11,456 research outputs found

    On the Double Mobility Problem for Water Surface Coverage with Mobile Sensor Networks

    Full text link

    PHALANX: Expendable Projectile Sensor Networks for Planetary Exploration

    Get PDF
    Technologies enabling long-term, wide-ranging measurement in hard-to-reach areas are a critical need for planetary science inquiry. Phenomena of interest include flows or variations in volatiles, gas composition or concentration, particulate density, or even simply temperature. Improved measurement of these processes enables understanding of exotic geologies and distributions or correlating indicators of trapped water or biological activity. However, such data is often needed in unsafe areas such as caves, lava tubes, or steep ravines not easily reached by current spacecraft and planetary robots. To address this capability gap, we have developed miniaturized, expendable sensors which can be ballistically lobbed from a robotic rover or static lander - or even dropped during a flyover. These projectiles can perform sensing during flight and after anchoring to terrain features. By augmenting exploration systems with these sensors, we can extend situational awareness, perform long-duration monitoring, and reduce utilization of primary mobility resources, all of which are crucial in surface missions. We call the integrated payload that includes a cold gas launcher, smart projectiles, planning software, network discovery, and science sensing: PHALANX. In this paper, we introduce the mission architecture for PHALANX and describe an exploration concept that pairs projectile sensors with a rover mothership. Science use cases explored include reconnaissance using ballistic cameras, volatiles detection, and building timelapse maps of temperature and illumination conditions. Strategies to autonomously coordinate constellations of deployed sensors to self-discover and localize with peer ranging (i.e. a local GPS) are summarized, thus providing communications infrastructure beyond-line-of-sight (BLOS) of the rover. Capabilities were demonstrated through both simulation and physical testing with a terrestrial prototype. The approach to developing a terrestrial prototype is discussed, including design of the launching mechanism, projectile optimization, micro-electronics fabrication, and sensor selection. Results from early testing and characterization of commercial-off-the-shelf (COTS) components are reported. Nodes were subjected to successful burn-in tests over 48 hours at full logging duty cycle. Integrated field tests were conducted in the Roverscape, a half-acre planetary analog environment at NASA Ames, where we tested up to 10 sensor nodes simultaneously coordinating with an exploration rover. Ranging accuracy has been demonstrated to be within +/-10cm over 20m using commodity radios when compared to high-resolution laser scanner ground truthing. Evolution of the design, including progressive miniaturization of the electronics and iterated modifications of the enclosure housing for streamlining and optimized radio performance are described. Finally, lessons learned to date, gaps toward eventual flight mission implementation, and continuing future development plans are discussed

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    EFFICIENT DYNAMIC ADDRESSING BASED ROUTING FOR UNDERWATER WIRELESS SENSOR NETWORKS

    Get PDF
    This thesis presents a study about the problem of data gathering in the inhospitable underwater environment. Besides long propagation delays and high error probability, continuous node movement also makes it difficult to manage the routing information during the process of data forwarding. In order to overcome the problem of large propagation delays and unreliable link quality, many algorithms have been proposed and some of them provide good solutions for these issues, yet continuous node movements still need attention. Considering the node mobility as a challenging task, a distributed routing scheme called Hop-by-Hop Dynamic Addressing Based (H2- DAB) routing protocol is proposed where every node in the network will be assigned a routable address quickly and efficiently without any explicit configuration or any dimensional location information. According to our best knowledge, H2-DAB is first addressing based routing approach for underwater wireless sensor networks (UWSNs) and not only has it helped to choose the routing path faster but also efficiently enables a recovery procedure in case of smooth forwarding failure. The proposed scheme provides an option where nodes is able to communicate without any centralized infrastructure, and a mechanism furthermore is available where nodes can come and leave the network without having any serious effect on the rest of the network. Moreover, another serious issue in UWSNs is that acoustic links are subject to high transmission power with high channel impairments that result in higher error rates and temporary path losses, which accordingly restrict the efficiency of these networks. The limited resources have made it difficult to design a protocol which is capable of maximizing the reliability of these networks. For this purpose, a Two-Hop Acknowledgement (2H-ACK) reliability model where two copies of the same data packet are maintained in the network without extra burden on the available resources is proposed. Simulation results show that H2-DAB can easily manage during the quick routing changes where node movements are very frequent yet it requires little or no overhead to efficiently complete its tasks

    Sensor Coverage Strategy in Underwater Wireless Sensor Networks

    Get PDF
    This paper mainly describes studies hydrophone placement strategy in a complex underwater environment model to compute a set of "good" locations where data sampling will be most effective. Throughout this paper it is assumed that a 3-D underwater topographic map of a workspace is given as input.Since the negative gradient direction is the fastest descent direction, we fit a complex underwater terrain to a differentiable function and find the minimum value of the function to determine the low-lying area of the underwater terrain.The hydrophone placement strategy relies on gradient direction algorithm that solves a problem of maximize underwater coverage: Find the maximize coverage set of hydrophone inside a 3-D workspace. After finding the maximize underwater coverage set, to better take into account the optimal solution to the problem of data sampling, the finite VC-dimension algorithm computes a set of hydrophone that satisfies hydroacoustic signal energy loss constraints. We use the principle of the maximize splitting subset of the coverage set and the ”dual” set of the coverage covering set, so as to find the hitting set, and finally find the suboptimal set (i.e., the sensor suboptimal coverage set).Compared with the random deployment algorithm, although the computed set of hydrophone is not guaranteed to have minimum size, the algorithm does compute with high network coverage quality

    Survey of Landslide Warning Systems and their Applicability in Mauritius

    Get PDF
    Landslide is major problem in several countries causing loss of lives and major infrastructural damage. Several systems have been set-up for monitoring and predicting landslides in different countries where this problem is prevalent. These systems integrate sensing mechanism with communication systems and GPS to detect landslide conditions and alert concerned parties via sms, emails and other appropriate means. Wireless sensor networks have also been widely deployed for landslide monitoring. Mauritius which is an island nation situated in the Indian Ocean has recently faced several problems due to extreme climatic conditions such as torrential rains and flash floods that have led to major landslide problems in different parts of the island. However, to date, there is no adequate system in place to monitor landslides. This paper surveys the different landslide modelling and warning systems that have been deployed worldwide and assesses their suitability for Mauritius. Given the excellent mobile network coverage available in Mauritius, a landslide warning system based on sms notifications appears to be a viable solution for Mauritius. A potential framework for a landslide monitoring system for Mauritius is therefore proposed along with a feasibility analysis
    corecore