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Abstract

Due to the fact that Zadeh’s quantifiers constitute the usual method to modify fuzzy propositions, the so-called family
of T -power based implications was proposed. In this paper, the four basic distributive laws related to T -power based
fuzzy implications and fuzzy logic operations (t-norms and t-conorms) are deeply studied. This study shows that two of
the four distributive laws of the T -power based implications have a unique solution, while the other two have multiple
solutions.
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1 Introduction

Due to fuzzy implications are the main operations in fuzzy logic, various fuzzy implications have been proposed. For
example, the (S,N)-, R- and QL-implications are built by translating different classical logical formulae to the fuzzy
context [4, 5]. The f - and g-implications are built from continuous additive generators of continuous Archimedean
t-norms or t-conorms, respectively [21]. The probabilistic implications and probabilistic S-implications are built from
copula functions [10]. The semicopula based implications are built from initial fuzzy implications and semicopula
functions [2]. The fuzzy negation based implications are built from negation functions [15], etc.

In 2017, Massanet et al. noticed that a special property called invariance is required on a fuzzy implication when
it is used in approximate reasoning. However, as most of the known fuzzy implications do not have this property, the
so-called family of T -power based implications was proposed [13]. Most of the T -power based implications were found
to satisfy the invariant property [14]. Nevertheless, there are no corresponding discussions on the distributive laws for
the T -power based implications, although the distributive laws play a critical role in both theoretical and practical
fields for fuzzy implications [7, 9]. On the other hand, there are many discussions on the distributive equations of fuzzy
implications (detail see for [1, 3, 6, 8, 12, 16, 17, 18, 19, 20]). Therefore, as a supplement of this research topic from
the theoretical point of view, it is necessary to investigate the distributive laws for the T -power implications.

The paper is organized as follows. In Section 2, some concepts and results are recalled. In Section 3, four distributive
equations involving T -power based implications are analyzed. Finally, the paper ends with a section devoted to the
conclusions.

2 Preliminaries

For convenience, in this section, the definitions and results to be used in the rest of the paper are outlined.

Definition 2.1. [4] A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies, for all x, x1, x2, y, y1,
y2 ∈ [0, 1], the following conditions:

if x1 < x2, then I(x1, y) ≥ I(x2, y), i.e., I(·, y) is decreasing, (I1)
if y1 < y2, then I(x, y1) ≤ I(x, y2), i.e., I(x, ·) is increasing, (I2)
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I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0. (I3)

The set of all fuzzy implications will be denoted by FI.

Definition 2.2. [4] An operator I : [0, 1]2 → [0, 1] is said to satisfy the ordering property, if I(x, y) = 1 ⇔ x ≤ y for
all x, y ∈ [0, 1]. (OP)

Definition 2.3. [11] An associative, commutative and increasing function T : [0, 1]2 → [0, 1] is called a t-norm if it
satisfies T (x, 1) = x for all x ∈ [0, 1].

Example 2.4. [11] The following are the three basic t-norms TM , TP , TLK , given by, respectively:

TM (x, y) = min(x, y), TP (x, y) = xy, TLK(x, y) = max(x+ y − 1, 0).

Definition 2.5. [4] A t-norm T is called
• continuous if it is continuous in both the arguments;
• strict, if it is continuous and strictly monotone;

• Archimedean, if for all x, y ∈ (0, 1) there exists an n ∈ N such that x
(n)
T < y, where

x
(0)
T = 1, x

(1)
T = x, x

(n)
T = T (x, x

(n−1)
T ) for all n ≥ 2.

• nilpotent, if it is continuous and if each x ∈ (0, 1) is a nilpotent element of T , i.e., if there exists an n ∈ N such

that x
(n)
T = 0.

Remark 2.6. [4] If a t-norm T is strict or nilpotent, then it is Archimedean. Conversely, every continuous and
Archimedean t-norm is strict or nilpotent.

Theorem 2.7. [4] For a function T : [0, 1]2 → [0, 1] the following statements are equivalent:
(i) T is a continuous Archimedean t-norm.
(ii) T has a continuous additive generator, i.e., there exists a continuous, strictly decreasing function t : [0, 1] →

[0,∞] with t(1) = 0, which is uniquely determined up to a positive multiplicative constant, such that

T (x, y) = t−1(min(t(x) + t(y), t(0))), x, y ∈ [0, 1].

Remark 2.8. [4] (i) T is a strict t-norm if and only if each continuous additive generator t of T satisfies t(0) = ∞.
(ii) T is a nilpotent t-norm if and only if each continuous additive generator t of T satisfies t(0) < ∞.

Theorem 2.9. [11] Let A be an index set and (Ti)i∈A a family of t-norms, let {(ai, bi)}i∈A be a family of non-empty,
pairwise disjoint open subintervals of [0, 1]. Then the following function T : [0, 1]2 → [0, 1] is a t-norm:

T (x, y) =

{
ai + (bi − ai) · Ti(

x−ai

bi−ai
, y−ai

bi−ai
), if x, y ∈ [ai, bi],

min(x, y), otherwise.
(1)

Definition 2.10. [11] (i) A t-norm T is called an ordinal sum of t-norms, also known as the summands < ai, bi, Ti >,
i ∈ A, if it is defined as (1). In this case we write T = (< ai, bi, Ti >)i∈A, where A is an index set, (Ti)i∈A a family of
t-norms, and {(ai, bi)}i∈A is a family of non-empty, pairwise disjoint open subintervals of [0, 1].

(ii) T = (< ai, bi, Ti >)i∈A is trivial if A = {1}, a1 = 0 and b1 = 1.

Theorem 2.11. [4] For a function T : [0, 1]2 → [0, 1] the following statements are equivalent:
(i) T is a continuous t-norm.
(ii) T is uniquely representable as an ordinal sum of continuous Archimedean t-norms, i.e, there exist a uniquely

determined (finite or countably infinite) index set A, a family of uniquely determined pairwise disjoint open subintervals
{(ai, bi)}i∈A of [0, 1] and a family of uniquely determined continuous Archimedean t-norms (Ti)i∈A such that

T (x, y) =

{
ai + (bi − ai) · Ti(

x−ai

bi−ai
, y−ai

bi−ai
), if x, y ∈ [ai, bi],

min(x, y), otherwise.

Remark 2.12. For a continuous t-norm T , if T ̸= TM , then it is either a continuous Archimedean t-norm or a
non-trivial ordinal sum of continuous Archimedean t-norms.
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Definition 2.13. [4, 11] (i) An associative, commutative and increasing function S : [0, 1]2 → [0, 1] is called a t-conorm
if it satisfies S(x, 0) = x for all x ∈ [0, 1].

(ii) A t-conorm S is idempotent, if S(x, x) = x for all ∈ [0, 1];

Example 2.14. The following are four basic t-conorms SM , SLK , SD, SnM given by, respectively:

SM (x, y) = max(x, y), SLK(x, y) = min(x+ y, 1),

SD(x, y) =

{
1, if x, y ∈ (0, 1],

max(x, y), otherwise,
SnM (x, y) =

{
1, if x+ y ≥ 1,

max(x, y), otherwise.

Definition 2.15. [11, 13] Let T be a continuous t-norm. For each x ∈ [0, 1], n-th roots and rational powers of x with
respect to T are defined by

x
( 1
n )

T = sup{z ∈ [0, 1]|z(n)T ≤ x}, x
(m

n )

T =
(
x
( 1
n )

T

)(m)

T
,

where m, n are positive integers.

Definition 2.16. [13] A binary operator I : [0, 1]2 → [0, 1] is said to be a T -power based implication (power based
implication for short) if there exists a continuous t-norm T such that

I(x, y) = sup{r ∈ [0, 1]|y(r)T ≥ x}, for all x, y ∈ [0, 1]. (2)

If I is a T -power based implication, then it will be denoted by IT .

Proposition 2.17. [13] Let T be a continuous t-norm and IT its power based implication defined by (2).

(i) If T = TM , then IT (x, y) =

{
1, if x ≤ y,

0, if x > y,
the Rescher implication IRS.

(ii) If T is an Archimedean t-norm with additive generator t, then

IT (x, y) =

{
1, if x ≤ y,
t(x)
t(y) , if x > y,

with the convention that a
∞ = 0 for all a ∈ [0, 1].

(iii) If T is an ordinal sum of t-norms of the form T = (< ai, bi, Ti >)i∈A, where Ti is an Archimedean t-norm with
additive generator ti for all i ∈ A, then

IT (x, y) =


1, if x ≤ y,
ti(

x−ai
bi−ai

)

ti(
y−ai
bi−ai

)
, if x > y and x, y ∈ [ai, bi],

0, otherwise.

3 Distributivity of the T -power based implications

The four distributive laws involving a fuzzy implication I are given as follows:

I(S(x, y), z) = T (I(x, z), I(y, z)), (3)

I(T (x, y), z) = S(I(x, z), I(y, z)), (4)

I(x, T1(y, z)) = T2(I(x, y), I(x, z)), (5)

I(x, S1(y, z)) = S2(I(x, y), I(x, z)), (6)

for all x, y, z ∈ [0, 1], where T , T1, T2 are t-norms, S, S1, S2 are t-conorms [1, 4, 8].
For the power based implication ITM , it is Rescher implication. The solutions of distributivity equations involving

ITM are shown in Table 1, since its solutions are easily obtained. The complete proof of Table 1 is shown in Appendix
A.

In the following, let us study the distributive laws of the T -power based implication IT , where T is a continuous
Archimedean t-norm, or a non-trivial ordinal sum of continuous Archimedean t-norms.
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Table 1: Distributivity solutions of fuzzy implication ITM

Equation Solution

ITM (S(x, y), z) = T (ITM (x, z), ITM (y, z)) S = SM , any t-norm T

ITM (T (x, y), z) = S(ITM (x, z), ITM (y, z)) T = TM , any t-conorm S

ITM (x, T1(y, z)) = T2(I
TM (x, y), ITM (x, z)) T1 = TM , any t-norm T2

ITM (x, S1(y, z)) = S2(I
TM (x, y), ITM (x, z)) S1 = SM , any t-conorm S2

3.1 On the equation I(S(x, y), z) = T (I(x, z), I(y, z))

Lemma 3.1. Let a function I : [0, 1]2 → [0, 1] satisfy (OP), T be a t-norm and S a t-conorm. If the triple (I, S, T )
satisfies (3), then S = SM .

Proof. Assume that the triple (I, S, T ) satisfies (3), then I(S(x, y), z) = T (I(x, z), I(y, z)) for all x, y, z ∈ [0, 1]. Putting
x = y = z, we get I(S(x, x), x) = T (I(x, x), I(x, x)) = 1 for all x ∈ [0, 1]. Since I satisfies (OP), then S(x, x) ≤ x. Note
that S(x, x) ≥ x for all x ∈ [0, 1]. Then S(x, x) = x for all x ∈ [0, 1], i.e., S = SM .

Theorem 3.2. Let T be a continuous Archimedean t-norm (a non-trivial ordinal sum of continuous Archimedean t-
norms, respectively) and IT its power based implication, let T1 be a t-norm and S a t-conorm. Then the following
statements are equivalent:

(i) The triple (IT , S, T1) satisfies (3).
(ii) S = SM and T1 = TM .

Proof. (i⇒ ii) Let the triple (IT , S, T1) satisfy (3). Since IT satisfies (OP) ([13], Proposition 8), then S = SM by
Lemma 3.1. Thus

IT (max(x, y), z) = T1(I
T (x, z), IT (y, z)) for all x, y, z ∈ [0, 1].

Let x = y. Then IT (x, z) = T1(I
T (x, z), IT (x, z)) for all x, z ∈ [0, 1].

Case 1: T is a continuous Archimedean t-norm.
Let t be an additive generator of T , and let x > z > 0 in above equation, then

t(x)

t(z)
= T1

(
t(x)

t(z)
,
t(x)

t(z)

)
.

Let a = t(x)
t(z) . Then a ∈ [0, 1) and a = T1(a, a). Hence T1 = TM .

Case 2: T is a non-trivial ordinal sum of continuous Archimedean t-norms.
Without loss of generality assume that T = (< ai, bi, Ti >)i∈A, where A is an index set, Ti is a continuous

Archimedean t-norm with additive generator ti for all i ∈ A, and {(ai, bi)}i∈A is a family of non-empty, pairwise
disjoint open subintervals of [0, 1].

Let x, z ∈ [ai, bi] for some i ∈ A with x > z > ai. Then

ti(
x−ai

bi−ai
)

ti(
z−ai

bi−ai
)
= T1

(
ti(

x−ai

bi−ai
)

ti(
z−ai

bi−ai
)
,
ti(

x−ai

bi−ai
)

ti(
z−ai

bi−ai
)

)
.

Let m =
ti(

x−ai
bi−ai

)

ti(
z−ai
bi−ai

)
. Then m ∈ [0, 1) and m = T1(m,m). Hence T1 = TM .

(ii⇒ i) Obvious.

3.2 On the equation I(T (x, y), z) = S(I(x, z), I(y, z))

Theorem 3.3. Let T be a continuous Archimedean t-norm (a non-trivial ordinal sum of continuous Archimedean t-
norms, respectively) and IT its power based implication, and let S be a t-conorm. Then the triple (IT , T, S) satisfies
(4) if and only if S = SLK .
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Proof. Case 1: T is a continuous Archimedean t-norm.
(Necessity) Let the triple (IT , T, S) satisfy (4). Suppose that S ̸= SLK , then there exist a, b ∈ (0, 1) such that

S(a, b) ̸= min(a+ b, 1). (7)

Assume that t is an additive generator of T , then t is continuous, strictly decreasing ([4], Theorem 2.1.5). Thus
there exist x0, y0, z0 ∈ (0, 1) with x0 > z0, y0 > z0 such that

t(x0)

t(z0)
= a and

t(y0)

t(z0)
= b, (8)

i.e., IT (x0, z0) = a, IT (y0, z0) = b.
If a+ b < 1, i.e., t(x0) + t(y0) < t(z0), by (7) and (8) we get

S
(
IT (x0, z0), I

T (y0, z0)
)
= S(a, b) ̸= a+ b =

t(x0)

t(z0)
+

t(y0)

t(z0)
. (9)

However, by t(z0) < t(0), we get t(x0) + t(y0) < t(0). Then

T (x0, y0) = t−1(min(t(x0) + t(y0), t(0))) = t−1(t(x0) + t(y0)) > z0.

Hence

IT (T (x0, y0), z0) =
t(x0) + t(y0)

t(z0)
= a+ b. (10)

From (9), (10) we get IT (T (x0, y0), z0) ̸= S(IT (x0, z0), I
T (y0, z0)), this contradicts the fact that the triple (IT , T, S)

satisfies (4).
If a+ b ≥ 1, i.e., t(x0) + t(y0) ≥ t(z0), by (7) we get

S

(
t(x0)

t(z0)
,
t(y0)

t(z0)

)
= S(a, b) ̸= 1,

i.e., S
(
IT (x0, z0), I

T (y0, z0)
)
̸= 1.

However, since t−1(t(0)) = 0 < z0, then t−1(min(t(x0)+t(y0), t(0))) ≤ z0, i.e., T (x0, y0) ≤ z0.Hence IT (T (x0, y0), z0) =
1. Thus IT (T (x0, y0), z0) > S(IT (x0, z0), I

T (y0, z0)). A contradiction to the fact that the triple (IT , T, S) satisfies (4).
(Sufficiency) Let S = SLK . It suffices to prove that the triple (IT , T, S) satisfies (4) for all x, y, z ∈ [0, 1] with x > z

and y > z.
If T (x, y) > z, i.e., t−1(min(t(x) + t(y), t(0))) > z, then min(t(x) + t(y), t(0)) < t(z). Note that t(z) ≤ t(0), then

t(x) + t(y) < t(z) ≤ t(0). Thus

IT (T (x, y), z) =
t(T (x, y))

t(z)
=

min(t(x) + t(y), t(0))

t(z)
=

t(x) + t(y)

t(z)
= SLK(IT (x, z), IT (y, z)).

If T (x, y) ≤ z, i.e., t−1(min(t(x) + t(y), t(0))) ≤ z, then

IT (T (x, y), z) = 1 and min(t(x) + t(y), t(0)) ≥ t(z).

Since t(0) ≥ t(z), then t(x) + t(y) ≥ t(z). Thus t(x)
t(z) +

t(y)
t(z) ≥ 1. Therefore,

SLK(IT (x, z), IT (y, z)) = min

(
t(x)

t(z)
+

t(y)

t(z)
, 1

)
= 1.

Hence IT (T (x, y), z) = SLK(IT (x, z), IT (y, z)).
Thus we complete the proof in the case that T is a continuous Archimedean t-norm.
Case 2: T is a non-trivial ordinal sum of continuous Archimedean t-norms.
Without loss of generality assume that T = (< ai, bi, Ti >)i∈A, where A is an index set, Ti is a continuous

Archimedean t-norm for all i ∈ A, and {(ai, bi)}i∈A is a family of non-empty, pairwise disjoint open subintervals of
[0, 1].
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Let x, y, z ∈ [0, 1] with x > z, y > z. If there is not an i ∈ A such that x, y, z ∈ [ai, bi], then equation
IT (T (x, y), z) = S(IT (x, z), IT (y, z)) holds for any t-conorm S.

In fact, consider the following cases.
Case 2.1: for all i ∈ A, z /∈ [ai, bi]. Obviously, IT (x, z) = 0, and IT (y, z) = 0.
If there exists a k ∈ A such that x, y ∈ [ak, bk], then

T (x, y) = ak + (bk − ak) · Ti(
x− ak
bk − ak

,
y − ak
bk − ak

) ∈ [ak, bk].

Since x > z, y > z, then z < ak. Thus IT (T (x, y), z) = 0. If there is not a k ∈ A such that x, y ∈ [ak, bk], obviously,
T (x, y) = min(x, y) > z. Thus IT (T (x, y), z) = 0. Hence, IT (T (x, y), z) = S(IT (x, z), IT (y, z)) holds for any t-conorm
S.

Case 2.2: there exists an i ∈ A such that z ∈ [ai, bi], x /∈ [ai, bi], y /∈ [ai, bi], and there is not a k ∈ A such that x,
y ∈ [ak, bk]. Then T (x, y) = min(x, y) > z, and T (x, y) /∈ [ai, bi]. Thus

IT (T (x, y), z) = 0, IT (x, z) = 0, and IT (y, z) = 0.

Hence IT (T (x, y), z) = S(IT (x, z), IT (y, z)) holds for any t-conorm S.
Case 2.3: there exists an i ∈ A such that z ∈ [ai, bi], x /∈ [ai, bi], y /∈ [ai, bi], and there exists a k ∈ A such that x,

y ∈ [ak, bk]. Then

IT (x, z) = 0, IT (y, z) = 0, and T (x, y) = ak + (bk − ak) · Tk(
x− ak
bk − ak

,
y − ak
bk − ak

).

Since x > z, y > z, then bi ≤ ak.
If bi < ak, then T (x, y) /∈ [ai, bi]. Thus, I

T (T (x, y), z) = 0.
If bi = ak, then z < bi, since z ∈ [ai, bi] and z /∈ [ak, bk]. Note that T (x, y) ≥ ak = bi. Obviously, IT (T (x, y), z) = 0.

The reason is that T (x, y) /∈ [ai, bi] when T (x, y) > bi, and IT (T (x, y), z) =
ti(

bi−ai
bi−ai

)

ti(
z−ai
bi−ai

)
= 0 when T (x, y) = bi.

Hence, equation IT (T (x, y), z) = S(IT (x, z), IT (y, z)) holds for any t-conorm S.
Case 2.4: there exists an i ∈ A such that z, x ∈ [ai, bi], y /∈ [ai, bi]. Then IT (y, z) = 0. Since y > z, then y > bi ≥ x.

Thus T (x, y) = min(x, y) = x. Therefore,
IT (T (x, y), z) = IT (x, z).

Hence, equation IT (T (x, y), z) = S(IT (x, z), IT (y, z)) holds for any t-conorm S.
Case 2.5: there exists an i ∈ A such that z, y ∈ [ai, bi], x /∈ [ai, bi]. Similarly to Case 2.4, equation IT (T (x, y), z) =

S(IT (x, z), IT (y, z)) holds for any t-conorm S.
Hence, it suffices to consider x, y, z ∈ [ai, bi] for some i ∈ A. The rest proof is similar to the proof of Case 1.

To show the application of Theorem 3.3, an example is given.

Example 3.4. Let T be a continuous Archimedean t-norm with additive generator t(x) = 1− x, x ∈ [0, 1], then

T = TLK , and IT (x, y) =

{
1, if x ≤ y,
1−x
1−y , if x > y.

If x ≤ z or y ≤ z, then IT (T (x, y), z) = 1 = SLK(IT (x, z), IT (y, z)).
If x > z and y > z, then

IT (T (x, y), z) =

{
1, if x+ y − 1 ≤ z,
2−(x+y)

1−z , if x+ y − 1 > z,
= min

(
2− (x+ y)

1− z
, 1

)
,

SLK(IT (x, z), IT (y, z)) = SLK

(
t(x)

t(z)
,
t(y)

t(z)

)
= min

(
2− (x+ y)

1− z
, 1

)
.

Thus IT (T (x, y), z) = SLK(IT (x, z), IT (y, z)) for all x, y, z ∈ [0, 1]. Hence the triple (IT , T, SLK) satisfies (4).

Remark 3.5. Note that the triple (I, TM , SM ) satisfies (4) for any fuzzy implication I. Therefore, equation (4) is also
satisfied by the triple (IT , TM , SM ). This result indicates that there exist a t-norm T1 different from T and a t-conorm
S different from SLK , such that the triple (IT , T1, S) satisfies (4).
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In the following, we study the t-norm T1 different from T and the t-conorm S different from SLK such that the
triple (IT , T1, S) satisfies (4).

Lemma 3.6. Let α ∈ (0,∞) and S : [0, 1]2 → [0, 1] be a function defined as

S(x, y) = min
(
(x

1
α + y

1
α )α, 1

)
, x, y ∈ [0, 1],

then S is φ-conjugate with SLK , i.e., S is a t-conorm.

Proof. Let φ : [0, 1] → [0, 1] be a function defined by

φ(x) = x
1
α , x ∈ [0, 1], α > 0.

Obviously, φ is an automorphism. Consider the Lukasiewicz t-conorm SLK , i.e.,

SLK(x, y) = min(x+ y, 1), x, y ∈ [0, 1].

Then, for all x, y ∈ [0, 1], we have

φ−1(SLK(φ(x), φ(y))) =
(
min(x

1
α + y

1
α , 1)

)α
= min

(
(x

1
α + y

1
α )α, 1

)
= S(x, y),

that is, S is φ-conjugate with SLK . Therefore, S is a t-conorm.

Proposition 3.7. Let T be a continuous Archimedean t-norm with additive generator t and IT its power based impli-
cation. Let T1 be a continuous Archimedean t-norm with additive generator t1 defined by

t1(x) = (k · t(x)) 1
α , x ∈ [0, 1],

and S be a t-conorm defined by S(x, y) = min
(
(x

1
α + y

1
α )α, 1

)
. Then the triple (IT , T1, S) satisfies (4), where k, α

are constants, and α > 0, k > 0.

Proof. Let x, y, z ∈ [0, 1]. It suffices to prove that the triple (IT , T1, S) satisfies (4) for x > z and y > z.
Since t1 is an additive generator of T1, then

T1(x, y) = t−1
1 (min(t1(x) + t1(y), t1(0))), x, y ∈ [0, 1].

If T1(x, y) ≤ z, then t1(x) + t1(y) ≥ t1(z), and IT (T1(x, y), z) = 1. From t1(x) + t1(y) ≥ t1(z) we get

t1(x)

t1(z)
+

t1(y)

t1(z)
≥ 1,

that is

t1(t
−1(t(x)))

t1(t−1(t(z)))
+

t1(t
−1(t(y)))

t1(t−1(t(z)))
≥ 1. (11)

From t1(x) = (k · t(x)) 1
α we get t1(t

−1(x)) = (kx)
1
α , x ∈ [0, t(0)]. Then from (11) we have(

t(x)

t(z)

) 1
α

+

(
t(y)

t(z)

) 1
α

≥ 1.

Thus

S(IT (x, z), IT (y, z)) = S

(
t(x)

t(z)
,
t(y)

t(z)

)
= 1.

Therefore, IT (T1(x, y), z) = 1 = S(IT (x, z), IT (y, z)).

If T1(x, y) > z, similarly, we obtain
(

t(x)
t(z)

) 1
α

+
(

t(y)
t(z)

) 1
α

< 1, then

S(IT (x, z), IT (y, z)) = S

(
t(x)

t(z)
,
t(y)

t(z)

)
=

((
t(x)

t(z)

) 1
α

+

(
t(y)

t(z)

) 1
α

)α

.
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On the other hand, from T1(x, y) > z we obtain min(t1(x) + t1(y), t1(0)) < t1(z). Since t(z) ≤ t1(0), then
t1(x) + t1(y) < t1(z) ≤ t1(0). Thus

IT (T1(x, y), z) =
t(T1(x, y))

t(z)
=

t(t−1
1 (t1(x) + t1(y)))

t(z)
=

1

k
· (t1(x) + t1(y))

α

t(z)

=
1

k
·

(
(k · t(x)) 1

α + (k · t(y)) 1
α

t(z)
1
α

)α

=

(
t(x)

1
α + t(y)

1
α

t(z)
1
α

)α

=

((
t(x)

t(z)

) 1
α

+

(
t(y)

t(z)

) 1
α

)α

.

Thus IT (T1(x, y), z) = S(IT (x, z), IT (y, z)). From the above discussion it is easy to see that the triple (IT , T1, S)
satisfies (4).

Similarly, we have the following result for the case that T is a non-trivial ordinal sum of continuous Archimedean
t-norms.

Proposition 3.8. Let A be an index set and {(ai, bi)}i∈A be a family of non-empty, pairwise disjoint open subintervals
of [0, 1]. Let T = (< ai, bi, Ti >)i∈A be a non-trivial ordinal sum of Archimedean t-norms and IT its power based
implication, where Ti is a continuous Archimedean t-norm with additive generator ti for all i ∈ A. Let T1 = (<
ai, bi, T1i >)i∈A be an ordinal sum of Archimedean t-norms, where T1i is a continuous Archimedean t-norm with additive
generator t1i defined as

t1i(x) = (k · ti(x))
1
α , x ∈ [0, 1], i ∈ A.

Let S be a t-conorm defined as

S(x, y) = min
(
(x

1
α + y

1
α )α, 1

)
.

Then the triple (IT , T1, S) satisfies (4), where k, α are constants with α > 0, k > 0.

Proof. Let x, y, z ∈ [0, 1] with x > z, y > z. Analogues to the proof in case 2 of Theorem 3.3, if there is not an i ∈ A
such that x, y, z ∈ [ai, bi], then IT (T1(x, y), z) = S(IT (x, z), IT (y, z)) holds for any t-conorm S.

Hence, it suffices to consider x, y, z ∈ [ai, bi] for some i ∈ A. The rest proof is similar to the proof of Proposition
3.7.

3.3 On the equation I(x, T1(y, z)) = T2(I(x, y), I(x, z))

Lemma 3.9. Let a function I : [0, 1]2 → [0, 1] satisfy (OP), and let T1, T2 be t-norms. If the triple (I, T1, T2) satisfies
(5), then T1 = TM .

Proof. Assume that the triple (I, T1, T2) satisfies (5), i.e.,

I(x, T1(y, z)) = T2(I(x, y), I(x, z)) for all x, y, z ∈ [0, 1].

Taking x = y = z, then
I(x, T1(x, x)) = T2(I(x, x), I(x, x)) for all x ∈ [0, 1].

Since I satisfies (OP), then I(x, T1(x, x)) = 1. Hence x ≤ T1(x, x) for all x ∈ [0, 1]. As T1(x, x) ≤ x for all x ∈ [0, 1],
then T1(x, x) = x for all x ∈ [0, 1]. Thus T = TM .

Theorem 3.10. Let T be a continuous Archimedean t-norm (a non-trivial ordinal sum of continuous Archimedean
t-norms, respectively) and IT its power based implication, and let T1, T2 be t-norms. Then the following statements are
equivalent:

(i) The triple (IT , T1, T2) satisfies (5).
(ii) T1 = T2 = TM .

Proof. (i ⇒ ii) Let the triple (IT , T1, T2) satisfy (5). Since IT satisfies (OP), then T1 = TM by Lemma 3.9. Thus, for
all x, y, z ∈ [0, 1], we get

IT (x,min(y, z)) = T2(I
T (x, y), IT (x, z)).

Taking y = z, then
IT (x, y) = T2(I

T (x, y), IT (x, y)).

Case 1: T is a continuous Archimedean t-norm.
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Consider x > y > 0. Let t be an additive generator of T , and let IT (x, y) = a, then a = t(x)
t(y) . Thus a ∈ [0, 1) by the

continuity of T . Therefore,
a = T2(a, a) for all a ∈ [0, 1),

i.e., T2 = TM .
Case 2: T is a non-trivial ordinal sum of continuous Archimedean t-norms.
Without loss of generality assume that T = (< ai, bi, Ti >)i∈A, where A is an index set and Ti is a continuous

Archimedean t-norm with additive generator ti for all i ∈ A, and {(ai, bi)}i∈A be a family of non-empty, pairwise
disjoint open subintervals of [0, 1].

Let x, y ∈ [ai, bi] for some i ∈ A with x > y > ai. Then

ti(
x−ai

bi−ai
)

ti(
y−ai

bi−ai
)
= T2

(
ti(

x−ai

bi−ai
)

ti(
y−ai

bi−ai
)
,
ti(

x−ai

bi−ai
)

ti(
y−ai

bi−ai
)

)
.

Let m =
ti(

x−ai
bi−ai

)

ti(
y−ai
bi−ai

)
. Then m ∈ [0, 1) and m = T2(m,m). Hence T2 = TM .

(ii ⇒ i) Obvious.

3.4 On the equation I(x, S1(y, z)) = S2(I(x, y), I(x, z))

Lemma 3.11. [4] For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:
(i) I is increasing in the second variable, i.e., I satisfies (I2).
(ii) I satisfies I(x,max(y, z)) = max(I(x, y), I(x, z)) for all x, y, z ∈ [0, 1], i.e., the triple (I, SM , SM ) satisfies (6).

Remark 3.12. (i) The t-conorm S2 such that the triple (I, SM , S2) satisfies (6) may not be unique. To see this consider
the Rescher implication IRS , i.e., I

TM . It is easy to see that the triple (IRS , SM , S2) satisfies (6) for any t-conorm S2

from Table 1.
(ii) It is easy to see that the pair (SM , SM ) is a solution of equation (6) involving IT .

Lemma 3.13. Let I ∈ FI satisfy one of the following conditions:
(i) For some x, the function Ix(y) defined by Ix(y) = I(x, y), y ∈ [0, 1] is onto [0,1].
(ii) For some y, the function Iy(x) defined by Iy(x) = I(x, y), x ∈ [0, 1] is onto [0,1].

If the triple (I, SM , S2) satisfies (6), then S2 = SM ,

Proof. Assume that the triple (I, SM , S2) satisfies (6), i.e.,

I(x,max(y, z)) = S2(I(x, y), I(x, z)) for all x, y, z ∈ [0, 1].

Taking y = z, then

I(x, y) = S2(I(x, y), I(x, y)) for all x, y ∈ [0, 1]. (12)

For condition (i): the function Ix(y) defined by Ix(y) = I(x, y), y ∈ [0, 1] is onto [0,1] for some x. Taking p = Ix(y),
then p = S2(p, p) for all p ∈ [0, 1]. Therefore, S2 = SM .

For the condition (ii): for some y, the function Iy(x) defined by Iy(x) = I(x, y), x ∈ [0, 1] is onto [0,1]. Similarly,
taking p = Iy(x) in (12), then p = S2(p, p) for all p ∈ [0, 1], thus S2 = SM .

Lemma 3.14. Let I ∈ FI satisfy one of the following conditions:
(i) For some x, the function Ix(y) defined by Ix(y) = I(x, y) is a strictly increasing function.
(ii) I satisfies (OP).

If the triple (I, S1, SM ) satisfies (6), then S1 = SM .

Proof. Assume that the triple (I, S1, SM ) satisfies (6), i.e.,

I(x, S1(y, z)) = max(I(x, y), I(x, z)) for all x, y, z ∈ [0, 1].

Taking y = z, then I(x, S1(y, y)) = I(x, y) for all x, y ∈ [0, 1], i.e.,

Ix(S1(y, y)) = Ix(y) for all y ∈ [0, 1].
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For condition (i): for some x, the function Ix(y) is a strictly increasing function. Then S1(y, y)) = y for all y ∈ [0, 1].
Therefore S1 = SM .

For condition (ii): I satisfies (OP). Suppose that S1 ̸= SM , then there exists a y ∈ (0, 1) such that S1(y, y) > y.
Hence, there exists an x ∈ (0, 1) such that S1(y, y) > x > y, then I(x, S1(y, y)) = 1 > I(x, y) by (OP). A contradiction
to I(x, S1(y, y)) = I(x, y).

Proposition 3.15. Let T be a continuous Archimedean t-norm (a non-trivial ordinal sum of continuous Archimedean
t-norms, respectively) and IT its power based implication. If the triple (IT , S1, S2) satisfies (6), then S1 = SM ⇔ S2 =
SM .

Proof. (S1 = SM ⇒ S2 = SM )

Case 1: T is a continuous Archimedean t-norm. Suppose that t is an additive generator of T . Let x ≥ y, fix

y ∈ (0, 1). Since t is a continuous function with t(1) = 0, then Iy(x) =
t(x)
t(y) is onto [0, 1]. Hence S2 = SM by Lemma

3.13.

Case 2: T is a non-trivial ordinal sum of continuous Archimedean t-norms.
Without loss of generality assume that T = (< ai, bi, Ti >)i∈A, where A is an index set, Ti is a continuous

Archimedean t-norm with additive generator ti for all i ∈ A, and {(ai, bi)}i∈A be a family of non-empty, pairwise
disjoint open subintervals of [0, 1].

Taking x, y ∈ [ai, bi] with x ≥ y > ai. Fix y, then the following function

Iy(x) =
ti(

x−ai

bi−ai
)

ti(
y−ai

bi−ai
)
, x ∈ [y, bi],

is onto [0, 1]. Therefore S2 = SM by Lemma 3.13.
(S2 = SM ⇒ S1 = SM ) Since IT satisfies (OP), then S2 = SM ⇒ S1 = SM by Lemma 3.14.

Theorem 3.16. Let T be a nilpotent, continuous t-norm and IT its power based implication, then the triple (IT , S1, S2)
satisfies (6) if and only if S1 = SM , S2 = SM .

Proof. (Necessity) Let the triple (IT , S1, S2) satisfy (6), i.e,

IT (x, S1(y, z)) = S2(I
T (x, y), IT (x, z)). (13)

for all x, y, z ∈ [0, 1].
Suppose that t is an additive generator of T . Taking y = 0, z = 0 in (13), then

t(x)

t(0)
= S2

(
t(x)

t(0)
,
t(x)

t(0)

)
for all x ∈ [0, 1].

Let p = t(x)
t(0) , then p = S2(p, p) for all p ∈ [0, 1]. Hence S2 = SM . Therefore, S1 = SM by Lemma 3.14 (ii).

(Sufficiency) Obvious.

Proposition 3.17. Let A be an index set and (Ti)i∈A a family of continuous Archimedean t-norms, let (ai, bi)i∈A be
a family of non-empty, pairwise disjoint open subintervals of [0,1]. Let T be a non-trivial ordinal sum of continuous
Archimedean t-norms with the form (< ai, bi, Ti >)i∈A and IT its power based implication, let S1, S2 be t-conorms. If
there exists an i ∈ A such that ai = 0 and Ti is a nilpotent t-norm, or ai is an idempotent point of S1 and Ti is a
nilpotent t-norm, then the following statements are equivalent:

(i) The triple (IT , S1, S2) satisfies (6).
(ii) S1 = SM , S2 = SM .

Proof. Taking y = z = ai, and x ∈ [ai, bi]. The rest proof is similar to the proof of Theorem 3.16.

Problem 3.18. For the power based implication IT generated from a strict t-norm T , does the fact that the triple
(IT , S1, S2) satisfies (6) if and only if S1 = S2 = SM is true ?

Unfortunately, the answer is negative. To see this consider the following example.
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Example 3.19. Let T be a strict t-norm with additive generator t(x) = 1
x − 1, x ∈ [0, 1] and IT its power based

implication, i.e.,

IT (x, y) =

{
1, if x ≤ y,
y(1−x)
x(1−y) , otherwise

with the understanding 0
0 = 1. Let S1 be a t-conorm defined as following:

S1(x, y) =
x+ y − 2xy

1− xy
, x, y ∈ [0, 1],

with the understanding 0
0 = 1. Let S2 be the t-conorm SLK , i.e.,

S2(x, y) = min(x+ y, 1), x, y ∈ [0, 1].

For x, y, z ∈ [0, 1] with x > y, x > z.
Case 1: x = 1. Obviously, IT (x, S1(y, z)) = 0 = S2(0, 0) = S2(I

T (x, y), IT (x, z)).
Case 2: y = 0 or z = 0. Obviously, IT (x, S1(y, z)) = S2(I

T (x, y), IT (x, z)).
Case 3: x, y, z ∈ (0, 1). If x > S1(y, z), i.e., x > y+z−2yz

1−yz , then

IT (x, S1(y, z)) =
t(x)

t(S1(y, z))
= t(x) · S1(y, z)

1− S1(y, z)
= t(x) · y + z − 2yz

1− y − z + yz

= t(x) · (y − yz) + (z − yz)

(1− y)(1− z)
= t(x) ·

(
y

1− y
+

z

1− z

)
= t(x) ·

(
1

t(y)
+

1

t(z)

)
.

On the other hand, since

x >
y + z − 2yz

1− yz
⇔ 1

x
<

1− yz

y + z − 2yz

⇔ 1

x
− 1 <

1− y − z + yz

y + z − 2yz

⇔ (
1

x
− 1)

y + z − 2yz

1− y − z + yz
< 1

⇔ (
1

x
− 1)

(y − yz) + (z − yz)

(1− y)(1− z)
< 1

⇔ (
1

x
− 1)(

y

1− y
+

z

1− z
) < 1

⇔ (
1

x
− 1)

(
1

1
y − 1

+
1

1
z − 1

)
< 1

⇔
1
x − 1
1
y − 1

+
1
x − 1
1
z − 1

< 1

⇔ t(x)

t(y)
+

t(x)

t(z)
< 1.

Then

S2(I
T (x, y), IT (x, z)) = min

(
t(x)

t(y)
+

t(x)

t(z)
, 1

)
=

t(x)

t(y)
+

t(x)

t(z)
.

Hence IT (x, S1(y, z)) = S2(I
T (x, y), IT (x, z)).

If x ≤ S1(y, z), i.e., x ≤ y+z−2yz
1−yz , then IT (x, S1(y, z)) = 1. Note that

x ≤ y + z − 2yz

1− yz
⇔ t(x)

t(y)
+

t(x)

t(z)
≥ 1.

Then S2(I
T (x, y), IT (x, z)) = 1. Thus IT (x, S1(y, z)) = S2(I

T (x, y), IT (x, z)).
From the above discussion, we get that the triple (IT , S1, S2) satisfies (6).

Obviously, the solution (S1, S2) of equation (6) involving IT may not be unique when T is a strict t-norm. Moreover,
we can be sure that S2 ̸= SD (SnM , respectively). See the following remark.
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Remark 3.20. (i) Let T be a continuous Archimedean t-norm. If the triple (IT , S1, S2) satisfies (6), then S2 ̸= SD.
Actually, suppose that S2 = SD, then S1 ̸= SM by Proposition 3.15. Hence there exists a y0 ∈ (0, 1) such that

1 > S1(y0, y0) > y0.
Consider an x0 ∈ [0, 1] such that 1 > x0 > S1(y0, y0), we get

IT (x0, S1(y0, y0)) < 1, IT (x0, y0) ∈ (0, 1).

Hence S2(I
T (x0, y0), I

T (x0, y0)) = 1, a contradiction to

IT (x0, S1(y0, y0)) = S2(I
T (x0, y0), I

T (x0, y0)).

(ii) For a power based implication IT (T ̸= TM ), if the triple (IT , S1, S2) satisfies (6), then S2 ̸= SnM .
Actually, suppose that S2 = SnM , then S1 ̸= SM by Proposition 3.15. Hence, there exists a y0 ∈ (0, 1) such that

1 > S1(y0, y0) > y0.

Case 1: T is a continuous Archimedean t-norm.
Assume that t is an additive generator of T . Consider an x0 ∈ (0, 1) such that

1 > x0 > max

(
S1(y0, y0), t

−1(
1

2
t(y0))

)
,

then t(x0)
t(y0)

< 1
2 . Thus

IT (x0, S1(y0, y0)) =
t(x0)

t(S1(y0, y0))
>

t(x0)

t(y0)
= S2(I

T (x0, y0), I
T (x0, y0)),

a contradiction to IT (x0, S1(y0, y0)) = S2(I
T (x0, y0), I

T (x0, y0)).

Case 2: T is a non-trivial ordinal sum t-norms.
Without loss of generality assume that T = (< ai, bi, Ti >)i∈A, where A is an index set, Ti is a continuous

Archimedean t-norm with additive generator ti for all i ∈ A, and (ai, bi)i∈A be a family of non-empty, pairwise disjoint
open subintervals of [0,1].

Case 2.1: y0 /∈ [ai, bi] for all i ∈ A. Consider an x0 ∈ (y0, S1(y0, y0)), then

IT (x0, S1(y0, y0)) = 1 > 0 = S2(I
T (x0, y0), I

T (x0, y0)),

a contradiction to IT (x0, S1(y0, y0)) = S2(I
T (x0, y0), I

T (x0, y0)).
Case 2.2: y0 ∈ [ai, bi] for an i ∈ A.
If S1(y0, y0) > bi, consider an x0 ∈ (bi, S1(y0, y0)), then

IT (x0, S1(y0, y0)) = 1 > 0 = S2(I
T (x0, y0), I

T (x0, y0)),

a contradiction to IT (x0, S1(y0, y0)) = S2(I
T (x0, y0), I

T (x0, y0)).
If S1(y0, y0) = bi, consider an x0 ∈ [ai, bi] such that

bi > x0 > ai + (bi − ai) · t−1

(
1

2
t(
y0 − ai
bi − ai

)

)
,

then
t(

x0−ai
bi−ai

)

t(
y0−ai
bi−ai

)
< 1

2 . Thus

IT (x0, S1(y0, y0)) = 1 >
t(x0−ai

bi−ai
)

t(y0−ai

bi−ai
)
= S2

(
IT (x0, y0), I

T (x0, y0)
)
,

a contradiction to IT (x0, S1(y0, y0)) = S2(I
T (x0, y0), I

T (x0, y0)).
If S1(y0, y0) < bi, consider an x0 ∈ [ai, bi] such that

bi > x0 > max

(
S1(y0, y0), ai + (bi − ai) · t−1

(
1

2
t(
y0 − ai
bi − ai

)

))
,
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then
t(

x0−ai
bi−ai

)

t(
y0−ai
bi−ai

)
< 1

2 . Thus

IT (x0, S1(y0, y0)) =
t(x0−ai

bi−ai
)

t(S1(y0,y0)−ai

bi−ai
)
>

t(x0−ai

bi−ai
)

t(y0−ai

bi−ai
)
= S2

(
IT (x0, y0), I

T (x0, y0)
)
,

a contradiction to IT (x0, S1(y0, y0)) = S2(I
T (x0, y0), I

T (x0, y0)).
Therefore, S2 ̸= SnM .

In the following, we give a result on the solution of equation (6) involving IT when T is a strict t-norm.

Proposition 3.21. Let T be a strict t-norm and IT its power based implication, and let S1, S2 be t-conorms. If the
triple (IT , S1, S2) satisfies (6), then S1 is either idempotent or S1(y, y) > y for all y ∈ (0, 1).

Proof. Let t be an additive generator of T . If there exists a y0 ∈ (0, 1) such that S1(y0, y0) = y0, then from the triple
(IT , S1, S2) satisfies (6) we get that for all x ∈ [y0, 1],

t(x)

t(y0)
= S2

(
t(x)

t(y0)
,
t(x)

t(y0)

)
.

Let p = t(x)
t(y0)

, x ∈ [y0, 1]. Then S2(p, p) = p for all p ∈ [0, 1]. Hence S2 = SM , thus S1 = SM by Proposition 3.15.

If there is not a y0 ∈ (0, 1) such that S1(y0, y0) = y0, obviously, S1(y, y) > y for all y ∈ (0, 1).

Proposition 3.22. Let T be a strict t-norm with additive generator t and IT its power based implication, let S2 be the
following t-conorm:

S2(x, y) = min
(
(x

1
α + y

1
α )α, 1

)
, x, y ∈ [0, 1], α > 0.

Then there exists a t-conorm S1 with the following additive generator

s1(x) = t(x)−
1
α , x ∈ [0, 1], α > 0,

such that the triple (IT , S1, S2) satisfies (6).

Proof. Since T is strict, then t is continuous, strictly decreasing, with t(0) = ∞ and t(1) = 0. Thus the function
s1 : [0, 1] → [0,∞] defined by

s1(x) = t(x)−
1
α , x ∈ [0, 1], α > 0,

is continuous, strictly increasing, with s1(0) = 0 and s1(1) = ∞. Therefore,

S1(x, y) = s−1
1 (s1(x) + s1(y)) = t−1

((
t(x)−

1
α + t(y)−

1
α

)−α
)
,

is a strict t-conorm by Theorem 2.2.6 in [4].
Let x, y, z ∈ [0, 1] with x > y and x > z.
Case 1: x = 1, or y = 0, or z = 0. Obviously, IT (x, S1(y, z)) = S2(I

T (x, y), IT (x, z)).
Case 2: x, y, z ∈ (0, 1). If x > S1(y, z), then

IT (x, S1(y, z)) =
t(x)

t(S1(y, z))
= t(x) ·

(
t(y)−

1
α + t(z)−

1
α

)α
=

((
t(x)

t(y)

) 1
α

+

(
t(x)

t(z)

) 1
α

)α

.

On the other hand, note that x > S1(y, z) ⇔
((

t(x)
t(y)

) 1
α

+
(

t(x)
t(z)

) 1
α

)α

< 1. Then

S2

(
IT (x, y), IT (x, z)

)
= min

(((
t(x)

t(y)

) 1
α

+

(
t(x)

t(z)

) 1
α

)α

, 1

)
=

((
t(x)

t(y)

) 1
α

+

(
t(x)

t(z)

) 1
α

)α

,

thus, we get
IT (x, S1(y, z)) = S2(I

T (x, y), IT (x, z)).

If x ≤ S1(y, z), note that x ≤ S1(y, z) ⇔
((

t(x)
t(y)

) 1
α

+
(

t(x)
t(z)

) 1
α

)α

≥ 1, then

IT (x, S1(y, z)) = 1 = S2(I
T (x, y), IT (x, z)).

From the above discussion, the triple (IT , S1, S2) satisfies (6).
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Next, we give a result on the solution of equation (6) involving IT when T = (< ai, bi, Ti >)i∈A, where Ti is a strict
t-norm for all i ∈ A.

Proposition 3.23. Let T be a non-trivial ordinal sum of t-norms with the form (< ai, bi, Ti >)i∈A and IT its power
based implication, where A is an index set, (Ti)i∈A is a family of strict t-norms, and (ai, bi)i∈A be a family of non-empty,
pairwise disjoint open subintervals of [0,1]. Let S2 be the following t-conorm:

S2(x, y) = min
(
(x

1
α + y

1
α )α, 1

)
, x, y ∈ [0, 1], α > 0.

Then there exists a t-conorm S1 with the following form:

S1 = (< ai, bi, S1i >)i∈A,

such that the triple (IT , S1, S2) satisfies (6), where S1i is a t-conorm with additive generator s1i(x) = ti(x)
− 1

α , x ∈ [0, 1],
and ti is an additive generator of Ti for all i ∈ A.

Proof. It is easy to see that, for every i ∈ A, the following function

s1i(x) = ti(x)
− 1

α , x ∈ [0, 1]

is strictly increasing, continuous, with s1i(0) = 0 and s1i(1) = ∞. Therefore,

S1i(x, y) = s−1
1i (s1i(x) + s1i(y)) = t−1

i

((
ti(x)

− 1
α + ti(y)

− 1
α

)−α
)
, x, y ∈ [0, 1]

is a t-conorm by Theorem 2.2.6 in [4]. Obviously, for x < 1 and y < 1, we have

S1i(x, y) < 1. (14)

In fact, suppose that x < 1 and y < 1, then s1i(x) < ∞, s1i(y) < ∞. Thus s1i(x) + s1i(y) < ∞. Therefore,
s−1
1i (s1i(x) + s1i(y)) < 1, i.e., S1i(x, y) < 1.

Let S1 be a function defined by

S1(x, y) =

{
ai + (bi − ai) · S1i(

x−ai

bi−ai
, y−ai

bi−ai
), if x, y ∈ [ai, bi],

max(x, y), otherwise.
(15)

Then S1 is a non-trivial ordinal sum of t-conorms by Corollary 3.58 in [11], i.e., S1 = (< ai, bi, S1i >)i∈A. Obviously, if
x < ai and y < ai for some i ∈ A, then we have

S1(x, y) < ai. (16)

In fact, let x < ai, y < ai for some i ∈ A. If there exists a k ∈ A such that x, y ∈ [ak, bk] (k ̸= i), then bk ≤ ai. For
bk < ai, we get

S1(x, y) = ak + (bk − ak) · S1k(
x− ak
bk − ak

,
y − ak
bk − ak

) ≤ ak + (bk − ak) = bk < ai.

For bk = ai, since x < ai and y < ai, i.e., x < bk and y < bk, then

x− ak
bk − ak

< 1,
y − ak
bk − ak

< 1.

Hence, by (14) we get

S1k(
x− ak
bk − ak

,
y − ak
bk − ak

) < 1.

Thus,

S1(x, y) = ak + (bk − ak) · S1k(
x− ak
bk − ak

,
y − ak
bk − ak

) < ak + (bk − ak) = bk = ai.

If there is not a k ∈ A such that x, y ∈ [ak, bk], then S1(x, y) = max(x, y) < ai.
In the following, we prove that the triple (IT , S1, S2) satisfies (6).
Let x, y, z ∈ [0, 1] with x > y and x > z.
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Case 1: for every i ∈ A, x /∈ [ai, bi], y /∈ [ai, bi] and z /∈ [ai, bi]. Then

IT (x, S1(y, z)) = IT (x,max(y, z)) = 0 = S2(I
T (x, y), IT (x, z)).

Case 2: there exists an i ∈ A, such that x /∈ [ai, bi], y /∈ [ai, bi] and z ∈ [ai, bi]. If y ≥ z, then

IT (x, S1(y, z)) = IT (x,max(y, z)) = IT (x, y) = S2(I
T (x, y), 0) = S2(I

T (x, y), IT (x, z)).

If y < z, then IT (x, y) = 0 by IT (x, y) ≤ IT (x, z) = 0. Thus

IT (x, S1(y, z)) = IT (x,max(y, z))

= IT (x, z)

= 0

= S2(0, 0)

= S2(I
T (x, y), IT (x, z)).

Case 3: there exists an i ∈ A, such that x /∈ [ai, bi], y ∈ [ai, bi] and z /∈ [ai, bi]. The rest of the proof is similarly to
Case 2.

Case 4: there exists an i ∈ A, such that x ∈ [ai, bi], y /∈ [ai, bi] and z /∈ [ai, bi]. Since x > y and x > z, then y < ai
and z < ai. Thus S1(y, z) < ai by (16). Therefore,

IT (x, S1(y, z)) = 0 = S2(I
T (x, y), IT (x, z)).

Case 5: there exists an i ∈ A, such that x /∈ [ai, bi], y ∈ [ai, bi] and z ∈ [ai, bi]. It is easy to see that

IT (x, S1(y, z)) = 0 = S2(I
T (x, y), IT (x, z)).

Case 6: there exists an i ∈ A, such that x ∈ [ai, bi], y ∈ [ai, bi] and z /∈ [ai, bi]. Since, x > z, then z < ai. Thus

IT (x, S1(y, z)) = IT (x, y) = S2(I
T (x, y), 0) = S2(I

T (x, y), IT (x, z)).

Case 7: there exists an i ∈ A, such that x ∈ [ai, bi], y /∈ [ai, bi] and z ∈ [ai, bi]. Similar to Case 6.
Case 8: there exists an i ∈ A, such that x, y, z ∈ [ai, bi]. The rest of the proof is analogue to the proof of

Proposition 3.22.

Table 2 summarizes the distributivity solutions of the power based implication IT . Here, T is a continuous
Archimedean t-norm, or a non-trivial ordinal sum of continuous Archimedean t-norms.

Table 2: Distributivity solutions of the power based implication IT (T ̸= TM )

Equation Universal solution Other solution

IT (S(x, y), z) = T1(I
T (x, z), IT (y, z)) S = SM , T1 = TM None

IT (T1(x, y), z) = S(IT (x, z), IT (y, z)) T1 = TM , S = SM
T1 = T , S = SLK and
T1 = T ∗

1 , S = S∗, etc.

IT (x, T1(y, z)) = T2(I
T (x, y), IT (x, z)) T1 = TM , T2 = TM None

IT (x, S1(y, z)) = S2(I
T (x, y), IT (x, z)) S1 = SM , S2 = SM

T is nilpotent: None
T is T ⋆: None

T is strict: S1 = S⋆
1 , S2 = S∗, etc.

T is T ⋆⋆: S1 = S⋆⋆
1 , S2 = S∗, etc.

Note (i) T ∗
1 has an additive generator t1(x) = (k · t(x))

1
α , x ∈ [0, 1] when T has a continuous additive generator t, or

T ∗
1 = (< ai, bi, T1i >)i∈A when T = (< ai, bi, Ti >)i∈A, where T1i has an additive generator t1i(x) = (k · ti(x))

1
α , x ∈ [0, 1], ti

is a continuous additive generator of Ti, i ∈ A, k > 0, α > 0.

(ii) S∗(x, y) = min
(
(x

1
α + y

1
α )α, 1

)
, x, y ∈ [0, 1], where α > 0.
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(iii) T ⋆ = (< ai, bi, Ti >)i∈A. There exists an i ∈ A such that ai = 0, and Ti is nilpotent, or ai is an idempotent point of S1

and Ti is nilpotent.

(iv) S⋆
1 (x, y) = t−1

((
t(x)−

1
α + t(y)−

1
α

)−α
)
, x, y ∈ [0, 1], α > 0, where t is an additive generator of T .

(v) T ⋆⋆ = (< ai, bi, Ti >)i∈A, where (Ti)i∈A is a family of strict t-norms.

(vi) S⋆⋆ = (< ai, bi, S1i >)i∈A, where S1i(x, y) = t−1
i

((
ti(x)

− 1
α + ti(y)

− 1
α

)−α
)
, x, y ∈ [0, 1], ti is an additive generator of

Ti in T ⋆⋆, i ∈ A.

4 Conclusions

In this paper, four distributivity equations of T -power based implications are deeply studied respectively. This
study shows that the equations (3) and (5) have a unique solution, while the the equations (4) and (6) have multiple
solutions. This study has a certain significance for the application of T -power based implication in rule reduction.
However, it is difficult to find all solutions for equations (4) and (6), this is a problem to be solved in the future.
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Appendix A: The distributivity laws of implication ITM .

(1) Let T be a t-norm, and S a t-conorm. Then the triple (ITM , S, T ) satisfies (3) if and only if S = SM .
Proof.(Necessity) Let the triple (ITM , S, T ) satisfy (3). Then, for all x, y, z ∈ [0, 1], we get

ITM (S(x, y), z) = T (ITM (x, z), ITM (y, z)).

Putting x = y = z, then ITM (S(x, x), x) = T (ITM (x, x), ITM (x, x)) = 1. Since ITM satisfies (OP), then S(x, x) ≤ x.
Since S(x, x) ≥ x, thus S(x, x) = x for all x ∈ [0, 1]. Hence S = SM .

(Sufficiency) Let S = SM . It suffice to prove that

ITM (S(x, y), z) = T (ITM (x, z), ITM (y, z)) (17)

for all x, y, z ∈ [0, 1].
If x ≤ y ≤ z, then ITM (S(x, y), z) = ITM (y, z) = 1, T (ITM (x, z), ITM (y, z)) = T (1, 1) = 1. Thus equation (17) holds.
If x ≤ z < y, then ITM (S(x, y), z) = ITM (y, z) = 0, T (ITM (x, z), ITM (y, z)) = T (1, 0) = 0. Thus equation (17) holds.
If z < x ≤ y, then ITM (S(x, y), z) = ITM (y, z) = 0, T (ITM (x, z), ITM (y, z)) = T (0, 0) = 0. Thus equation (17) holds.
If x > y ≥ z, then ITM (S(x, y), z) = ITM (x, z) = 0, T (ITM (x, z), ITM (y, z)) = T (0, ITM (y, z)) = 0. Thus equation

(17) holds.
If x > z > y, then ITM (S(x, y), z) = ITM (x, z) = 0, T (ITM (x, z), ITM (y, z)) = T (0, ITM (y, z)) = 0. Thus equation

(17) holds.
If z ≥ x > y, then ITM (S(x, y), z) = ITM (x, z) = 1, T (ITM (x, z), ITM (y, z)) = T (1, 1) = 1. Thus the equation (17)

holds.
From the above discussion, equation (17) holds for all x, y, z ∈ [0, 1].
(2) Let T be a t-norm, and S a t-conorm. Then the triple (ITM , T, S) satisfies (4) if and only if T = TM .
Proof. (Necessity) Let the triple (ITM , T, S) satisfy (4), i.e.,

ITM (T (x, y), z) = S(ITM (x, z), ITM (y, z)), for all x, y, z ∈ [0, 1].

Assume that T ̸= TM , then there exists an x0 ∈ (0, 1) such that T (x0, x0) < x0. Taking z0 ∈ (0, 1) such that
T (x0, x0) < z0 < x0. Thus

ITM (T (x0, x0), z0) = 1 > 0 = S(ITM (x0, z0), I
TM (x0, z0)).

A contradiction to the triple (ITM , T, S) satisfies (4).
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(Sufficiency) Let T = TM , and x, y, z ∈ [0, 1]. If x ≤ z or y ≤ z, then T (x, y) = TM (x, y) ≤ z. Thus

ITM (T (x, y), z) = 1 = S(ITM (x, z), ITM (y, z)).

If x > z and y > z, then T (x, y) = TM (x, y) > z. Thus

ITM (T (x, y), z) = 0 = S(0, 0) = S(ITM (x, z), ITM (y, z)).

From the above discussion, we get that the triple (ITM , T, S) satisfies (4).
(3) Let T1, T2 be t-norms. Then the triple (ITM , T1, T2) satisfies (5) if and only if T1 = TM .
Proof. (Necessity) Let the triple (ITM , T1, T2) satisfy (5). Then

ITM (x, T1(y, z)) = T2(I
TM (x, y), ITM (x, z)) for all x, y, z ∈ [0, 1].

Taking x = y = z. Then ITM (x, T1(x, x)) = T2(I
TM (x, x), ITM (x, x)) = 1. Since ITM satisfies (OP), then x ≤ T1(x, x)

for all x ∈ [0, 1]. Thus T1(x, x) = x, i.e., T1 = TM .
(Sufficiency) Let T1 = TM . If x > y or x > z, then x > T1(y, z). Thus

ITM (x, T1(y, z)) = 0 = T2(I
TM (x, y), ITM (x, z)).

If x ≤ y and x ≤ z, then x ≤ TM (y, z) = T1(y, z). Thus

ITM (x, T1(y, z)) = 1 = T2(I
TM (x, y), ITM (x, z)).

From the above discussion, we get ITM (x, T1(y, z)) = T2(I
TM (x, y), ITM (x, z)) for all x, y, z ∈ [0, 1], i.e., the triple

(ITM , T1, T2) satisfies (5).
(4) Let S1, S2 be t-conorms. Then the triple (ITM , S1, S2) satisfies (6) if and only if S1 = SM .
Proof. (Necessity) Let the triple (ITM , S1, S2) satisfy (6), then

ITM (x, S1(y, z)) = S2(I
TM (x, y), ITM (x, z)) for all x, y, z ∈ [0, 1].

Assume that S1 ̸= SM , then there exists a y0 ∈ (0, 1) such that y0 < S1(y0, y0). Taking x0 ∈ (0, 1) such that
y0 < x0 < S1(y0, y0). Thus

ITM (x0, S1(y0, y0)) = 1 > 0 = S2(0, 0) = S2(I
TM (x0, y0), I

TM (x0, y0)).

A contradiction to the triple (ITM , S1, S2) satisfies (6).
(Sufficiency) Let S1 = SM , and x, y, z ∈ [0, 1]. If x ≤ y or x ≤ z, then x ≤ S1(y, z). Thus

ITM (x, S1(y, z)) = 1 = S2(I
TM (x, y), ITM (x, z)).

If x > y and x > z, then x > SM (y, z) = S1(y, z). Thus

ITM (x, S1(y, z)) = 0 = S2(0, 0) = S2(I
TM (x, y), ITM (x, z)).

From the above discussion, it is easy to see that the triple (ITM , S1, S2) satisfies (6)
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[5] M. Baczyński, B. Jayaram, (S,N)- and R-implications: A state-of-the-art survey, Fuzzy Sets and Systems, 159(14)
(2008), 1836-1859.
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