fault event and are used to identify which type of device has

cleared the fault.

3.3.1 Real Power Load Demand Difference

The difference in real power load demand is an important characteristic

that is used in determining the type of device clearing the fault. Assume a

fault was detected from tstart to tend. This analysis defines real power load

demand calculated before tstart as Pprefault and after tend as Ppostfault. The real

power load demand calculated in phase C in Fig. 2.4 is shown in Fig. 3.3.

Changes in the real power load demand before and after the fault event and

the inrush event are illustrated.

3.3.2 Inrush Current

As described in Section 2.3.1.1, inrush event occurs when a recloser

reenergizes the circuit after an interruption in the system. An example wave-
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Figure 3.3: Real power demand in fault events.

form was shown in Fig. 2.4. The first disturbance is a fault. After the fault

is cleared, high inrush current can be found. If this type of disturbance is

recorded, it can be used as a strong indicator of the recloser reenergizing the

circuit.

3.3.3 Fault Duration

Fault duration is calculated using the fault inception time and the clear-

ing time, described in Section 2.3.2. Fault duration can be computed as the

time difference between the fault clearing time and the inception time as show

in (3.1).

tf = tf,end − tf,start (3.1)
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The durations calculated by RMS and RMS-wavelet method are denoted by

tf,rms and tf,wavelet, respectively.

3.3.4 Case Study

Four fault events recorded in a distribution system are used to demon-

strate the process to identify the fault-clearing device. Each event represents

self-clearing faults, recloser-cleared faults (successful reenergizing and lock-

out), and fuse-cleared faults. Each dataset used consists of 30-sec voltage and

current measurements with fault event(s) recorded. The sampling frequency is

500,000 samples per 30-sec, which corresponds to approximately 277.78 sam-

ples per cycle. The analysis is made after resampling the data to 256 samples

per cycle. No other information such as line impedance, line length, TCC

curves, or location of installed protective devices is used in this demonstra-

tion. Only the major rules are explained. However, the concept is similar for

all the other cases.

3.3.4.1 Case 1: Self-Clearing Fault Identification

On July 11, 2015, a fault event was captured in the power quality

monitor. The waveforms are shown in Fig. 3.4. The duration of the event,

calculated from the wavelet transform and RMS waveform, is 1.04 cycles and

1.72 cycles, respectively. The short duration indicates that the event was a

possible self-clearing fault. The next step is to observe whether the real power

demand decreased after the fault event. The results tabulated in Table 3.1
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show that the real power load demand did not decrease after the fault event. In

fact, it increased by about 16 kW (approximately 4.45%). It can be concluded

with high confidence that the event was a self-clearing fault. The rules used

are that the fault durations should be very short (less than 2 cycles) and the

real power load loss is negligible. Note that self-clearing faults are defined as

temporary faults that self-extinguish before any protective device operates.

Table 3.1: Case 1: feature analysis

Feature Value

Pprefault 313.31 kW

Ppostfault 327.37 kW

tf,wavelet 1.04

tf,rms 1.7188

Device Self-clear
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Figure 3.4: Self-clearing fault.

3.3.4.2 Case 2: Recloser Operation Identification (Successful Reen-
ergizing)

On November 19, 2014, three consecutive fault events were recorded in

the monitor. The features are analyzed as listed in Table 3.2. For identifying
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Table 3.2: Case 2: feature analysis

Feature Event 1 Event 2 Event 3

Pprefault 921. 73 kW 936.53 kW 721.00 kW

Ppostfault 727.32 kW 720.25 kW 720.31 kW

tf,rms 2.6055 15.4844 15.7031

Device Recloser Recloser Recloser
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Figure 3.5: Recloser operation.

recloser operation, the detection of inrush events can be used. Two inrush

events are found in Fig. 3.5, after fault events 1 and 3. Therefore, events 1,

2, and 3 are all identified as recloser-cleared faults.
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Figure 3.6: Recloser operation - real power series.

The changes in real power load demand can be used to analyze recloser

operation in more detail. In events 1 and 2, the load demand is reduced

from 921 kW to 727 kW and from 936 kW to 720 kW, respectively. This

corresponds to the amount of load disconnected from the system due to the

recloser operation. For event 3, the real power change is nearly zero. This

characterizes the recloser attempting to reenergize the circuit but failing to

clear the fault.

It should be noted that the inrush is indicative of the recloser success-

fully reenergizing the circuit. Inrush waveforms are not recorded if the recloser

fails to reenergize and locks out.
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3.3.4.3 Case 3: Recloser Operation Identification (Lockout)

If the fault is permanent, the recloser shifts to its delayed curve after

one or two fast operations. This allows the fuse to clear the fault. However,

if the fault is not cleared until the last operation, the recloser locks out. The

following rules can be used to detect such a recloser lockout. First, the recloser

can only lock out after the last recorded fault event. Second, the inrush event

should not be recorded after the fault event. Third, the real power load demand

should not decrease or increase after the last fault event. Finally, the duration

of the last fault event should be longer than that of the first fault event.

Consider the fourth fault event recorded on August 5, 2015, as shown

in Figs. 3.7 and 3.8. The duration of the fault current was 8.75 cycles, which

is longer than the duration of the first recorded fault event, 2.75 cycles. There-

fore, the recloser is assumed to have been in delayed operation. The real power

load loss after the fourth fault event is calculated as -2.21%, which is assumed

negligible. The power was not reenergized after the last recorded event (no

inrush recorded). It can be concluded that the recloser locked out after the

last fault event.

Note that the fault current magnitude of the fourth current is greater

than that of the first three events. Therefore, the fourth fault event was of

shorter duration than the second and third events because of the inverse time-

current characteristics of the recloser.
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Figure 3.7: Fault event on August 5, 2015. Voltage and current waveforms.

68



Figure 3.8: Fault event on August 5, 2015. The last recorded event.

69



Table 3.3: Case 3: feature analysis

Feature Event 1 Event 2 Event 3 Event 4

Pprefault 504.68 kW 427.43 kW 427.72 kW 451.90 kW

Ppostfault 427.65kW 427.68 kW 433.26 kW 441.91 kW

tf,rms 2.75 12.5 12.25 8.75

Irms 437.63 A 459.98 A 437.84 A 763.68 A

Device Recloser Recloser Recloser Recloser

3.3.4.4 Case 4: Fuse-Saving Scheme Identification

On February 16, 2015, two fault events occurred. The features are

calculated and shown in Table 3.4. Although inrush is not recorded in this

dataset, two consecutive fault events having durations of 2.39 and 9.93 cycles

indicate that the recloser cleared the first fault event in the fast curve and

shifted to its delayed operation. The real power load loss was 247.1 kW after

the recloser cleared the first fault event.

The device clearing the second event is identified as a fuse. The first rule

used is to compare the fault duration of the first and second events and ensure

that the recloser shifted to its delayed operation. Then, if there was an increase

in the load demand immediately after the fault current clearance, the device is

assumed to be a fuse. In event 2, the real power demand increased to 1251.kW

from 1089.8 kW immediately after the fault event. The increase (161.3 kW)

can be assumed as the amount of loads reenergized, located upstream from

the melted fuse but downstream from the reclosed recloser. Note that the

load level is still lower than the amount before event 1. This amount of load
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Table 3.4: Case 4: feature analysis

Feature Event 1 Event 2

Pprefault 1336.9 kW 1089.8 kW

Ppostfault 1089.5 kW 1251.1 kW

tf,rms 2.39 9.93

Device Recloser Fuse
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Figure 3.9: Fuse-saving scheme.

(85.8 kW) corresponds to the load located downstream from the operated fuse,

which was disconnected from the system.
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3.4 Empirical Estimation of Inverse Time-Current Char-
acteristics in Distribution Systems

This section describes a methodology for formulating and estimating

the empirical inverse time-current characteristics (TCC) of overcurrent re-

lays/reclosers installed in utility distribution circuits. The algorithm makes

use of three-phase voltage and current measurements for the estimation. First,

the algorithm estimates the magnitude of the current flowing through the de-

vice and the times of fault-clearing operations. This makes the algorithm less

sensitive to load currents and the location of the power quality monitor. Then

a nonlinear least squares algorithm is formulated to estimate the TCC curve

parameters of the reclosers clearing the fault. The estimated TCC parameters

are used to construct an empirical TCC curve that can be used in various

applications. Two potential applications are presented in this section. They

include evaluating breaker opening intervals to monitor misoperations of the

breakers. In addition, the empirical TCC curve is used to identify the type of

fault-clearing device. The efficacy of the proposed algorithm is validated using

simulated data, event reports generated from a digital relay test bench, and

field events collected from a 24.9 kV distribution circuit.

IEEE Standard C37.112-2018 [29] defines an analytical equation of the

inverse-time characteristics (3.2) to characterize the relay operating character-

istics.

t(I) =
A

Mp − 1
+B (3.2)

where M refers to multiples of the pickup current, and parameters A, p,B
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determine the curve shapes. For example, constants A = 28.2, p = 2.0, and

B = 0.1217 are used to define a TCC curve with extremely inverse curve char-

acteristics. These constants are used in microprocessor-based protective relays

to emulate the characteristics of electromechanical relays and to maintain co-

ordination with conventional devices.

The trip signal is set at t = T when the integral of 1/t(I) reaches value

one, as shown in (3.3). This provides coordination between protection devices

for any varying fault current magnitudes.∫ T

0

1

t(I)
dt = 1 (3.3)

3.4.1 Algorithm Detail

In this section, a nonlinear least squares algorithm is formulated to

estimate the unknown parameters A, p,B and the inverse TCC of reclosers.

The inputs are three-phase voltage and current measurements taken from the

substation. Additionally, data preprocessing techniques are presented that

transform the input voltage and current to the inputs required by the least

squares formulation. Data preprocessing involves estimating the phasor cur-

rent flowing through the recloser and extracting the fault currents associated

with fault-clearing operations. It is assumed that the voltage and current

measurements are taken from the substation.
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Figure 3.10: Simplified distribution circuit.

3.4.1.1 Recloser Current Estimation

First, the cosine filter [42] is used to filter harmonics and DC offsets and

calculate the phasor at the fundamental frequency. The filter output at time

sample m is expressed as (2.7). Using the cosine filter, three-phase voltage

and current phasors at the substation are calculated. The next step is to

estimate the line current flowing through the recloser. This step is necessary

because the measurements are taken from the substation, and the local current
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Figure 3.11: Current seen from the substation and the recloser during fault.

measurements actuating the reclosers are not directly measured. Consider a

single line-to-ground fault occurring downstream from a recloser, as illustrated

in Fig. 3.10. The circuit in Fig. 3.10 is modeled in PSCAD, and the fault

currents measured from the substation and the recloser are shown in Fig. 3.11.

Note that the current flowing through the recloser is less than the fault current

measured from the substation because of load currents.

To estimate the load currents, we assume that the loads upstream from

the recloser are lumped as a single impedance load at the end of the feeder,
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Figure 3.12: Recloser current estimated from the substation.

as shown in Fig. 3.10. This assumption is valid because the line impedance is

generally much smaller than the load impedance [57].

Then zero, positive, and negative sequence currents flowing through the

device are estimated, respectively using (3.4)-(3.6). The zero-sequence current

measured from the substation is assumed to be identical to the zero-sequence

current flowing through the device. The positive and negative sequence cur-

rents flowing through the recloser are estimated by subtracting the positive and
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negative sequence currents measured from the substation by the load current.

Ir0 = I0 (3.4)

Ir1 = I1 −
V1

Zload
(3.5)

Ir2 = I2 −
V2

Zload
(3.6)

where I0, I1, I2 denotes the zero-sequence, positive-sequence, and negative-

sequence currents at the substation and Ir0, Ir1, Ir2 through the recloser.

Zload can be estimated using the post-fault voltage and current mea-

surements as shown in (3.7).

Zload =
Vpost,1
Ipost,1

(3.7)

IrA, IrB, IrC can be calculated by transforming the symmetrical com-

ponents, Ir0, Ir1, Ir2, to phase components using (3.8), where the operator

a = 1∠120◦.

IrAIrB
IrC

 =

1 1 1
1 a2 a
1 a a2

Ir0Ir1
Ir2

 (3.8)

Fig. 3.12 shows the estimated recloser current using substation mea-

surements as the inputs. The figure illustrates that the estimated recloser

current matches the actual current flowing through the recloser.

77



3.4.1.2 Recloser Operating Time Estimation

The fault detection methods described in Sections 2.3.2.1 and 2.3.2.2

are used to estimate recloser operating times. It is assumed that the recloser

has first sensed the fault current and sent the trip signal at the index nps (the

first time index exceeding the RMS current pickup) and the index nwe (the last

time index exceeding the RMS pickup value, corrected by the discrete wavelet

transform), respectively.

3.4.1.3 Recloser Curve Estimation Using Nonlinear Least Squares
Algorithm

Using N number of fault events captured from a distribution system,

a nonlinear least squares algorithm can be formulated to estimate the TCC

parameters, as in (3.9). The objective function is formulated on the basis of

(3.3), which is the standard equation in IEEE Std C37.112-2018 [29].

arg min
A,p,B

∑
i

[f(β,Xi)− y]2 (3.9)

where,

β =
[
A p B

]T
(3.10)

X =
[
If,1(n) If,2(n) ... If,N(n)

]T
(3.11)

y =
[
1 1 ... 1

]T
(3.12)
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f(β,Xi) =
N∑
j=1

[
1

tinverse(Xi,j)

]
×∆ (3.13)

tinverse =
A

Xp − 1
+B (3.14)

∆ = RMS sampling interval (3.15)

This formulation returns the parameters (3.10), which can be used to

construct the empirical TCC curve. Recall from (3.3), the integration of the

inverse TCC curve should yield one. This characteristic is defined in (3.13-

3.15), where the input (3.11) is integrated to the value of ones (3.12). Note

that in (3.11), the ith row vector of X is extracted from a single fault event,

using the estimated quantities Ir,i, nps,i, and nwe,i defined in Sections 3.4.1.1

and 3.4.1.2.

If,i(n) =

{
Ir,i(n+ nps,i − 1) 1 ≤ n ≤ nwe,i − nps,i + 1

0 nwe,i − nps,i + 1 < n ≤M
(3.16)

where M corresponds to the maximum value of nwe,i−nps,i+1 among all fault

events.

Output parameters A, p,B are then used to construct the empirical

recloser operating TCC curve. In this demonstration, (3.9) is solved using the

Levenberg-Marquardt algorithm implemented in Python [58].

Reclosers in distribution systems can operate on either the phase cur-

rent or the zero-sequence current. To estimate the TCC curve parameters for

ground current, Ir0 in (3.4) can be used as Ir.
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3.4.2 Distribution System Applications

In this section, field events recording fault-clearing operations are used

to estimate the TCC curve parameters of the reclosers installed in the system.

Fault measurements are captured by a power quality monitor located at the

substation of a 24.9 kV distribution system. Two types of reclosers are installed

in the system: hydraulically controlled reclosers (Type I), operating in fast

(Curve I-F) or delayed (Curve I-D) operations, and an electronically controlled

recloser (Type II, Curve II), which is located upstream from a Type I recloser.

Hydraulic reclosers operate in single-phase tripping mode–that is, a recloser

on each phase senses the fault current and trips individually–and Type II

reclosers operate in three phases. To demonstrate the proposed method, we

have collected 44 fault events from this system; 29 faults are cleared using

Curve I-F, 11 faults are cleared using Curve I-D, and 4 faults are cleared using

Curve II.

Using the algorithm proposed in Section 3.4.1, three recloser TCC

curves (Curve I-F, I-D, and Curve II) and the parameters (A, p,B) of each

TCC curve are derived from the fault events. Table 3.5 shows the estimated

parameters (A, p,B) of Curve I-F, Curve I-D, and Curve II clearing the fault

events, which are estimated from (3.9). Fig. 3.13 shows the empirical recloser

curve constructed using the estimated parameters. The scatter plot for each

of the fault events is also depicted in this figure.

Note that the scatter plot was generated assuming constant fault cur-

rent magnitude to illustrate the algorithm in simple and intuitive manners.
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Figure 3.13: Empirical estimation of inverse time-current characteristics of
Curve I-F, Curve I-D, and Curve II.

The proposed method does not make such an assumption, so the algorithm is

applicable for varying fault current as well.

It should also be noted that having more fault data results in more

reliable modeling of recloser curves. In this demonstration, only four fault

events are collected for Curve II operation. It is possible that the modeled

curve is overfitted because of this limited number of the datasets. Nonetheless,

the results are shown along in this section for reference.
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Table 3.5: Estimated TCC parameters using the proposed method.

A p B

Curve I-F -1.9665e-06 -2.7737e-03 2.7914e-02

Curve I-D 7.9850e-05 1.17356e-03 4.9850e-02

Curve II 0.0101 0.01803 0.1874

3.4.3 Evaluation of Recloser Operation

This section briefly demonstrates how the empirical recloser curve mod-

els are used to evaluate recloser operations in distribution systems.

3.4.3.1 Comparison of Empirical Recloser Curve with Manufac-
turer Specifications

For the Type I recloser used in this demonstration, the manufacturer

provides the maximum operating time for the fast operation and the average

operating time (±10%) for the delayed operation. Fig. 3.14 shows the em-

pirical recloser Curve I-F constructed using the proposed algorithm and the

operating time specified by the manufacturer. The empirical Curve I-F is be-

low the manufacturer’s maximum operation time, and therefore, the recloser is

operating as expected. Similarly, Fig. 3.15 shows the comparison between the

empirical Curve I-D and the delayed curve specified by the manufacturer. The

empirical delayed curve also matches the expected operating time of the re-

closer with a small mismatch. Therefore, it can be concluded that the recloser

is behaving as expected in the delayed operation.
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Figure 3.14: Evaluation of recloser fast curve using empirical Curve I-F.

3.4.3.2 Evaluating Individual Recloser Operation

The ith residual in the objective function (3.9) is used to evaluate the

individual operation of the reclosers. Simple rules can be used on the residuals

to evaluate recloser operations.
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Figure 3.15: Evaluation of recloser slow curve using empirical Curve II-D.

if ri = f(β,Xi)− 1 < 0,

recloser operated faster than normal

if ri = f(β,Xi)− 1 > 0,

recloser operated slower than normal

where β = [A p B]T are the estimated parameters of the recloser curve and

function f is defined in (3.13). Normal operation is defined as the recloser

operating using the timings in the empirical recloser curve.
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If the value of ri is positive, the recloser is operating slower than normal.

Similarly, if the value of ri is negative, the recloser is operating faster than

normal. In Fig. 3.16, box plots of the residuals for Curve I-F, Curve I-D, and

Curve II are shown. A single dot in a box plot represents the ith residual,

ri, of a recloser operation. The bottom and top of the box represent the first

and third quartiles, respectively, and the ends of the whiskers represent the

Q1−1.5IQR and Q3 + 1.5IQR, where Q1, Q3, and IQR are the first and third

quartiles and the interquartile range Q3 - Q1, respectively. These ranges can

be used to provide further details on delay times of the recloser operations,

such as that the data points located farther from the median correspond to

the recloser operating slower or faster. For , in Fig. 3.16 Curve I-F, six fault

events are found between Q3 + 1.5IQR and Q3. These faults are slower to

clear than the other fault events.

Outliers are defined as data points that lie above Q3+1.5IQR or below

Q1 − 1.5IQR. These data points lie outside the whiskers in the box plot.

Although there were no outliers in Fig. 3.16, outliers are considered to be

fast or slow operations that are very unlikely to happen and could be used to

detect recloser misoperations.

3.4.4 Identifying Fault-Clearing Devices

This section uses the one vs. all (OvA) method, a popular strategy in

multiclass classification problems, to identify the fault-clearing recloser curves

in distribution systems using the empirical recloser curves. A single binary
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Figure 3.16: Residual box plots of Curve I-F, Curve I-D, and Curve II.

classifier determines whether a fault is cleared from a specific recloser curve.

A binary classification rule, made using the empirical recloser curve model, is

as follows:
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if ri = f(β,Xi)− 1 < Q3 and

ri = f(β,Xi)− 1 > Q1,

fault is cleared from the recloser curve (high)

else if ri = f(β,Xi)− 1 > Q1-1.5IQR or

ri = f(β,Xi)− 1 < Q3+1.5IQR,

fault is cleared from the recloser curve (moderate)

else if ri = f(β,Xi)− 1 < Q1-1.5IQR or

ri = f(β,Xi)− 1 > Q3+1.5IQR,

fault is not cleared from the recloser curve

3.4.4.1 Validation using Field Data

Fig. 3.17 shows a single line-to-ground fault on phase C that occurred

in the 24.9 kV distribution system. This fault was cleared by the delayed

operation of the recloser (Curve I-D). Now, assume that we do not know

which recloser has cleared this fault but have the empirical inverse time-current

characteristics of the three recloser curves within the system. The classification

rule defined in the previous section can be used to identify which recloser has

cleared this fault. First, calculate the values of ri using the three empirical

recloser curve parameters (A, p,B of Curve I-F, Curve I-D, and Curve II). The

three values are 5.23, 0.01, -0.85, respectively. Fig. 3.18 shows these residual
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Figure 3.17: Single line-to-ground fault on phase C. Voltage and current wave-
forms recorded from the substation.

values on top of the three box plots of the recloser curves. Note that the first

residual value, 5.23, is greater than Q3 + 1.5IQR of the box plot of Curve I-F.

From the classification rule, this fault event is not cleared by Curve I-F.

On the other hand, the second residual value, 0.01, is within the whiskers

of the box plot of Curve I-D. It can be concluded that this fault has been

cleared by recloser curve I-D with a high confidence level. Similarly, the third

residual value, -0.85, is below the Q1 - 1.5IQR of the box plot of Curve II, and

therefore this fault event is not cleared by Curve II.

88



Figure 3.18: Residual box plot classification results of the fault data that
occurred in the distribution system.

3.4.4.2 Validation Using Digital Relay Event Report

This section validates the identification algorithm using a test bench

designed with a signal generator and digital relay. This test bench allows the

simulation of various fault scenarios at any fault magnitudes without phys-

ically short-circuiting the lines and also provides the labels to validate the

identification results. To emulate multiple fault scenarios, the output chan-

nels of the signal generator are connected in serial with the digital relay. The

time-overcurrent elements in the digital relay are programmed to time the
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fault clearing using the empirical curves Curve I-F and Curve I-D. After sim-

ulating multiple fault scenarios, the event reports stored in the digital relay

are downloaded and used as the input to the classification algorithm. The

event reports include fault measurements (voltage and current) and the status

of the time-overcurrent element, which can be used for this validation. The

faults currents are simulated at different fault magnitudes (1.5 to 10 times the

current pickup). Evolving faults are also used in this study.

Fig. 3.19 shows the box plots of the three recloser curves in the system

(Curve I-F, Curve I-D, and Curve II). On top of these three box plots, the

residuals of the recloser operations emulated from the test bench are depicted.

Note that the blue stars represent the emulated recloser operations of Curve

I-F, and the red stars represent the operations of Curve I-D. According to the

classification rule, it is shown that the blue stars (emulated recloser operations

of Curve I-F) are within the box plot whiskers of Curve I-F, and the red stars

(emulated recloser operations of Curve I-D) are within the box plot whiskers

of Curve I-D. This result validates that the classification rule can be used to

identify the recloser curve clearing the fault.
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Figure 3.19: Residual box plot classification results using digital relay data
implementing Curve I-F and Curve I-D.

For further validation, the fault datasets recording the fault-clearing

operations of Curve I-D are modified to emulate a new recloser in the feeder.

The empirical curve of the recloser, Test Curve, is estimated from the modified

fault datasets. Fig. 3.20 shows the two estimated empirical curves: Curve I-D

and Test Curve.

The event reports of Curve I-D generated from the test bench system

are used to evaluate whether Curve I-D operations can be identified from the

Test Curve operations. From Fig. 3.21, the residuals calculated from the Test
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Figure 3.20: Empirical estimation of inverse time-current characteristics of
Curve I-D and Test Curve.

Curve model are much smaller than the Q1-1.5IQR of the Test Curve box

plot. On the other hand, the residuals calculated from the Curve I-D model

are within the first and third quartiles of the Curve I-D box plot. Therefore,

input fault events are successfully classified as Curve I-D operations.

It should be noted that the final classification result may be more than

one recloser curve or none. These scenarios could occur if the time intervals

between the TCC curves are very small or a recloser misoperates. In this case,

the fault-clearing curve can be identified using the smallest ri, or making a

decision is rejected.
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Figure 3.21: Identifying Curve I-D operations from Test Curve operations.

3.5 Summary

This chapter has presented algorithms for evaluating and identifying

overcurrent protection devices. First, the rule-based algorithm was developed

to classify whether a fault was cleared by a recloser or a fuse. Necessary fea-

tures associated with the operations of the recloser and fuse were explained and

implemented. Next, a methodology for estimating empirical TCC curves was

described. The empirical curve was used to further narrow down the specific

device that clear the fault. The empirical curve can help narrow down the fault

locations, evaluate protection coordination, and detect possible misoperation

of reclosers.
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Chapter 4

An Extensible, Open Framework for Power

Quality Disturbance Events

4.1 Introduction

1 Although power quality (PQ) disturbance events such as RMS vari-

ations and transients occur in transmission and distribution systems, these

datasets are mostly managed through proprietary solutions in different data

formats. This chapter presents a simple, yet effective, metadata database

schema to manage voluminous PQ disturbance events in power systems. A

database constructed using the schema can be used to store the metadata

providing descriptive and analytical analysis of the disturbance events. The

proposed schema defines five classes to store the metadata associated with

PQ disturbance events: event, time-series, description, software analysis, and

IEEE disturbance classification. The classes that form the schema are pre-

sented, then are demonstrated using actual disturbance events captured from

a distribution system.

1Parts of this chapter have been published in, K. W. Min, A. F. Bastos, S. Santoso,
and U. Karadkar, “An extensible, open framework for power quality disturbance events,”
in Proc. IEEE/PES Transmission and Distribution Conf. and Expo. (T&D), Apr. 2018,
pp. 1-9. The author of this dissertation designed the framework and analyzed the data in
the paper.
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The remainder of this chapter is organized as follows. Section 4.2

presents an overview and the approach adopted for developing our schema.

The classes defined in the schema and their properties are described in Sec-

tion 4.3. Finally, Section 4.4 illustrates sample power quality disturbances

modeled using this schema.

4.2 Overview and Approach

The PQLD schema is designed to foster the sharing of data regarding

power disturbance events described in the IEEE 1159-2009 standard [45]. To

facilitate broad adoption, the schema lowers the barrier to entry by minimizing

the mandatory field–and hence, the amount of data–that must be provided by

data sources (such as power companies and existing publicly available data

sources). The schema takes an incremental approach to data publishing–

sources may share minimal data initially, and both sources and third par-

ties may enhance published data by posting their analyses. The schema in-

cludes elements to describe signal-based event characteristics as well as human-

generated ground truth labels in order to maximize its utility in developing

and validating PQ software analytics tools. Most conventional information

or database models in power systems have adopted entity-relationship (ER)

models [34, 35, 36, 59], which are best suited for structured data–records that

possess identical properties. However, characteristics of disturbance events

vary depending on their root causes. For example, a short-circuit fault causes

RMS variations of voltage and currents, while harmonic resonance may occur
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after a capacitor is switched on. Thus, ER-based power quality schemas ei-

ther are non-normalized or have significant empty fields, as the data fields are

sparsely populated. Document-based schemas provide a much better model for

these semistructured events. Therefore, the open schema used here adopts a

document model, allowing for flexibility of description in event characteristics.

4.3 Power Quality Linked Data Schema

Fig. 4.1 illustrates the overview of the PQLD schema classes. The

schema consists of five classes: event, time-series, description, software anal-

ysis, and IEEE disturbance classification, which together describe the char-

acteristics of an event. Each class stores relevant metadata using meaningful

properties, which record the details related to an event. All recorded events

are stored using event objects. Thus, the event class serves as the base class,

and objects of other classes are used as necessary.

Tables 4.1 through 4.5 present the most significant properties of each

class. The complete schema is available through the project wiki at https:

//wikis.utexas.edu/display/pqmetadata/. To succinctly convey key as-

pects of a much larger schema, the tables include representative columns that

best convey the characteristics for each class. Different tables thus include

different columns; however, the master schema includes all these columns and

more to adequately document the necessary and sufficient conditions for each

property of a power event. The columns in the tables are as follows: ”Label”

includes human-readable descriptions of the event properties. The ”Property”

96



Figure 4.1: Overview of the presented schema structure.

column provides the computational counterparts to the human-readable la-

bels. These are the property descriptors that appear in the database, and

values are associated with these property titles. ”Source” lists who is respon-

sible for recording each property. ”Vocab Schema” articulates the controlled

vocabularies of permissible values. ”Obligation” indicates the cardinality of

the properties–whether a property may or must appear for an event to be

considered valid, and how many instances of the property are permissible.

Controlled vocabularies list acceptable values for categorical data, thus

preventing the possibility of different events describing semantically similar

values differently, as well as guarding against the inclusion of invalid values.

The subsections below describe the key characteristics of each table.

97



4.3.1 Event

This core class describes essential characteristics of an event, such as

the location of the power quality monitor, the time the event file was created,

rated voltage and system frequency, and the root cause. In addition, voltage,

current, description, analysis, and IEEE classification are aggregated into the

event class. Note that a data provider such as a power company needs to

provide only those details that cannot be obtained post facto. Thus, the

data provider is not required to provide the IEEE classification, which can be

calculated by an analyst later.

4.3.2 Time-Series

Time-series data such as instantaneous voltage and current measure-

ments are recorded using this class. As current and voltage data share the

same characteristics, the ”headers” property helps identify which of these at-

tributes the data belongs to. This class is reusable and, in fact, is used for

recording both the current and voltage properties in Table 4.1.

For example, an array [Va, Vb, Vc] indicates that the time series stores

line voltage data, in the phase order indicated. While the measured values

must originate from the data provider, an analyzing organization may further

populate properties such as the count of data values in the series as well as the

sampling rate at a later time. Unlike the labels, which use phrases, property

names are encoded in lower camel case.
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Table 4.1: Class Event
Label Source Vocab Schema Obligation

Location Data Provider Substation,
feeder, service
entrance, ...

0-1

Nominal Voltage Data Provider or
Analyzer

0-1

System Fre-
quency

Data Provider or
Analyzer

50, 60 0-1

Event Time Data Provider or
Analyzer

0-1

Root Cause Data Provider or
Analyzer

Short-circuit
fault, Cap.
switching, ...

0-1

Voltage Data Provider 1

Current Data Provider 1

Description Data Provider 0-1

Analysis Data Provider or
Analyzer

0-1

IEEE Classifica-
tion

Data Provider or
Analyzer

0-n

4.3.3 Description

This class records metadata that are associated with the root cause of

an event. Properties such as weather, device clearing the fault, internal agent,

and external agent are included in this class. Internal agents refer to electrical

components within the system that caused the event or have failed as a result

of the event. External agents refer to factors outside the electrical system that

caused the event. For example, an animal such as a squirrel may climb into a
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Table 4.2: Class Time-series
Label Source Property Obligation

Header Data Provider or
Analyzer

.headers 1

Time-series Data Provider .timeSeries 1

Count of data
samples

Data Provider or
Analyzer

.count 1

Sampling rate Data Provider or
Analyzer

.samplingRate 1

Table 4.3: Class Description

Label Source Vocab Schema Obligation

Weather Data Provider Clear day, wind,
rain, snow, ...

0-n

Isolation equip-
ment

Data Provider Breaker, re-
closer, fuse,
...

0-1

Internal agent Data Provider Transformer,
insulation, light-
ning arrester,
...

0-1

External agent Data Provider Animal, tree,
lightning, ...

0-1

pole transformer, causing a short-circuit fault. In this case, the squirrel and

the transformers are the internal and external agents.
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Table 4.4: Class Software Analysis

Label Source Vocab Schema Obligation

Minimum RMS
voltage

Data Provider or
Analyzer

0-1

Maximum RMS
voltage

Data Provider or
Analyzer

0-1

Maximum RMS
current

Data Provider or
Analyzer

0-1

Peak instanta-
neous current

Data Provider or
Analyzer

0-1

Peak instanta-
neous voltage

Data Provider or
Analyzer

0-1

Real power vari-
ation

Data Provider or
Analyzer

0-1

Reactive power
variation

Data Provider or
Analyzer

0-1

Resonant fre-
quency

Data Provider or
Analyzer

0-1

Power frequency
variation

Data Provider or
Analyzer

0-1

Table 4.5: Class IEEE Classification
Label Source Vocab Schema Obligation

Category label Data Provider or
Analyzer

Table II in [45] 1

Category ID Data Provider or
Analyzer

Table II in [45] 1

4.3.4 Software Analysis

This class describes the quantitative analytics of the PQ disturbance

event. It is possible to complete all the properties in this class during the anal-
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ysis phase and record only abnormal values as desired by the analysts. When

analytics of the disturbance events are not available from the data provider,

third-party analytics modules [7, 12, 60] can be used to provide the analysis.

4.3.5 IEEE Classification

The events are categorized per IEEE Standard 1159-2009 [45] in IEEE

classification class. For example, if a short-circuit fault has caused a voltage

sag to 0.8 per unit for the duration of two cycles, this event is categorized as

an instantaneous voltage sag as defined by the standard. While the obligation

for the classification properties is 1, the obligation for the IEEE classification

property in the event class is 0-n, indicating that an event may not yet be

classified or may have several IEEE classifications. However, each category

instance must have both an ID and a label.

4.4 Sample Distribution Events

This section describes encoding of disturbance events in the PQLD

schema. The root causes for these events are a short-circuit fault and capacitor

switching. Following the obligation field in the schema specification, note that

the document-based data representation allows metadata entries to simply

omit property names when the corresponding values are not available or the

properties are not applicable. For example, the minimum RMS voltage is not

provided in the case of capacitor switching because it does not provide any

useful information.
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Table 4.6: Demonstration results: short-circuit fault
Class Label Example (Fault)

Event

Location Substation

Nominal Voltage 25 kV

Event Time 3/09/2010 23:05:30 PM

Root Cause Short-circuit fault

System Frequency 60 Hz

Voltage

Header [‘Va’, ‘Vb’, ‘Vc’]

Time-series [Va(n), Vb(n), Vc(n)]

Count of data samples 512

Sampling rate 32

Current

Header [‘Ia’, ‘Ib’, ‘Ic’]

Time-series [Ia(n), Ib(n), Ic(n)]

Count of data samples 512

Sampling rate 32

Description
Isolation equipment Recloser

External agent Lightning

Analysis

Minimum RMS voltage 6.05 kV

Maximum RMS voltage 14.78 kV

Maximum RMS current 2384 A

Peak instantaneous
current

3152 A

IEEE Classification
Category label Sag, instantaneous

Category ID 2.1.1.

4.4.1 Short-Circuit Fault

Fig. 4.2 shows a single line-to-ground fault that occurred on phase

C caused by lightning in a 25 kV distribution system. A short-circuit fault
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results in a high increase in the current on the faulted phase(s). This increase

in current and the Thevenin equivalent source impedance at the monitoring

location induced voltage sag or swell on the faulted and healthy phases. In

this event, the current magnitude on phase C increased to 2.38 kA and lasted

for approximately 9.7 cycles until a recloser isolated the fault. During the

fault, the voltage magnitude in the faulted phase dropped below 0.9 per unit,

and thus the event is categorized as an instantaneous sag according to IEEE

Standard 1159-2009. The associated metadata values of the short-circuit fault

are stored following the presented schema, as shown in Table 4.6.

4.4.2 Capacitor Switching

Fig. 4.3 shows the oscillatory transient due to the energizing of a 600

kvar three-phase capacitor bank, located downstream from the PQ monitor.

Phase C waveforms are most affected by the oscillatory transient; the transient

voltage and current reached a maximum of 22.64 kV and 317.3 A, respectively.

This transient event lasted approximately 0.15 cycle, with a resonant frequency

of 540 Hz. The reactive power flow decrease at the substation was 187.04,

189.04, and 189.32 kvar in phases A, B, and C, respectively. The energizing of

this bank increased the RMS voltage by 0.2834%, decreased the RMS current

by 5.2960%, and moved the power factor from 0.9395 to 0.9994. This event is

classified as a low frequency oscillatory transient according to IEEE Standard

1159-2009. The associated metadata values of the capacitor switching are

stored following the presented schema, as shown in Table 4.7.
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Table 4.7: Demonstration results: capacitor switching

Class Label Example (Cap. Switch-
ing)

Event

Location Substation

Rated Voltage 25 kV

Event Time 9/29/2015 3:59:00 PM

Root Cause Capacitor Switching

System Frequency 60 Hz

Voltage

Header [‘Va’, ‘Vb’, ‘Vc’]

Time-series [Va(n), Vb(n), Vc(n)]

Count of data samples 250,000

Sampling rate 128

Current

Header [‘Ia’, ‘Ib’, ‘Ic’]

Time-series [Ia(n), Ib(n), Ic(n)]

Count of data samples 250,000

Sampling rate 128

Analysis

Peal instantaneous
voltage

22.64 kV

Peak instantaneous
current

317.3 A

Reactive power varia-
tion

[187.04, 189.04, 189.32]
kvar

Resonant frequency 540 Hz

IEEE Classification
Category label Low-frequency, oscilla-

tory

Category ID 1.2.1.

4.5 Summary

The PQLD schema is designed to promote low-overhead, incremental

description and sharing of PQ disturbance events. The schema is standards-
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based, balances human readability and computation support, and is openly

available. The document-oriented schema supports the conditional expression

of properties that are most relevant for each recorded event and avoids the

representation of unnecessary properties.

The use of this schema in observed events has been demonstrated by

populating properties in the presented classes. The schema supports the ex-

pression of instantaneous measurements, descriptive analysis, and quantitative

analysis, as well as the real-world causes for power quality disturbances. The

sample set of described events continues to broaden, and the linked data model

supports the unique identification of published events.
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Figure 4.2: Demonstration fault event: (a) instantaneous and (b) RMS wave-
forms.
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Figure 4.3: Demonstration capacitor-switching event. (a) instantaneous and
(b) RMS waveforms.
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Chapter 5

Conclusion

This dissertation aims to develop the data analytics modules to ana-

lyze short-circuit faults and overcurrent protection devices clearing the faults.

Chapter 2 presents the data analytics for short-circuit faults. The analysis

includes detection and categorization of fault events and estimating the fault

location. The fault-locating method described in this chapter is used to re-

move the effects of DC offset, which can cause location estimate errors when

used with conventional phasor-estimating algorithms such as the Fourier and

cosine filters. Chapter 3 describes the data analytics for evaluating and identi-

fying overcurrent protection devices. The chapter presents an algorithm that

identifies the type of device clearing the fault: whether a fault is cleared by

a recloser or a fuse. The status of the recloser, whether the recloser has suc-

cessfully cleared the fault or locked out, can also be estimated through this

process. In addition, a TCC curve estimation algorithm is proposed to evalu-

ate and identify fault-clearing devices. An empirical TCC curve is estimated

using multiple fault events collected from a distribution circuit. The empirical

TCC curve can be used to evaluate the timings of the recloser operations with

respect to the manufacturer specifications and to narrow down which specific

recloser curve timing has been used to clear the fault. Finally, Chapter 4
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presents the PQLD schema for power quality disturbance events. The schema

facilitates storing and sharing of power quality measurements data, with de-

scriptive and analytical analysis, and the root causes of the disturbance events.
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