8 research outputs found

    Implications in bounded systems

    Get PDF
    Abstract A consistent connective system generated by nilpotent operators is not necessarily isomorphic to Łukasiewicz-system. Using more than one generator function, consistent nilpotent connective systems (so-called bounded systems) can be obtained with the advantage of three naturally derived negations and thresholds. In this paper, implications in bounded systems are examined. Both R- and S-implications with respect to the three naturally derived negations of the bounded system are considered. It is shown that these implications never coincide in a bounded system, as the condition of coincidence is equivalent to the coincidence of the negations, which would lead to Łukasiewicz logic. The formulae and the basic properties of four different types of implications are given, two of which fulfill all the basic properties generally required for implications

    Implication functions in interval-valued fuzzy set theory

    Get PDF
    Interval-valued fuzzy set theory is an extension of fuzzy set theory in which the real, but unknown, membership degree is approximated by a closed interval of possible membership degrees. Since implications on the unit interval play an important role in fuzzy set theory, several authors have extended this notion to interval-valued fuzzy set theory. This chapter gives an overview of the results pertaining to implications in interval-valued fuzzy set theory. In particular, we describe several possibilities to represent such implications using implications on the unit interval, we give a characterization of the implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a particular distributivity equation involving strict t-norms, we extend monoidal logic to the interval-valued fuzzy case and we give a soundness and completeness theorem which is similar to the one existing for monoidal logic, and finally we discuss some other constructions of implications in interval-valued fuzzy set theory

    Fuzzy Implications: Some Recently Solved Problems

    Get PDF
    In this chapter we discuss some open problems related to fuzzy implications, which have either been completely solved or those for which partial answers are known. In fact, this chapter also contains the answer for one of the open problems, which is hitherto unpublished. The recently solved problems are so chosen to reflect the importance of the problem or the significance of the solution. Finally, some other problems that still remain unsolved are stated for quick reference

    On the distributivity of T-power based implications

    Get PDF
    Due to the fact that Zadeh's quantifiers constitute the usual method to modify fuzzy propositions, the so-called family of T-power based implications was proposed. In this paper, the four basic distributive laws related to T-power based fuzzy implications and fuzzy logic operations (t-norms and t-conorms) are deeply studied. This study shows that two of the four distributive laws of the T-power based implications have a unique solution, while the other two have multiple solutions

    Homomorphisms on the monoid of fuzzy implications and the iterative functional equation I(x,I(x,y))=I(x,y)

    Get PDF
    Recently, Vemuri and Jayaram proposed a novel method of generating fuzzy implications, called the ⊛⊛-composition, from a given pair of fuzzy implications [Representations through a Monoid on the set of Fuzzy Implications, Fuzzy Sets and Systems, 247, 51-67]. However, as with any generation process, the ⊛⊛-composition does not always generate new fuzzy implications. In this work, we study the generative power of the ⊛⊛-composition. Towards this end, we study some specific functional equations all of which lead to the solutions of the iterative functional equation I(x,I(x,y))=I(x,y)I(x,I(x,y))=I(x,y) involving fuzzy implications which has been studied extensively for different families of fuzzy implications in this very journal, see [Information Sciences 177, 2954–2970 (2007); 180, 2487–2497 (2010); 186, 209–221 (2012)]. In this work, unlike in other existing works, we do not restrict the solutions to a particular family of fuzzy implications. Thus we take an algebraic approach towards solving these functional equations. Viewing the ⊛⊛-composition as a binary operation ⊛⊛ on the set II of all fuzzy implications one obtains a monoid structure (I,⊛)(I,⊛) on the set II. From the Cayley’s theorem for monoids, we know that any monoid is isomorphic to the set of all right translations. We determine the complete set KK of fuzzy implications w.r.t. which the right translations also become semigroup homomorphisms on the monoid (I,⊛I,⊛) and show that KK not only answers our questions regarding the generative power of the ⊛⊛-composition but also contains many as yet unknown solutions of the iterative functional equation I(x,I(x,y))=I(x,y)I(x,I(x,y))=I(x,y)

    On the Distributivity of Fuzzy Implications Over Nilpotent or Strict Triangular Conorms

    No full text
    corecore