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Abstract

Recently, Vemuri and Jayaram proposed a novel method of generating fuzzy implications, called the
~-composition, from a given pair of fuzzy implications [Representations through a Monoid on the set of
Fuzzy Implications, Fuzzy Sets and Systems, 247, 51-67]. However, as with any generation process, the ~-
composition does not always generate new fuzzy implications. In this work, we study the generative power
of the ~-composition. Towards this end, we study some specific functional equations all of which lead to
the solutions of the iterative functional equation I(x, I(x, y)) = I(x, y) involving fuzzy implications which
has been studied extensively for different families of fuzzy implications in this very journal, see [Information
Sciences 177, 2954–2970 (2007); 180, 2487–2497 (2010); 186, 209–221 (2012)]. In this work, unlike in other
existing works, we do not restrict the solutions to a particular family of fuzzy implications. Thus we take
an algebraic approach towards solving these functional equations. Viewing the ~-composition as a binary
operation ~ on the set I of all fuzzy implications one obtains a monoid structure (I,~) on the set I. From the
Cayley’s theorem for monoids, we know that any monoid is isomorphic to the set of all right translations.
We determine the complete set K of fuzzy implications w.r.t. which the right translations also become
semigroup homomorphisms on the monoid (I,~) and show that K not only answers our questions regarding
the generative power of the ~-composition but also contains many as yet unknown solutions of the iterative
functional equation I(x, I(x, y)) = I(x, y).

Keywords: Semigroup, monoid, homomorphism, center, idempotent element, right absorbing element,
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1. Introduction

Fuzzy implications are a generalisation of classical implication from two valued logic to multivalued logic.
Fuzzy implications are defined as follows:

Definition 1.1 ([4], Definition 1.1.1). A function I : [0, 1]2 −→ [0, 1] is called a fuzzy implication if it
satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

if x1 ≤ x2, then I(x1, y) ≥ I(x2, y) , i.e., I( · , y) is decreasing , (I1)
if y1 ≤ y2, then I(x, y1) ≤ I(x, y2) , i.e., I(x, · ) is increasing , (I2)
I(0, 0) = 1 , I(1, 1) = 1 , I(1, 0) = 0 . (I3)
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The set of all fuzzy implications will be denoted by I. Table 1 (see also [4]) lists some examples of basic
fuzzy implications.

Name Formula
 Lukasiewicz ILK(x, y) = min(1, 1− x+ y)

Gödel IGD(x, y) =

{
1, if x ≤ y
y, if x > y

Reichenbach IRC(x, y) = 1− x+ xy
Kleene-Dienes IKD(x, y) = max(1− x, y)

Rescher IRS(x, y) =

{
1, if x ≤ y
0, if x > y

Weber IWB(x, y) =

{
1, if x < 1
y, if x = 1

Smallest I0(x, y) =

{
1, if x = 0 or y = 1
0, if x > 0 and y < 1

Largest I1(x, y) =

{
1, if x < 1 or y > 0
0, if x = 1 and y = 0

Most Strict ID(x, y) =

{
1, if x = 0
y, if x > 0

Table 1: Examples of some basic fuzzy implications

Fuzzy implications play an important role in many fields like, fuzzy control, decision making, fuzzy
image processing, data mining, approximate reasoning etc. Due to their applicational value it is essential to
generate fuzzy implications that are fit for a specific task.

Recently, in [34], the authors had proposed a novel generative method, called the ~-composition, which
derives fuzzy implications from a given pair of fuzzy implications.

Definition 1.2 ([34], Definition 7). For any two fuzzy implications I, J , their ~-composition defined as
follows is a fuzzy implication:

(I ~ J)(x, y) = I(x, J(x, y)), x, y ∈ [0, 1] . (1)

Note that the novelty of the proposed ~-composition arises from the following facts:

(i) It is the first composition that does not employ any other fuzzy logic connective(s) or parameters to
help in the generation of fuzzy implications.

(ii) Further, the operation ~ not only leads to newer implications but also to a richer algebraic structure,
namely a non-idempotent monoid, see Theorem 2.6 below, on the set I of fuzzy implications.

The algebraic aspects of the monoid (I,~) have already been explored in [36] leading up to hitherto
unknown representations of the Yager’s families of fuzzy implications.

1.1. Motivation for this work
As with any generation process, it is not necessary that the ~-composition always generates newer fuzzy

implications different from the given pair of fuzzy implications. For instance, for a given pair I, J ∈ I, their
~-composition I ~ J may be either of I or J . Thus it is essential to determine the power of the generation
process. This forms the main motivation for this work.

Towards this end, specifically, the following questions regarding the generation process are explored in
this work:
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Question 1: Note that, from Definition 1.2, we see that the ~-composition, in general, is not commuta-
tive, i.e., I ~ J 6= J ~ I always. Looking at the ~-composition as a generation process, this non-
commutativity is more a boon than a bane, since it is apparent that if they are equal then we obtain
only half the number of new implications than we could. Hence it is important to find the set of all
J ∈ I that commute with every I ∈ I to know clearly when the generative power of the ~-composition
can diminish. Note that algebraically speaking, this is nothing but the center Z of the monoid (I,~).

Question 2: Similarly, another subset of I that does not lead to new fuzzy implications is the following: the
set of all J ∈ I that when composed with any I ∈ I subsumes it, i.e., I~J = J . Once again, algebraically
speaking, these are the right absorbing elements of the ~-composition on I. Thus determining these
right, and left, absorbing elements helps in understanding the generative power of the ~-composition.

Question 3: Finally, let J = I ∈ I. Then clearly I ~ J = I ~ I ∈ I. Note that this self-composition may or
may not produce a different fuzzy implication than I. The case where it does produce different fuzzy
implications, i.e., I~I 6= I, and the limit of this repeated self-composition has already been studied in
another work, see [35]. In this work, we investigate the other case, i.e., the set of all fuzzy implications
I where I ~ I = I. Clearly, answering this question is the algebraic equivalent of determining the set
of all idempotent elements of the monoid (I,~).

1.2. Main Contributions of this work
The main contributions of this work can be seen as two-fold in the context of both algebra and functional

equations.
On the one hand, as is already alluded to above, answering the three questions listed above is equivalent

to determining some special subsets of the set I of all fuzzy implications all of which have an algebraic
connotation in the monoid (I,~), viz., the set of all right or left absorbing elements, commuting and
idempotent elements of the ~-composition.

On the other hand, all the above three questions can also be seen as determining the solutions of
functional equations involving fuzzy implications - a topic that has been an intense area of research for two
main reasons - due to their applicational value (see for instance, [8, 19, 20]) and theoretical importance, see
for instance, [5, 7, 9, 11, 12, 13, 14, 21, 23, 27, 29, 30, 31, 32].

In fact, many such works have appeared in this very journal [1, 22, 33, 37, 38].
Question 1 leads us to consider the solution set Z ⊆ I of the functional equation

I(x, J(x, y)) = J(x, I(x, y)), x, y ∈ [0, 1] , (2)

while solving Question 2 determines all those J ∈ R, I ∈ L ⊆ I that satisfy the functional equations

I(x, J(x, y)) = J(x, y), x, y ∈ [0, 1] , (3)

I(x, J(x, y)) = I(x, y), x, y ∈ [0, 1] , (4)

respectively. Question 3 leads to the functional equation

I(x, I(x, y)) = I(x, y), x, y ∈ [0, 1] . (5)

Let us denote the set of all fuzzy implications that satisfy the functional equation (5) as I ( I.
The iterative functional equation (5) is well-known in the literature, as also the fact that obtaining

its complete solution set is a non-trivial problem. In fact, this can be seen from the many works that
have appeared in this very journal [33, 37, 38]. While this functional equation has been dealt with by
many authors, see for instance, [29, 31, 32], their approach has always been to determine the subset of
a particular family of fuzzy implications that are solutions for the equation (5). In this work we do not
restrict our study to any specific family of fuzzy implications. Further, we also obtain both characterizations
and representations of the solutions of the above functional equations. It should also be pointed out that
some of the functions presented as solutions of (5) in some of the works cited above are, in fact, not fuzzy
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implications. In Section 8, we discuss the results obtained in this work in light of the known results from
the existing works.

Our study reveals also an interesting fact. It is easy to see that, in any monoid, the right and left
absorbing elements are also idempotent elements, i.e., R,L ⊆ I. Clearly, if J ∈ R then J ~ J = J and
hence J ∈ I. However, in the monoid (I,~) the center Z ( I, i.e., the set of all commuting elements w.r.t.
the ~-composition are also its idempotent elements and hence are solutions of (5), a property that is not
true, in general, in every monoid. Thus, in one sense, the entire work contained in this submission could
also be seen as largely dealing with the functional equation (5).

1.3. Uniqueness of the approach in this work
Based on the discussions so far, it is clear that one could take two different approaches to answer the

above questions - either a purely functional equation approach or an algebraic approach. Note that in the
absence of any restrictions on I, J ∈ I employed in the above functional equations, viz., their form, properties,
representations or the families they come from - as is done in the works cited above, the functional equation
approach is quite hard to pursue. Hence in this work, we have taken the latter approach.

As was already shown in [34], (I,~) becomes only a monoid but not a group. From the Cayley’s theorem
for monoids, we know that any monoid (M,⊗) is isomorphic to the set T ( MM of all right translations,
where T = {ga : M −→M|ga(x) = x⊗ a, for a fixed a ∈M}. In the context of (I,~) the set T is given by

T = {gK : I −→ I | gK(I) = I ~K, for a fixed K ∈ I}.

While it is easy to see that every gK is a lattice homomorphism on the bounded lattice (I,∧,∨, I0, I1)
(see Proposition 2.10 below for more details), the following posers still remain:

(i) Do all the right translations gK become semigroup / monoid homomorphisms on (I,~)?
(ii) If not, what is the subset K ( I such that for K ∈ K the corresponding gK ’s become a semigroup /

monoid homomorphism?
(iii) Does the set K have any algebraic significance?

In this work, by answering the above posers completely, we show that we solve also Questions 1 and
2 completely. While Question 3 is still not completely solved, we show that the above set K is totally
contained in the set of idempotent elements, or equivalently, included in the solution set of the functional
equation (5).

Further, we show that the set K contains fuzzy implications that are completely different from those
fuzzy implications that are obtained as solutions of (5) by various authors, see, [29, 31, 32, 33, 37, 38]. Note
also that our approach allows us to obtain clear and complete representations of fuzzy implications that are
solutions to the functional equations (2) and (3).

1.4. Outline of the paper
In Section 2, we recall the notion of right translations on a monoid and the lattice ordered monoid

structure (I,~) that was proposed in [36]. Further, we introduce the right translations gK on the monoid
(I,~) and show that not all of them become semigroup homomorphisms (denoted s.g.h, henceforth) on
(I,~). Hence, in Section 3, we undertake this study and obtain a few necessary conditions on K ∈ I such
that gK is an s.g.h., or equivalently K ∈ K, and show that one such condition on K ∈ I is that it must
be idempotent. Following this, we split our study based on the range of the considered fuzzy implication
K ∈ K.

In Section 4, we investigate the representations of trivial range fuzzy implications K ∈ K and based
on their representations show that they form the set of all right absorbing elements of the monoid (I,~),
thus obtaining the solutions of the functional equation (3). In Section 5, we show that in the case of non-
trivial range fuzzy implications K ∈ K, the vertical section K(1, y) must be of the following forms: either,
K(1, y) = y for all y ∈ [0, 1], in which case K has (NP) (see Definition 5.4) or K(1, y) = 0 for all y ∈ [0, 1).

In Section 6, we characterise the set of all K ∈ K satisfying (NP) and obtain their representations, which
show that they are precisely the set of all commuting elements of (I,~), viz., the center of the monoid, thus
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solving the functional equation (2). More importantly, we show that the set of all commuting elements of
the monoid (I,~) is a proper subset of the set of all idempotent elements of the same, which also shows that
every solution of (2) is also a solution of (5). The representations of fuzzy implications K ∈ K satisfying
K(1, y) = 0 for all y ∈ [0, 1) is discussed in Section 7. In Section 8, we compare the known solutions of
the functional equation (5), as presented in [33, 37, 38], with the solutions that are obtained as the fuzzy
implications K ∈ K. This section also highlights the as yet unknown solutions of (5) found through our
investigations in this work.

2. Right Translations on the Monoid (I, ~)

Translations are one of the important transformations that can be defined on a semigroup. In [15],
Clifford introduced the notion of translations in the context of extension of semigroups, and later on, their
role has been studied in different contexts, for more details see, for instance, [26].

2.1. Left and Right Translations on a general monoid
In this subsection we review some important concepts related to translations, inner translations and their

role in the embedding of semigroups.

Definition 2.1 ([26], Chapter 10, Definition 7.2). A transformation ψ of a semigroup (U, ·) is called a
left (right) translation if for any elements x and y of U ,

ψ(x · y) = ψ(x) · y (ψ(x · y) = x · ψ(y)) .

For every a ∈ U , the functions φa(x) = a · x and ψa(x) = x · a are left and right translations of U ,
respectively, and are called the inner left and inner right translations induced by a.

Theorem 2.2 ([26], Chapter 10, Theorem 7.5). In a semigroup U , every left (right) translation is an inner
right translation if and only if U has left (right) identity.

Theorem 2.3 ([26], Chapter 10, Theorem 7.7). If a semigroup U has an identity then every translation,
both left and right, is inner.

The following is the Cayley’s theorem for semigroups.

Theorem 2.4 ([24], Theorem 2.34). For every semigroup U there exists a set X and an injective map
φ : U → XX which is a morphism of semigroups from U to XX .

The above result states that every semigroup U is isomorphic to a subsemigroup of the semigroup of all
transformations on an appropriate set X. In fact, from the usual proofs of this result, see for instance, [26],
it can be seen that U is isomorphic to the set of all right translations defined over U .

2.2. A Lattice Ordered Monoid of Fuzzy Implications: (I,~,∨,∧)
As noted in the Introduction, in [34] (see Definition 7), the following generating method of fuzzy impli-

cations from fuzzy implications has been proposed.

Definition 1.2. Given I, J ∈ I, define I ~ J : [0, 1]2 −→ [0, 1] as

(I ~ J)(x, y) = I(x, J(x, y)), x, y ∈ [0, 1] .

Theorem 2.5 ([34], Theorem 10). The function I ~ J is a fuzzy implication, i.e., I ~ J ∈ I.

Table 2 shows some new fuzzy implications obtained from some of the basic fuzzy implications listed in
Table 1 via the ~-composition defined in Definition 1.2. From Table 2 we see that the ~-composition can
indeed generate newer fuzzy implications from given pair of fuzzy implications, though not always.

Theorem 2.5 shows also that ~ is indeed a binary operation on the set I. The following result shows
that ~ makes I a monoid. Note that this is the richest algebraic structure obtained so far on the set I
without any assumptions.
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I J I ~ J

IRC ILK

{
1, if x ≤ y
1− x2 + xy, if x > y

IKD IRS

{
1, if x ≤ y
1− x, if x > y

IRC IKD max(1− x2, 1− x+ xy)

IGD ILK

{
1, if x ≤ 1+y

2

1− x+ y, otherwise
I I1 I1
ILK IGD ILK

IGD IGD IGD

Table 2: Compositions of some fuzzy implications w.r.to ~.

Theorem 2.6 ([34], Theorem 11). (I,~) forms a monoid, whose identity element is given by

ID(x, y) =

{
1, if x = 0,
y, if x > 0 .

Bandler and Kohout [10] were the first to employ the lattice operations of meet and join to obtain fuzzy
implications by taking the meet and join of fuzzy implications I and J , which are defined as follows:

(I ∨ J)(x, y) = max(I(x, y), J(x, y)), x, y ∈ [0, 1], I, J ∈ I , (Latt-Max)
(I ∧ J)(x, y) = min(I(x, y), J(x, y)), x, y ∈ [0, 1], I, J ∈ I . (Latt-Min)

Moreover, as was proven by Baczyński and Drewniak [3], these lattice operations produce a much stronger
structure on the set I of all fuzzy implications, as the following result illustrates.

Theorem 2.7 ([4], Theorem 6.1.1). The set I is a complete, completely distributive lattice with the lattice
operations join ∨ (Latt-Max) and meet ∧ (Latt-Min).

In fact, (I,∨,∧, I0, I1) is also a bounded lattice with I0, I1 being the smallest and greatest fuzzy impli-
cations. Note that from Theorem 2.6, we know that (I,~) is a monoid. Together with all these operations
we obtain the following result.

Lemma 2.8 ([36], Lemma 2.6). The quadruple (I,~,∨,∧) is a lattice ordered monoid.

2.3. Right Translations on the monoid (I,~)
In the following, we introduce the right translations on the monoid (I,~) and show that they are also

lattice homomorphisms.

Definition 2.9. For a fixed K ∈ I, define gK : (I,~) −→ (I,~) by

gK(I) = I ~K, I ∈ I.

Proposition 2.10. For every K ∈ I, the map gK is a lattice homomorphism.

Proof. Let K ∈ I. Let I, J ∈ I and x, y ∈ [0, 1]. Then,

gK(I ∨ J)(x, y) = ((I ∨ J) ~K)(x, y)
= (I ∨ J)(x,K(x, y))
= max(I(x,K(x, y)), J(x,K(x, y)))
= max((I ~K)(x, y), (J ~K)(x, y))
= (gK(I) ∨ gK(J))(x, y).
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Similarly, for any I, J ∈ I, one can prove that, gK(I ∧ J) = gK(I) ∧ gK(J). Thus gK is a lattice homomor-
phism.

Similar to the above Proposition one can easily prove the following result.

Theorem 2.11. The map gK is a monoid homomorphism ⇐⇒ K = ID, i.e., gK ≡ id.

From Theorem 2.11, it is clear that the identity function is the only monoid homomorphism on I. Hence
in this work, we study the semigroup homomorphisms of the form gK on the monoid (I,~).

While gK ’s are lattice homomorphisms for every K ∈ I, the function gK need not be a monoid or even a
semigroup homomorphism (denoted s.g.h hereon) on I for every K ∈ I as the following example illustrates.

Example 2.12. (i) On the one hand, when K(x, y) = ILK(x, y) = min(1, 1 − x + y), the  Lukasiewicsz
implication, the map gK is not an s.g.h. To see this, letting I(x, y) = IKD(x, y) = max(1− x, y) and
J(x, y) = IRC(x, y) = 1− x+ xy and x = 0.4, y = 0.2, we observe that

gILK
(I ~ J)(0.4, 0.2) = 0.92 6= 1 = (gILK

(I) ~ gILK
(J)) (0.4, 0.2) .

(ii) On the other hand, let K ∈ I be defined by

K(x, y) =

{
1, if x ≤ 0.5 ,
y, if x > 0.5 .

For any I, J ∈ I it is easy to see that

(I ~ J ~K)(x, y) = (I ~K ~ J ~K)(x, y) =

{
1, if x ≤ 0.5 ,
I(x, J(x, y)), if x > 0.5 ,

which implies that I ~ J ~K = I ~K ~ J ~K, or equivalently, gK(I ~ J) = gK(I) ~ gK(J). Thus
gK becomes an s.g.h. However, note that gK(ID) = ID ~K = K 6= ID. This implies that gK is only
an s.g.h. but not a monoid homomorphism.

Since gK is not an s.g.h for every K ∈ I, we investigate to characterise and, if possible, determine those
fuzzy implications K for which gK becomes an s.g.h., or equivalently, K ∈ I such that K ∈ K.

3. Necessary conditions on K ∈ I such that gK is an s.g.h.

In this section, we investigate some necessary conditions on K ∈ I such that K ∈ K.

Proposition 3.1. Let K ∈ I be arbitrarily fixed. Then the following statements are equivalent:

(i) gK is an s.g.h.
(ii) J ~K = K ~ J ~K for all J ∈ I.

Proof. (i) =⇒ (ii) : Let K ∈ I and gK be an s.g.h. Then for all I, J ∈ I, gK(I ~ J) = gK(I) ~ gK(J)
will imply I ~ J ~ K = I ~ K ~ J ~ K. If we take I = ID, the identity in (I,~), it follows that
J ~K = K ~ J ~K for all J ∈ I.

(ii) =⇒ (i) : Let K ∈ I be such that J ~ K = K ~ J ~ K for all J ∈ I. This directly implies that
I ~ J ~K = I ~K ~ J ~K for every I ∈ I, since every ~ is a well-defined function on I. Thus gK is

an s.g.h.

As a consequence of Proposition 3.1, we have the following result.

Lemma 3.2. Let K ∈ I be such that gK is an s.g.h. Then K ~K = K, i.e., K ∈ I.
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Proof. Let K ∈ I be such that gK is an s.g.h. From Proposition 3.1, it follows that J ~ K = K ~ J ~ K
for all J ∈ I. When J = ID, the identity of (I,~), we have that ID ~ K = K ~ ID ~ K, or equivalently,
K = K ~K.

Remark 3.3. The converse of Lemma 3.2 need not be true always, i.e., not every idempotent element K
of the monoid (I,~) makes gK an s.g.h.

For example, let K = IGD. Clearly, K ~K = K, see, Theorem 11 in [33]. However, gK is not an s.g.h.
To see this, let us consider J = Iβ ∈ I defined by

Iβ(x, y) =


1, if x = 0 or y = 1 ,
0, if x = 1 and y = 0 ,
β, otherwise.

(6)

Now, let β = 0.6, x = 0.4 and y = 0.2. Then

(Iβ ~ IGD)(0.4, 0.2) = Iβ(0.4, IGD(0.4, 0.2))
= Iβ(0.4, 0.2) = 0.6 ,

while, (IGD ~ Iβ ~ IGD)(0.4, 0.2) = IGD(0.4, Iβ(0.4, IGD(0.4, 0.2)))
= IGD(0.4, Iβ(0.4, 0.2)) = IGD(0.4, 0.6) = 1.

From Proposition 3.1, it follows that gK is not an s.g.h.

Let K denote the set of all fuzzy implications whose right translations become s.g.h., i.e.,

K = {K ∈ I | gK is an s.g.h.} .

The above two results present the necessary conditions that a K ∈ I should satisfy to belong to K, from
which we see that K ( I. Recall that I is the set of all fuzzy implications which satisfy the iterative
functional equation (5).

In our quest for determining K, we divide our analysis into two parts, viz., finding K ∈ K when the
range of K is trivial and when the range of K is non-trivial.

4. Representations of K ∈ K with Trivial Range

In this section, we determine completely the fuzzy implications K whose range is trivial, i.e., K(x, y) ∈
{0, 1} for all x, y ∈ [0, 1], and for whom the map gK is an s.g.h.

Towards this end, let us consider the following family of fuzzy implications, Kδ = {Kδ|δ ∈ [0, 1]} where
for δ = 0 we have,

K0(x, y) = I1(x, y) =

{
1, if x < 1 or y > 0,
0, if x = 1 and y = 0 ,

(7)

and for any δ ∈ (0, 1], we have

Kδ(x, y) =

{
1, if x < 1 or (x = 1 and y ≥ δ) ,
0, if x = 1 and y < δ .

Note that, w.r.t. pointwise ordering of functions, we have that sup Kδ = I1 and inf Kδ = ISW, given by

K1(x, y) = ISW(x, y) =

{
1, if x < 1 or y = 1,
0, if x = 1 and y 6= 1.

(8)
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Theorem 4.1. The following statements are equivalent:

(i) K ∈ K and the range of K is trivial.
(ii) K = Kδ for some δ ∈ [0, 1].

Proof. (i) =⇒ (ii). Let K ∈ K, i.e., gK is an s.g.h., and the range of K be trivial.
Claim: K(x, y) = 1, for all x ∈ [0, 1) and for all y ∈ [0, 1].
Proof of the claim :

• If x = 0, it is trivial that K(x, y) = 1 for all y ∈ [0, 1].

• Let 0 < x < 1. Suppose that for some y0 ∈ [0, 1), K(x, y0) < 1, i.e., K(x, y0) = 0. Since gK is an
s.g.h, it follows that J ~K = K ~ J ~K for all J ∈ I. Now,

(J ~K)(x, y0) = J(x,K(x, y0))
= J(x, 0),

(K ~ J ~K)(x, y0) = K(x, J(x,K(x, y0)))
= K(x, J(x, 0)).

Since the range of K is trivial, J(x, 0) ⊆ {0, 1} for all J ∈ I. This gives a contradiction if we
take a J ∈ I such that J(x, 0) /∈ {0, 1}.

Thus K(x, y) = 1, for all x < 1.
Now for x = 1, y ∈ [0, 1], we have either K(x, y) = 0 or K(x, y) = 1. Let us define

δ = sup{y ∈ [0, 1]|K(1, y) = 0}.

Let us take K ∈ I such that K(1, y) is right continuous. Then for y ≥ δ, K(1, y) = 1 and for y < δ,
K(1, y) = 0. Thus K = Kδ.

(ii) =⇒ (i). That any Kδ is of trivial range can be clearly seen from its definition, while the fact that
gKδ is an s.g.h. can be easily verified.

Remark 4.2. Note that in the proof of Theorem 4.1 we have chosen Kδ such that it is right-continuous
in the second variable when x = 1. However, if we choose Kδ such that it is left-continuous in the second
variable at x = 1, i.e., Kδ(1, y) = 1 when y > δ and Kδ(1, y) = 0 when y ≤ δ, it can be easily verified
that gKδ is still an s.g.h. This particular choice was made to conform to the tradition in the literature of
requiring right-continuity in the second variable, as in the case of implications from which the deresiduum
is constructed.

Interestingly, as the following result shows Kδ is precisely the set of all right absorbing elements of I
w.r.t. the ~-composition. Before doing so, recall that I0 ∈ I is defined as follows:

I0(x, y) =

{
1, if x = 0 or y = 1,
0, if x > 0 and y < 1 .

(9)

Lemma 4.3. Let R ⊂ I be the set of all right absorbing elements of ~. Then R = Kδ = {Kδ|δ ∈ [0, 1]}.

Proof. On the one hand, if K = Kδ for some δ ∈ [0, 1], then it is easy to see that I ~K = K for all I ∈ I.
Hence R ⊇ Kδ.

On the other hand, let K ∈ R, i.e., I ~K = K for all I ∈ I.
Claim: K(x, y) = {0, 1} for all x, y ∈ [0, 1], i.e., the range of K is trivial.
Proof of the claim: Clearly, if x = 0 or y = 1 then K(x, y) = 1 ∈ {0, 1}. Suppose for some x0 ∈ (0, 1], y0 ∈
[0, 1) that α = K(x0, y0) /∈ {0, 1}. Now,

(I0 ~K)(x0, y0) = I0(x0,K(x0, y0))
= I0(x0, α) = 0 6= α = K(x0, y0),

9



contradicting I ~K = K for all I ∈ I. Thus the range of K is trivial.
Claim: K(x, y) = 1, for all x ∈ [0, 1) and for all y ∈ [0, 1].
Proof of the claim: If x = 0, then it is trivial. So, let 0 < x < 1 be fixed arbitrarily. Suppose for y0 < 1,
that K(x, y0) < 1. Since the range of K is trivial, K(x, y0) = 0. Now,

(I1 ~K)(x, y0) = I1(x,K(x, y0))
= I1(x, 0) = 1 6= 0 = K(x, y0),

contradicts the fact that I ~ K = K for all I ∈ I. Now define δ = sup{t|K(1, t) = 0}. This implies that
K(1, y) = 0 for all y < δ and K(1, y) = 1 for all y > δ, because the range of K is trivial. Once again since
we are interested in K ∈ I right continuous in the second variable, we take that K(1, δ) = 1. Thus K = Kδ

for some δ ∈ [0, 1] and hence R ⊆ Kδ.

Proposition 4.4. The monoid (I,~) does not have left absorbing elements.

Proof. Let L denote the set of all left-absorbing elements of the monoid (I,~). We claim that L = ∅.
On the contrary, let I, J ∈ L be two left-absorbing elements. Then I ~ K = I and J ~ K = J for

all K ∈ I. Now, consider a right absorbing element K ′ ∈ R. Then it follows that I = I ~ K ′ = K ′ and
J = J ~K ′ = K ′. This shows that I = J and hence L is utmost a singleton set. Let L ∈ L.

Now, let K1,K2 ∈ R be two distinct right absorbing elements of (I,~). Then we have L = L~K1 = K1

and L = L ~K2 = K2, which leads to a contradiction, since K1 6= K2. Thus L = ∅ and (I,~) has no left
absorbing elements.

From Proposition 4.4, it follows that the functional equation (4) has no solutions.

Corollary 4.5. The monoid (I,~) has no two-sided absorbing elements.

While (I,~) has no two-sided absorbing elements, it is interesting to note the following. Clearly, every
Kδ ∈ R is a right absorbing element, i.e., I ~ Kδ = Kδ, for any I ∈ I. If we consider the following
composition, Kδ ~ I for any I ∈ I, we obtain that Kδ ~ I = Kµ ∈ R for some µ ∈ (0, 1]. In other words,
the set R when composed with I subsumes it both from the left and the right. In fact, as we show below,
the set R forms a two-sided ideal of the monoid (I,~).

Recall that a non-empty subset A of a semigroup U is called a two-sided ideal if AU ⊆ A and UA ⊆ A.

Lemma 4.6. The set R of all right absorbing elements forms a two-sided ideal of (I,~), i.e., IR = R = RI.

Proof. From Lemma 4.3, it follows that IR = R. Now it remains to show that RI = R. Before proceeding
to show this, for a given δ ∈ (0, 1] and an I ∈ I, let us define

δI = inf{y ∈ [0, 1]|I(1, y) ≥ δ} . (10)

Note that 1 ∈ {y ∈ [0, 1]|I(1, y) ≥ δ} and hence δI ∈ (0, 1] and is well defined.
Now, let I ∈ I and K ∈ R. Since K ∈ R, from Lemma 4.3 we have that K = Kδ for some δ ∈ (0, 1]

(see, Theorem 4.1, for the definition of Kδ). Now,

(K ~ I)(x, y) = Kδ(x, I(x, y))

=

{
1, if x < 1 or (x = 1 & I(1, y) ≥ δ) ,
0, if x = 1 & I(1, y) < δ ,

=

{
1, if x < 1 or (x = 1 & y ≥ δI) ,
0, if x = 1 & y < δI ,

= KδI (x, y) ,

where δI is as defined in (10) above. Since, for every I ∈ I, there exists a δI ∈ (0, 1], such that K ~ I =
KδI ∈ R, we see that RI ⊆ R. The other inclusion R ⊆ RI follows directly, as the identity ID ∈ I. Thus
RI = R and R is a two-sided ideal.
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5. Characterisations of K ∈ K with Non-Trivial Range

In Section 4, we have characterised and found the trivial range fuzzy implications K such that gK is an
s.g.h. Further, we have shown that these fuzzy implications form the set of all right absorbing elements of
the monoid (I,~). In this section, we determine the non-trivial range fuzzy implications K such that gK is
an s.g.h.

The following result shows that the range of such fuzzy implications K should be the entire [0, 1] interval.

Lemma 5.1. If the range of K ∈ K is non-trivial then the range of K is equal to [0, 1].

Proof. Let the range of K ∈ K be non-trivial. Since the range of K is non-trivial, there exists α ∈ (0, 1)
such that K(x0, y0) = α for some x0 ∈ (0, 1] and y0 ∈ [0, 1). Let Iβ ∈ I be as defined in (6). Then,
(Iβ ~K)(x0, y0) = Iβ(x0,K(x0, y0)) = Iβ(x0, α) = β. Since gK is an s.g.h, (K ~ Iβ ~K)(x0, y0) = β, i.e.,
β is in the range of K. Since β ∈ (0, 1) is chosen arbitrarily, the range of K contains every point of [0, 1].
Thus the range of K is [0, 1].

Towards characterising all such fuzzy implications, we study some specific vertical sections of K ∈ K
which help us in the sequel.

5.1. Natural Negations and Neutrality of Fuzzy Implications
We begin with the following definitions which are more general in scope and apply to the whole of I.

Definition 5.2 ([16]). A function N : [0, 1] −→ [0, 1] is called a fuzzy negation if N is non-increasing on
[0, 1] such that N(0) = 1 and N(1) = 0.

Definition 5.3 ([4], Definition 1.4.14). Let I be any fuzzy implication. The function NI : [0, 1] −→ [0, 1]
defined by NI(x) = I(x, 0) is a fuzzy negation and is called the natural negation of I.

Table 3 lists some examples of natural negations of fuzzy implications, which are also considered as the
basic fuzzy negations.

Implication I Natural Negation NI Remark
IKD(x, y) = max(1− x, y) NC(x) = 1− x Classical

ID(x, y) =

{
1, if x = 0
y, if x > 0

ND1(x) =

{
1, if x = 0
0, if x > 0

Smallest

IWB(x, y) =

{
1, if x < 1
y, if x = 1

ND2(x) =

{
1, if x < 1
0, if x = 1

Greatest

Table 3: Fuzzy Implications and their natural negations, (see, also Table 1.7, [4])

Definition 5.4 ([4], Definition 1.3.1). A fuzzy implication I is said to satisfy the left neutrality property
(NP) if

I(1, y) = y, y ∈ [0, 1] . (NP)

Let INP denote the set of all fuzzy implications satisfying the property (NP).
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5.2. Some Vertical Sections of K ∈ K
In the following, we discuss the natural negations and the range and form of the vertical section K(1, ·)

for a K ∈ K whose range is non-trivial.

Lemma 5.5. Let K ∈ K. Then the range of K(·, 0) = {0, 1}, i.e., NK has trivial range.

Proof. Let K ∈ K. For some x0 ∈ (0, 1), let K(x0, 0) = α. Consider I0 ∈ I. Then

(K ~ I0 ~K)(x0, 0) = K(x0, I0(x0,K(x0, 0)))
= K(x0, I0(x0, α)) = K(x0, 0),

while, (I0 ~K)(x0, 0) = I0(x0,K(x0, 0))
= I0(x0, α) = 0.

Since gK is an s.g.h. from Proposition 3.1, it follows that K(x0, 0) = 0 = α. Note that x0 ∈ (0, 1) is chosen
arbitrarily. Hence K(x, 0) = {0, 1} for all x ∈ [0, 1].

Note that the above result characterises the horizontal section K(·, 0) and is trivially true for K ∈ K
whose range is trivial. Now, before characterising the non-trivial range fuzzy implications K ∈ K, we
characterise the vertical section K(1, ·) of K which helps us in getting the representations of K.

Towards this end, we propose the following definition.

Definition 5.6. Let K ∈ I. Define the following two real numbers:

ε0 = sup{t ∈ [0, 1]|K(1, t) = 0}, (11)

ε1 = inf{t ∈ [0, 1]|K(1, t) = 1}. (12)

Remark 5.7. (i) Let ε0, ε1 be two real numbers as defined in Definition 5.6. For every K ∈ I, since
K(1, 0) = 0 and K(1, 1) = 1, the real numbers ε0, ε1 in the equations (11), (12) are well defined and
exist in general.

(ii) More importantly, 0 ≤ ε0 ≤ ε1 ≤ 1.
(iii) Since ε0 ≤ ε1, if ε0 = 1 then ε1 = 1.

Proposition 5.8. Let the range of K ∈ K be non-trivial. Let ε0, ε1 ∈ [0, 1] be defined as in Definition 5.6.
Then the vertical section K(1, .) has the following form:

K(1, y) =



0, if y ∈ [0, ε0) ,
0 or ε0, if y = ε0 ,

y, if y ∈ (ε0, ε1) ,
ε1 or 1, if y = ε1 ,

1, if y ∈ (ε1, 1] .

(13)

Proof. Let K ∈ I be such that the range of K is non-trivial and gK is an s.g.h.
Further, since, gK is an s.g.h, we see that for all J ∈ I the following equality should hold for all y ∈ [0, 1]:

(J ~K)(1, y) = (K ~ J ~K)(1, y) ,
i.e., J(1,K(1, y)) = K(1, J(1,K(1, y))) . (14)

(i) From the definition of ε0, ε1 above, it is clear that K(1, y) = 0 whenever 0 ≤ y < ε0 and K(1, y) = 1,
whenever ε1 < y ≤ 1.
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(ii) Let ε0 < y < ε1. We claim that K(1, y) = y. If not, let there be a y0 ∈ [0, 1) such that K(1, y0) = y′ 6=
y0. Let us choose a J ∈ I such that J(1, y′) = y0. Note that such a J is always possible, for instance,
J = Iβ of (6) with β = y0. Then, we have

LHS of (14) = J(1,K(1, y0)) = J(1, y′) = y0,

RHS of (14) = K(1, J(1,K(1, y0))) = K(1, J(1, y′)) = K(1, y0) = y′,

which implies that gK is not an s.g.h., a contradiction. Thus K(1, y) = y whenever ε0 < y < ε1.
(iii) Note that since ε0, ε1 are only the infimum and supremum of these sets, which are intervals due to the

monotonicity of K in the second variable, they may not belong to these intervals themselves. In other
words, K(1, ε0) ≥ 0 and K(1, ε1) ≤ 1.
(a) Clearly, if ε0 = max{t ∈ [0, 1]|K(1, t) = 0}, then K(1, ε0) = 0.
(b) However, if ε0 /∈ {t ∈ [0, 1]|K(1, t) = 0} then clearly 0 < K(1, ε0) = δ. We claim that δ = ε0. On

the contrary, let δ 6= ε, then, once again, one can choose a J ∈ I such that J(1, δ) = ε0. Then,

LHS of (14) = J(1,K(1, ε0)) = J(1, δ) = ε0 ,

RHS of (14) = K(1, J(1,K(1, ε0))) = K(1, J(1, δ)) = K(1, ε0) = δ ,

from whence we obtain that gK is not an s.g.h., a contradiction. Thus K(1, ε0) = ε0.
(c) A similar proof as above shows that if ε1 ∈ {t ∈ [0, 1]|K(1, t) = 1} then K(1, ε1) = 1, while if

ε1 /∈ {t ∈ [0, 1]|K(1, t) = 1} then K(1, ε1) = ε1.

In Proposition 5.8, even though we are able to characterise the vertical sections K(1, ·), it is not clear
what values K(1, ·) could assume. Now, we investigate all the possible values of ε0, ε1 in the case when the
range of K is non-trivial and gK is an s.g.h.

Theorem 5.9. Let K ∈ K be such that the range of K is non-trivial and let ε0, ε1 be defined as in Defini-
tion 5.6. Then

(i) ε1 6= 0.
(ii) If ε0 = 0, then ε1 = 1, in which case K(1, y) = y for all y ∈ [0, 1].

(iii) If 0 < ε0 < 1, then ε0 6= ε1.
(iv) If ε0 > 0, then ε0 = 1, in which case K(1, y) = 0 for all y > 0.

Proof. (i) Let ε1 = 0. This implies that K(1, y) = 1 for all y > 0. Again it follows from the monotonicity
of I in the first variable that K(x, y) = 1 for all x and all y > 0. Now, from Lemma 5.5, it follows
that the range of the negation of fuzzy implication K is trivial, i.e., K(x, 0) ∈ {0, 1}. So, the range of
K becomes {0, 1}, a contradiction to the fact the range of K is non-trivial. Thus ε1 6= 0.

(ii) Let ε0 = 0 and suppose that ε1 < 1. Then from (i), it follows that 0 < ε1 < 1. So choose a δ > 0 such
that 0 < ε1 + δ < 1. Let 0 < y1 < ε1. This implies that 0 < K(1, y1) = α < 1. Now, choose a J ∈ I
such that J(1,K(1, y1)) = J(1, α) = ε1 + δ. However, K(1, J(1,K(1, y1))) = K(1, ε1 + δ) = 1, which
contradicts gK being an s.g.h. Thus ε1 = 1.

(iii) Let 0 < ε0 < 1. Suppose that ε0 = ε1. Then K(1, ·) will be of the form

K(1, y) =

{
1, if y ≥ ε0,
0, if y < ε0.

(15)

This implies that K(x, y) = 1 for all x ∈ [0, 1], y ≥ ε0. Now we prove that K(x, y) = 1 for all
x ∈ [0, 1), y ∈ [0, ε0). On the contrary suppose that α = K(x0, y0) < 1 for some x0 ∈ (0, 1), y0 ∈
[0, ε0). Since 0 < ε0 < 1, choose a δ > 0 such that 0 < ε0 + δ < 1. Now choose a J ∈ I such
that J(x0,K(x0, y0)) = J(x0, α) = ε0 + δ 6= 1. Now, K(x0, J(x0,K(x0, y0))) = K(x0, J(x0, α)) =
K(x0, ε0 + δ) = 1 a contradiction to the fact that gK is an s.g.h. Thus K(x0, y0) = 1 for all x0 ∈ [0, 1)
and y0 ∈ [0, ε0) and K(x, y) = 1 for all x < 1. Finally from the Eq.(15) it follows that the range of K
is trivial, a contradicition. Thus ε0 6= ε1.
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(iv) Let ε0 > 0. Suppose ε0 < 1, i.e., 0 < ε0 < 1. Now from (iii) it follows that ε0 6= ε1. Let y1 ∈ (ε0, ε1).
Then the Eq.(13) implies that K(1, y1) = y1. Choose a J ∈ I be such that J(1, y1) = ε0

2 . Then

(J ~K)(1, y1) = J(1,K(1, y1)) = J(1, y1) =
ε0
2
,

and (K ~ J ~K)(1, y1) = K(1, J(1,K(1, y1)))

= K(1, J(1, y1)) = K
(

1,
ε0
2

)
= 0 ,

a contradiction to the fact that gK is an s.g.h. Thus ε0 = 1.

From Proposition 5.8 and Remark 5.7, Corollary 5.10 gives the possible values of ε0, ε1 of non-trivial
K ∈ K.

Corollary 5.10. Let K ∈ K be such that the range of K is non-trivial and let ε0 and ε1 be defined as in
(11) and (12), respectively. Then

(i) If ε0 = 0 then ε1 = 1.
(ii) If ε0 > 0 then ε0 = 1.

Corollary 5.11. Let the range of K ∈ K be non-trivial. Then one of the following conditions holds:

(i) K(1, y) = y, for all y ∈ [0, 1].
(ii) K(1, y) = 0, for all y ∈ [0, 1).

From the above results, it is clear that if K is a non-trivial range implication such that gK is an s.g.h
then K has either (NP) or K(1, y) = 0 for all y ∈ [0, 1). We analyse each of these two cases in Sections 6
and 7.

6. Representations of K ∈ K such that K satisfies (NP), i.e., K ∈ K ∩ INP

To get the representation of K ∈ K satisfying (NP), we take the help of an important subset of the
monoid (I,~), namely, the center. Let us recall that the center of the monoid (I,~) is defined as follows:

Z = {I ∈ I|I ~ J = J ~ I, ∀J ∈ I} .

It is well-known that the center is a commutative submonoid of any monoid. However, the relation
between the center and the idempotent elements of a monoid is not clear. It is interesting to note that in
the monoid (I,~), as the following lemma illustrates, we have an inclusion relation between Z and I. As
will be seen later, this result plays an important role when dealing with K ∈ K satisfying (NP).

Lemma 6.1. The center Z of the monoid (I,~) is contained in the set I, i.e., Z ⊂ I.

Proof. Let K ∈ Z. We need to show that K ~K = K,

i.e.,K(x,K(x, y)) = K(x, y), x, y ∈ [0, 1].

Suppose for some x0 ∈ (0, 1], y0 ∈ [0, 1) that

α = K(x0,K(x0, y0)) 6= K(x0, y0) = β.

Thus K(x0, β) = α.
Claim: β /∈ {0, 1}.
Proof of the claim: Let β = 0, i.e., K(x0, y0) = 0 and hence K(x0,K(x0, y0)) = K(x0, 0) = α 6= β = 0.
Then let us consider I0 ∈ I as given in (9). Now,

(I0 ~K)(x0, y0) = I0(x0,K(x0, y0)) = I0(x0, 0) = 0,
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(K ~ I0)(x0, y0) = K(x0, I0(x0, y0)) = K(x0, 0) = α 6= 0.

Thus I0 ~K 6= K ~ I0, contradicting the fact K ∈ Z. Thus β 6= 0.
Let β = 1, i.e., K(x0, y0) = 1. Then it implies that K(x0,K(x0, y0)) = 1, contradicting our assumption
K(x0, y0) 6= K(x0,K(x0, y0)). Thus β 6= 1.
Claim: α 6= 1.
Proof of the claim: Let α = 1, i.e., K(x0,K(x0, y0)) = α = 1. We have already proven that β 6= 0, 1.
Now define Iβ ∈ I as in (6).

Now, Iβ(x0,K(x0, y0)) = β and K(x0, Iβ(x0, y0)) = K(x0, β) = α = 1. Thus

Iβ(x0,K(x0, y0)) 6= K(x0, Iβ(x0, y0)),

a contradiction to the fact that K ∈ Z. Thus α 6= 1.
Now, Iβ(x0,K(x0, β)) = Iβ(x0, α) = β and K(x0, Iβ(x0, β)) = K(x0, β) = α. Thus

Iβ(x0,K(x0, β)) 6= K(x0, Iβ(x0, β)),

a contradiction to the fact that K ∈ Z. Thus K ∈ I and hence Z ⊂ I.

Remark 6.2. In Lemma 6.1, the inclusion is strict. To see this, let us consider I1 ∈ I as given in (7). Then
it is strightforward to see that I1 ~ I1 = I1, i.e., I1 ∈ I. However, at x = 1, y = 0.4 we observe that

(I1 ~ I0)(1, 0.4) = I1(1, I0(1, 0.4)) = I1(1, 0) = 0,

(I0 ~ I1)(1, 0.4) = I0(1, I1(1, 0.4)) = I0(1, 1) = 1.

which implies that I1 ~ I0 6= I1 ~ I0 and consequently I1 /∈ Z. Similarly, one can observe that IGD, I0 ∈ I
but IGD, I0 /∈ Z.

Based on Lemma 6.1, we have a first partial characterisation of K ∈ K ∩ INP.

Lemma 6.3. If K ∈ Z then gK is an s.g.h., i.e., Z ( K.

Proof. Let K ∈ Z. Then, from Lemma 6.1, it follows that K ∈ I. Let I, J ∈ I. Now,

gK(I) ~ gK(J) = (I ~K) ~ (J ~K)
= (I ~K) ~ (K ~ J)
= I ~ (K ~K) ~ J

= I ~ (K ~ J) = I ~ (J ~K)
= (I ~ J) ~K = gK(I ~ J).

Thus gK is an s.g.h.

In fact, as we show in the following the converse of Lemma 6.3 is also true, i.e., any K ∈ INP for which
gK is an s.g.h. also belongs to the center Z, i.e., K ∩ INP ⊆ Z. Before proving this fact, we need the
following result which gives a complete characterisation of K ∩ INP.

Lemma 6.4. If K ∈ Z, then the range of K is non-trivial.

Proof. Let K ∈ Z. Suppose that the range of K is trivial. Since K ∈ Z, from Lemma 6.3 it follows that gK
is an s.g.h. Again from Theorem 4.1, it follows that K = Kδ for some δ ∈ (0, 1]. Here we claim that δ 6= 1.
If δ = 1, then K = ISW given by (8), which is recalled here for convenience:

K1(x, y) = ISW(x, y) =

{
1, if x < 1 or y = 1,
0, if x = 1 and y 6= 1.
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Now it is easy to see that (I1 ~ K)(1, 0.2) = 0 where as (K ~ I1)(1, 0.2) = 1, proving that K /∈ Z, a
contradiction to the fact K ∈ Z. Thus δ 6= 1. Now, it is easy to find two real numbers δ

′
, δ

′′ ∈ (0, 1] such
that δ

′′
< δ < δ

′
. Let I = Iβ as defined in (6) with β = δ

′′
. Then

(I ~Kδ)(1, δ
′
) = I(1,Kδ(1, δ

′
)) = 1,

while, (Kδ ~ I)(1, δ
′
) = Kδ(1, I(1, δ

′
)) = Kδ(1, δ

′′
) = 0,

contradicting that K ∈ Z. Thus the range of K is non-trivial.

Proposition 6.5. If K ∈ Z, then K satisfies (NP).

Proof. Let K ∈ Z. From Lemma 6.3, it follows that gK is an s.g.h and also from Lemma 6.4, it follows
that range of K is non-trivial. To prove that K has (NP), from Proposition 5.8 it suffices to show that
K(1, y) 6= 0 or 1 for any y ∈ (0, 1).

On the contrary, let K(1, y0) = 0 for some y0 ∈ (0, 1). Then, on the one hand,

(I1 ~K)(1, y0) = I1(1,K(1, y0)) = I1(1, 0) = 0 ,

and on the other hand,

(K ~ I1)(1, y0) = K(1, I1(1, y0)) = K(1, 1) = 1 ,

which contradicts the fact that K ∈ Z. Thus for any y0 ∈ (0, 1), K(1, y0) 6= 0.
Similarly, by taking I0 instead of I1, above we can show that for any y0 ∈ (0, 1), K(1, y0) 6= 1. From

Proposition 5.8, we see that this is equivalent to stating ε0 = 0 and ε1 = 1 and hence it follows that K must
have (NP).

We define below a special class of fuzzy implications satisfying (NP).

Definition 6.6. For ε ∈ [0, 1) define

Kε(x, y) =

{
1, if x ≤ ε ,
y, if x > ε,

(16)

and for ε = 1, Kε = IWB where

IWB(x, y) =

{
1, if x < 1,
y, if x = 1.

(17)

Note that Kε ∈ I, for all ε ∈ [0, 1]. For notational convenience, we denote the set of all such Kε fuzzy
implications by

Kε = {I ∈ I|I = Kε for some ε ∈ [0, 1]}.

Clearly, sup Kε = K1 = IWB and inf Kε = K0 = ID.
The following results list a few properties of fuzzy implications from the set Kε, whose proofs are straight-

forward and hence are omitted.

Proposition 6.7. The following properties hold true.

(i) ε1 < ε2 =⇒ Kε1 ≤ Kε2

(ii) Kε1 ~Kε2 = Kmax(ε1,ε2) = Kε2 ~Kε1

(iii) ε1 < ε2 =⇒ gKε1 (Kε2) = gKε2 (Kε1) = Kε2

(iv) gKε(I) = gI(Kε), for all I ∈ I
(v) ε1 < ε2 =⇒ gKε2 (I) ⊂ gKε1 (I).
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Proposition 6.8. (Kε,~) is a commutative submonoid of (I,~).

The following result presents the inclusions among the sets Kε,Z,K and I.

Lemma 6.9. Kε ⊆ Z ( K ( I.

Proof. In Lemma 6.3, we proved that Z ⊂ K. Again from Lemma 3.2 it follows that K ⊂ I and hence we
have Z ( K ( I. So here it is enough to show that Kε ⊆ Z. Let I ∈ Kε. For any J ∈ I and I = Kε ∈ Kε

for some ε ∈ [0, 1), we have

(I ~ J)(x, y) = (J ~ I)(x, y) =

{
1, if x ≤ ε ,
J(x, y), if x > ε,

showing that I ∈ Z. For ε = 1, I = Kε = IWB, then

(I ~ J)(x, y) = (J ~ I)(x, y) =

{
1, if x < 1 ,
J(1, y), if x = 1,

for all J ∈ I. Thus IWB ∈ Z.

In fact, the opposite inclusion, i.e., Z ⊆ Kε, is also true, a fact that we prove in Lemma 6.11. Now, we
are ready to give a complete characterisation and representation of K ∈ I satisfying (NP) for which gK will
be an s.g.h.

Theorem 6.10. The following statements are equivalent:

(i) K ∈ K and satisfies (NP).
(ii) K ∈ Kε.

Proof. (i) =⇒ (ii): Let K ∈ K satisfy (NP). Since K has (NP) the range of K is [0, 1]. Let α < 1 be
chosen arbitrarily. Then there exists some x0 ∈ (0, 1], y0 ∈ [0, 1), such that K(x0, y0) = α < 1. We
keep K fixed, vary J and investigate the equivalence J ~K = K ~ J ~K.
When J = I0, we have

(J ~K)(x0, y0) = I0(x0,K(x0, y0))
= I0(x0, α) = 0 ,

(K ~ J ~K)(x0, y0) = K(x0, I0(x0,K(x0, y0)))
= K(x0, 0).

Since gK is an s.g.h., K(x0, 0) = 0. Hence, if K(x0, y0) = α < 1, then K(x0, 0) = 0. Now,

(J ~K)(x0, 0) = J(x0,K(x0, 0))
= J(x0, 0),

and (K ~ J ~K)(x0, 0) = K(x0, J(x0,K(x0, 0)))
= K(x0, J(x0, 0)).

Now let us, once again, choose J as in (6) with β = y0. Thus we have J(x0, 0) = y0 and hence

y0 = J(x0, 0) = K(x0, J(x0, 0))
= K(x0, y0) = α.

=⇒ α = y0 .

Since α is chosen arbitrarily, we have

K(x0, y) = y, y ∈ [0, 1]. (18)
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Let x∗ = inf{x|K(x, y) = y, for all y} ≥ 0. Note that the infimum exists because K has (NP), i.e.,
1 ∈ {x|K(x, y) = y, for all y} 6= ∅.

Claim: K(s, y) = 1, for any s ∈ [0, x∗) and for all y ∈ [0, 1].

Proof of the claim: On the contrary, let us suppose that 1 > K(s, y0) = y1 > y0 for some y0, y1 ∈ [0, 1)
and s ∈ [0, x∗). Now,

J(s,K(s, y0)) = J(s, y1) ,
and,K(s, J(s,K(s, y0))) = K(s, J(s, y1)) .

Once again, choosing a J as in (6) with β = y0, we have

J(s, y1) = y0 and K(s, J(s, y1)) = K(s, y0) = y1 ,

=⇒ J(s,K(s, y0)) 6= K(s, J(s,K(s, y0))),

i.e., gK is not an s.g.h., a contradiction. Thus K(s, y) = 1, for all s ∈ [0, x∗).
Now the question is what value should one assign to K(x∗, y). Since it is customary to assume left-
continuity of fuzzy implications in the first variable, we let K(x∗, y) = 1. Note that letting K(x∗, y) = y
also gives a K such that gK is an s.g.h.
From the above claim and (18) we see that every K is of the form (16) for some ε ∈ [0, 1) or K = IWB.

(ii) =⇒ (i) : That Kε ( K follows from Lemma 6.9, while that every K ∈ Kε satisfies (NP) follows from
Proposition 6.5.

Lemma 6.11. Let K ∈ Z. Then K ∈ Kε, i.e., Z ⊆ Kε.

Proof. Let K ∈ Z. From Lemma 6.3 it follows that gK is an s.g.h and also from Lemma 6.4 it follows that
range of K is non-trivial. Further, from Proposition 6.5 we know that K has (NP). Again from Theorem 6.10
it follows that K ∈ Kε.

Corollary 6.12. Z = Kε.

Proof. In Lemma 6.9, we proved that Z ⊇ Kε. From Lemma 6.11 it follows that Z ⊆ Kε.

Remark 6.13. From the results leading up to Corollary 6.12, one can clearly see the important role played
by the right translation semigroup homomorphisms gK in determining the center Z of the monoid I. Further,
note that, not only do we have characterised the center but also have clear representations of the fuzzy
implications K satisfying the functional equation I ~K = K ~ I for all I ∈ I.

7. Representations of K ∈ K such that K(1, y) = 0 for all y ∈ [0, 1)

Recall from Corollary 5.11 that if the range of K ∈ K is non-trivial then either, K(1, y) = y for all
y ∈ [0, 1] or K(1, y) = 0 for all y ∈ [0, 1). In Section 6, we have characterised and found representations of
fuzzy implications K such that gK is an s.g.h. in the case of K(1, y) = y for all y ∈ [0, 1], i.e., K has (NP).
Now it remains to characterise the non-trivial range non-neutral implications K ∈ K give their presentations.
We take up this task in this section.

We begin this section by defining the following class of fuzzy implications.

Definition 7.1. For ε ∈ (0, 1], define

Kε(x, y) =


1, if x < ε ,

y, if ε ≤ x < 1 ,
0, if x = 1 & y 6= 1

(19)

and for ε = 0, define Kε(x, y) = IIW(x, y) =


1, if x = 0 ,
y, if x < 1 ,
0, if x = 1 & y 6= 1 .
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For notational convenience, we denote the set of all such Kε fuzzy implications by

W = Kε = {I ∈ I|I = Kε for some ε ∈ [0, 1]}.

Note once again that supW = ISW (see (8)) and infW = IIW.

Theorem 7.2. The following statements are equivalent:
(i) K ∈ K and K(1, y) = 0 for all y 6= 1.
(ii) K ∈ Kε.

Proof. (i) =⇒ (ii): Let K ∈ K be such that K(1, y) = 0 for all y 6= 1. Since the range of K is non-trivial,
from Lemma 5.1, the range of K is whole of [0, 1]. Let 0 < α < 1 be chosen arbitrarily. Then there
exist some x0 ∈ (0, 1), y0 ∈ [0, 1), such that 0 < K(x0, y0) = α < 1. We keep K fixed, vary J ∈ I and
investigate the equivalence J ~K = K ~ J ~K.
When J = I0, we have

(J ~K)(x0, y0) = I0(x0,K(x0, y0)) = I0(x0, α) = 0 ,
(K ~ J ~K)(x0, y0) = K(x0, I0(x0,K(x0, y0))) = K(x0, 0).

Since gK is an s.g.h., K(x0, 0) = 0. Hence, if K(x0, y0) = α < 1, then K(x0, 0) = 0. Now, for any
J ∈ I, we have

(J ~K)(x0, 0) = J(x0,K(x0, 0)) = J(x0, 0),
and (K ~ J ~K)(x0, 0) = K(x0, J(x0,K(x0, 0))) = K(x0, J(x0, 0)).

Now let us, once again, choose J ∈ I such that J(x0, 0) = y0. Then

y0 = J(x0, 0) = K(x0, J(x0, 0)) = K(x0, y0) = α,

which implies that α = y0. Since α is chosen arbitrarily, we have

K(x0, y) = y, y ∈ [0, 1]. (20)

Let x∗ = inf{x|K(x, y) = y, for all y} ≥ 0. Note that the infimum exists because x0 satisfies (20).
Claim: K(s, y) = 1, for any s ∈ [0, x∗) and for all y ∈ [0, 1].
Proof of the claim: On the contrary, let us suppose that 1 > K(s, y0) = y1 > y0 for some y0, y1. Now,

J(s,K(s, y0)) = J(s, y1) ,
K(s, J(s,K(s, y0))) = K(s, J(s, y1)) .

Once again, choosing a J ∈ I such that J(s, y1) = y0, we get

J(s, y1) = y0 and K(s, J(s, y1)) = K(s, y0) = y1 ,

=⇒ J(s,K(s, y0)) 6= K(s, J(s,K(s, y0))),

i.e., gK is not an s.g.h., a contradiction. Thus K(s, y) = 1, for all s ∈ [0, x∗).
Now the question is what value should one assign to K(x∗, y). Since it is customary to assume left-
continuity of fuzzy implications in the first variable, we let K(x∗, y) = 1. Note that letting K(x∗, y) = y
also gives a K such that gK is a homomorphism.
From the above claim and (20) we see that every K is of the form (19) for some ε ∈ [0, 1).

(ii) =⇒ (i): That for every K ∈ Kε the gK is an s.g.h. can be easily verified and hence Kε ( K.

Further, from the definition of Kε, we see that Kε(1, y) = 0 for all y ∈ [0, 1).

Corollary 7.3. Let K ∈ I. Then following statements are equivalent:

(i) gK is an s.g.h.
(ii) K ∈ R ∪ Z ∪W.

Corollary 7.4. K = R∪Z ∪W.
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8. The subset K and known solutions of (5)

In this section, we compare the solution set K = R∪Z ∪W with the known solutions of (5) as presented
in [33, 37, 38]. As already noted, in the above works, which are the major works dealing with the iterative
functional equation (5) and all of which have appeared in this very journal, the authors have discussed the
solutions of (5) from different families of fuzzy implications. In particular,

• Shi et al. [33] have discussed the fuzzy implications from the families of (S,N)-, R- andQL-implications
that satisfy the iterative functional equation (5).

• In [38], Xie and Qin discuss the solutions to (5) from the family of continuous D-implications, while
Xie et al. [37] discuss the same from three families of fuzzy implications obtained from uninorms, viz.,
the RU -, (U,N)- and QLU -implications.

8.1. Scope of this comparative study
From Lemma 5.5, note that for any K ∈ K its natural negation NK has trivial range. In other words,

due to the non-increasingness of a fuzzy negation, we see that NK belongs to the following family Nτ =
{N{t} |t ∈ [0, 1]} of threshold negations, where for any t ∈ [0, 1)

N{t}(x) =

{
1, if x ≤ t ,
0, if x > t ,

and for t = 1 we write

N{1}(x) =

{
1, if x < 1 ,
0, if x = 1 .

Note that N{0}, N{1} are often denoted as ND1, ND2, respectively ( see Table 3) and are also the smallest
and largest fuzzy negations.

Thus we only compare the solutions obtained here with fuzzy implications I from the different families
such that they are both solutions of (5) and whose natural negations NI are of trivial range. For the
definition of different families listed above, we refer the readers to the above cited works [33, 37, 38], or the
research monographs [4] or [2]. Similarly, for definitions of t-norms, t-conorms and their properties, please
refer to the excellent monograph [25].

8.2. The subset K and known solutions from (S,N)-implications
Let IS,Nτ denote the set of (S,N)-implications obtained from any t-conorm S and let the fuzzy negation

N ∈ Nτ . Clearly, if I ∈ IS,Nτ , then

I(x, y) = S(N{t}(x), y) =

{
1, if x ≤ t ,
y, if x > t ,

or I = IWB, when N = N{1} = ND2. (21)

From Theorem 10 of Shi et al. [33], we see that every (S,N)-implication whose natural negation is of
type N{t} for some t ∈ [0, 1) is a solution of (5), i.e., if I ∈ IS,Nτ , then I satisfies (5). In fact, these are
exactly the set Z, which is the center of the monoid (I,~). To see this, it suffices to put t = ε and the
formulae (16), (17) and (21) are identical, i.e., IS,Nτ = Kε = Z.

Thus Z gives all such (S,N)-implications that are both solutions of (5) and whose natural negations are of
trivial range. Note that while neither does Z enlarge the solution set of (5) nor is the representation of IS,Nτ
implications difficult to obtain, our study does show that any I from this subfamily of (S,N)-implications
also satisfies the following functional equation with every J ∈ I:

I(x, J(x, y)) = J(x, I(x, y)), x, y ∈ [0, 1] . (2)
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8.3. The subset K and known solutions from R-implications
Shi et al. [33] have only considered R-implications obtained from left-continuous t-norms and hence have

obtained the following result, which is paraphrased suitably to our context:

Theorem 8.1 (cf. [33], Corollary 3). An R-implication I obtained from a left-continuous t-norm satisfies
(5) if and only if I = IGD, the Gödel implication.

Our study has shown that the Weber implication IWB = supZ is also a solution of (5), which is an
R-implication obtained from the non-left-continuous drastic t-norm TD given as below:

TD(x, y) =

{
min(x, y), if max(x, y) = 1 ,
0, otherwise .

Note, however, that the following question still remains open.

Problem 8.2. (i) Are IWB and IGD the only R-implications that satisfy (5)?
(ii) If not, characterise allR-implications obtained from non-left-continuous (in fact, non-border-continuous)

t-norms that satisfy (5).

8.4. The subset K and known solutions from QL-implications
Once again, Shi et al. [33] have only considered QL-implications obtained from strong negations and

hence it is immediately clear that the solutions obtained by them do not cover our context.
As the following result shows, the only QL-implication whose natural negation is of the threshold type,

is the Weber implication IWB.

Theorem 8.3. Let I be a QL-operation whose NI ∈ Nτ . Then the following statements are equivalent:

(i) I is a fuzzy implication.
(ii) I = IWB.

Proof. Let I be a QL-operation given by

I(x, y) = S(N(x), T (x, y)) , (22)

for some t-conorm S, a t-norm T and a fuzzy negation N . Further, let the natural negation NI ∈ Nτ . Then
from Proposition 2.6.2 in [4], it follows that NI = N ∈ Nτ . With this N , the QL-operation in (22) becomes

I(x, y) =

{
1, if x ≤ t ,
T (x, y), if x > t ,

(23)

when N = N{t} for some t ∈ [0, 1), or

I(x, y) =

{
1, if x < 1 ,
y = T (1, y), if x = 1 ,

(24)

when t = 1, in which case I = IWB. Further, note that a QL-operation I is called a QL-implication if and
ony if I is a fuzzy implication. Now we show that I is a QL-implication if and only if t = 1.

(i) =⇒ (ii): Let I be a QL-implication. Suppose t < 1. Then choose x1, x2 ∈ (t, 1] such that x1 < x2.
Then from (23), it follows that T (x1, 1) = x1 < x2 = T (x2, y), which implies that I(x1, y) < I(x2, y) and
hence I does not satisfy (I1), a contradiction to the fact that I is a QL-implication. Hence t = 1.

(ii) =⇒ (i): Obvious.

Thus the only QL-implication which satisfies (5) and whose natural negation is of trivial range is the
Weber implication IWB.
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8.5. The subset K and known solutions from D-implications
Once again, we have the following result, whose proof can be obtained along similar lines as that of

Theorem 8.3.

Theorem 8.4. Let I be a D-operation whose NI ∈ Nτ . Then the following statements are equivalent:

(i) I is a fuzzy implication.
(ii) I = ID.

Thus the only D-implication which satisfies (5) and whose natural negation is of trivial range is ID.

8.6. The subset K and known solutions from implications obtained from Uninorms
Xie et al. [37] discuss the solutions of (5) from the families of fuzzy implications obtained from uninorms,

viz., (i) RU -implications obtained as the residuals of uninorms, (ii) (U,N)-implications obtained as a gener-
alisation of the material implication with uninorms representing the disjunction and the QLU -implications
which are the quantum logic implications suitably generalised by using conjunctive and disjunctive uninorms.
Further, they have considered only the uninorms coming from the following sub-classes, viz., (i) those that
are continuous on (0, 1)2, which also contain the representable uninorms, (ii) the idempotent uninorms and
(iii) the pseudo-continuous uninorms, i.e., uninorms verifying that both functions U(x, 0) and U(x, 1) are
continuous except at their point of neutrality e ∈ (0, 1).

Once again, we refer the readers to [5, 28, 37] for the definitions of RU -, (U,N)- and QLU -implications
and to the following works [6, 17, 18, 39] for the definitions and further details of the different classes of
listed uninorms.

In fact, their study shows that many of the considered families do not satisfy (5). For instance, in the
case of RU -implications, it is clear that those that are obtained from representable uninorms or uninorms
continuous on (0, 1)2 do not satisfy (5), see Theorem 2 and Corollary 1 in [37]. Similarly, in the case of
QLU -implications, the sub-families considered in [37] do not contain any solutions of (5). Hence we limit
the scope of this section to only consider the overlap between the set K and subsets of the above three
families which are known to contain solutions of the iterative functional equation (5).

8.6.1. The subset K and known solutions from RU -implications

Case 1: RU -implications obtained from idempotent uninorms

In the case of RU -implications obtained from idempotent uninorms, from Theorem 13 in [37] we see
that the only solutions are those that have as their natural negation the least negation ND1. Further, all of
these fuzzy implications are not of trivial range. Now, the only fuzzy implications K ∈ K with non-trivial
range and whose natural negation is ND1 are ID ∈ Z and ISW ∈ W, which clearly do not belong to the
solution set obtained in Theorem 13 of [37].

Thus, if IGU denotes the set of all RU -implications obtained from idempotent uninorms, then IGU ∩K = ∅.

Case 2: RU -implications obtained from pseudo-continuous uninorms

Let IEU denote the set of all RU -implications obtained from pseudo-continuous uninorms.
From Theorem 14 in [37] we see that, in the case of RU -implications obtained from pseudo-continuous

uninorms, only the set of fuzzy implications Je = {Ie ∈ I | e ∈ (0, 1)} satisfies (5), where Ie is given as
follows:

Ie(x, y) =

{
y, if x ≥ y or x ≤ y & (x, y) ∈ [0, e]2 ,
1, otherwise .

Once again, it is clear to see that the natural negation of each of the fuzzy implications Ie is NIe = ND1,
but neither ID ∈ Je nor ISW ∈ Je. Thus IEU ∩ K = ∅.
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8.6.2. The subset K and known solutions from (U,N)-implications
In the case of (U,N)-implications, Xie et al. [37] have shown that every (U,N)-implication obtained from

a disjunctive idempotent uninorm satisfies (5) ([37], Theorem 17), while in the case of (U,N)-implication
obtained from disjunctive pseudo-continuous uninorms they have found the conditions under which they
satisfy (5), see ([37], Theorem 15). Hence we discuss the overlaps that may exist between K and the
solutions obtained in [37].

Case 1: (U,N)-implications obtained from disjunctive pseudo-continuous uninorms

Let IEU,N denote the set of all (U,N)-implications obtained from disjunctive pseudo-continuous uninorms.
From the formula for disjunctive pseudo-continuous uninorms whose neutral element e ∈ (0, 1), we see

that the (U,N)-implication obtained from them is given as follows:

IU,N (x, y) = U(N(x), y) =


eT (N(x)

e , ye ), if N(x), y ∈ [0, e],
e+ (1− e)S(N(x)−e

1−e , y−e1−e ), if N(x), y ∈ [e, 1],
max(N(x), y), otherwise .

Note that the natural negation of any such IU,N is given by

NIU,N (x) = IU,N (x, 0) =

{
0, if N(x) ∈ [0, e] ,
N(x), if N(x) ∈ [e, 1] .

(25)

Clearly, an I ∈ IEU,N ∩ K if and only if NI ∈ Nτ . From (25) above we see that I ∈ IEU,N ∩ K if and only if
the negation N used to obtain the I is a threshold negation, i.e., NI = N = Nt ∈ Nτ for some t ∈ [0, 1].

From Theorem 15 in [37] we see that any Iet ∈ IEU,N with N ∈ Nτ does satisfy (5) and are given as
follows:

Iet (x, y) = U(Nt(x), y) =


1, if x ∈ [0, t], y ∈ [0, 1] ,
y, if x ∈ (t, 1], y ∈ (e, 1] ,
0, otherwise .

(26)

IEU,N ∩R: Note, firstly, that for each e, t ∈ (0, 1), the fuzzy implications Iet are of non-trivial range and hence

IEU,N ∩R = ∅.

IEU,N ∩ Z: From (26), we see that Iet (1, y) = U(Nt(1), y) =

{
0, if y ∈ [0, e] ,
y, if y ∈ (e, 1] .

Thus Iet does not satisfy (NP) for any e ∈ (0, 1). Since every I ∈ Z satisfies (NP), we see that
I ∈ IEU,N ∩ Z = ∅.

IEU,N ∩W: Finally, since every I ∈ W is such that I(1, y) = 0 for all y ∈ [0, 1), we see that IEU,N ∩W = ∅ .

Case 2: (U,N)-implications obtained from disjunctive idempotent uninorms

Let IGU,N denote the set of all (U,N)-implications obtained from disjunctive idempotent uninorms. Let
g(0) = α ∈ (0, 1].

From Theorem 17 in [37] we see that any IgU,N ∈ IGU,N satisfies (5) and is given by:

IgU,N (x, y) = U(N(x), y) =


min(N(x), y), y < g(N(x)) or (y = g(N(x))) and N(x) < g(g(N(x))) ,
max(N(x), y), y > g(N(x)) or (y = g(N(x))) and N(x) > g(g(N(x))) ,
N(x) or y, otherwise .
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Note that the natural negation of any such IU,N is given by

NIgU,N (x) = IgU,N (x, 0) =

{
0, if 0 < g(N(x)) or

(
0 = g(N(x)) & 0 < g(g(N(x)))

)
,

N(x), if
(
0 = g(N(x)) & 0 < g(g(N(x)))

)
.

(27)

Once again, it can be easily shown that an I ∈ IGU,N ∩ K if and only if NI = N ∈ Nτ .
Further, any Ig ∈ IGU,N obtained from a threshold negation N = Nt ∈ Nτ has the following form:

Ig(x, y) = U(Nt(x), y) =


1, if x ∈ [0, t], y ∈ [0, 1] ,
y, if x ∈ (t, 1] and {y > g(0) or

(
y = α & 0 = g(α)

)
} ,

0, if x ∈ (t, 1] and {y < g(0) or
(
y = α & 0 < g(α)

)
} .

(28)

It is immediately clear from (28) that

Ig(1, y) =

{
0, if y < α or

(
y = α & 0 < g(α)

)
,

y, if y > α or
(
y = α & 0 = g(α)

)
.

(29)

To discuss the intersection of IGU,N with K, it is sufficient to investigate the different values α = g(0) can
assume.

Case 1: g(0) = α = 1: From (29) above, it is clear that Ig satisfies (NP) only if α = 0 = g(0), which is a
contradiction to the fact that g is the associated function of U . Since every I ∈ Z satisfies (NP), we
see that I ∈ IGU,N ∩ Z = ∅.

Case 2: g(0) = α ∈ (0, 1): In the case g(0) = α ∈ (0, 1), we see that the range of Ig(1, y) is non-trivial and

hence IGU,N ∩ R = ∅. Further, for any β > α, we have that Ig(1, β) = β 6= 0 and hence Ig /∈ W, i.e.,
IGU,N ∩W = ∅.

Case 3: g(0) = α = 1: Finally, let us consider the case g(0) = α = 1, in which case from (28) we obtain

Ig(x, y) =

{
1, if x ≤ t or y = 1 ,
0, otherwise .

Clearly, the only Ig ∈ IGU,N∩K is the fuzzy implication generated from N{1} = ND2, i.e., Ig = ISW ∈ W∩R.

8.7. New solutions of (5) - The subsets R,W
Let us denote the families of (S,N)-, R-, QL-, and D-implications as IS,N, IT, IQL and ID, respectively.

Then we can summarise the above discussions as follows:

K ∩ IS,N = IS,Nτ = Z ,

K ∩ IT = IWB = supZ ,

K ∩ IQL = IWB = supZ ,

K ∩ ID = ID = inf Z ,

K ∩ I
E

U = ∅ ,

K ∩ I
G

U = ∅ ,

K ∩ I
E

U,N = ∅ ,

K ∩ I
G

U,N = ISW = supW = infR .
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Thus we see that our study does provide new solutions of the iterative functional equation (5) in the
form of fuzzy implications contained in the subsets R,W of I.

It should, however, be emphasised that the solution set K does not characterise all fuzzy implications
which are both solutions of (5) and whose natural negation is of trivial range. While the Gödel implication
IGD is one such example, see Remark 3.3, there exist many such fuzzy implications.

9. Concluding Remarks

In this work, we have investigated the generative power of the ~-composition proposed in [34]. Specif-
ically, we set out to find the set of fuzzy implications K ⊂ I that did not give rise to new fuzzy impli-
cations either on self-composition or when composed with other fuzzy implications and those that were
~-commutative with every fuzzy implication in I. This led us to study three functional equations involving
fuzzy implications.

Since we do not make any assumptions on I, J ∈ I employed in the above functional equations, viz.,
their form, properties, representations or the families they come from - as is done in many of the works,
we pursued an algebraic approach towards determining K. Note that considering the ~-composition as a
binary operation on the set of all fuzzy implications I, one obtains a monoid structure on (I,~).

In particular, by determining the set of all fuzzy implications K whose right translations gK were also
semigroup homomorphisms on the monoid (I,~) we have obtained clear and complete characterisations
and representations of K. The obtained solutions not only answer the question of the generative power of
the ~-composition but also offer new and as yet unknown solutions to the well-studied iterative functional
equation involving fuzzy implications, viz., I(x, I(x, y)) = I(x, y).
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[5] Baczyński, M., Jayaram, B., 2009. On the distributivity of fuzzy implications over nilpotent or strict triangular conorms.
IEEE Transactions on Fuzzy Systems 17, 590–603.

[6] Baets, B.D., 1999. Idempotent uninorms. European Journal of Operational Research 118, 631 – 642.
[7] Balasubramaniam, J., 2006. Contrapositive symmetrisation of fuzzy implications - Revisited. Fuzzy Sets and Systems

157, 2291–2310.
[8] Balasubramaniam, J., 2007. Yager’s new class of implications Jf and some classical tautologies. Information Sciences 177,

930–946.
[9] Balasubramaniam, J., Rao, C., 2004. On the distributivity of implication operators over t and s norms. IEEE Transactions

on Fuzzy Systems 12, 194–198.
[10] Bandler, W., Kohout, L.J., 1980. Semantics of implication operators and fuzzy relational products. International Journal

of Man-Machine Studies 12, 89 – 116.
[11] Bertoluzza, C., 1993. On the distributivity between t-norms and t-conorms, in: Fuzzy Systems, 1993., Second IEEE

International Conference on, pp. 140–147 vol.1. doi:10.1109/FUZZY.1993.327449.
[12] Bertoluzza, C., Doldi, V., 2004. On the distributivity between t-norms and t-conorms. Fuzzy Sets and Systems 142, 85 –

104.
[13] Bustince, H., Burillo, P., Soria, F., 2003. Automorphisms, negations and implication operators. Fuzzy Sets and Systems

134, 209 – 229.
[14] Carbonell, M., Mas, M., Suńer, J., Torrens, J., 1996. On the distributivity and modularity in de Morgan triplets.

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 04, 351–368.
[15] Clifford, A., 1950. Extensions of semigroups. Transactions of American Mathematical Society 68, 165–173.

25



[16] Fodor, J.C., Roubens, M., 1994. Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic,
Dordrecht.

[17] Fodor, J.C., Yager, R.R., Rybalov, A., 1997. Structure of uninorms. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 05, 411–427.

[18] Hu, S.K., Li, Z.F., 2001. The structure of continuous uni-norms. Fuzzy Sets and Systems 124, 43 – 52.
[19] Jayaram, B., 2008a. On the law of importation (a −→ (b −→ c)) ≡ (a ∧ b) −→ c in fuzzy logic. IEEE Transactions on

Fuzzy Systems 16, 130–144.
[20] Jayaram, B., 2008b. Rule reduction for efficient inferencing in similarity based reasoning. International Journal of

Approximate Reasoning 48, 156–173.
[21] Jayaram, B., 2012. Solution to an open problem: a characterization of conditionally cancellative t-subnorms. Aequationes

mathematicae 84, 235–244.
[22] Jayaram, B., Mesiar, R., 2009a. I-fuzzy equivalence relations and i-fuzzy partitions. Information Sciences 179, 1278 –

1297.
[23] Jayaram, B., Mesiar, R., 2009b. On special fuzzy implications. Fuzzy Sets and Systems 160, 2063 – 2085.
[24] Kilp, M., Knauer, U., Mikhalev, A., 2000. Monoids, Acts and Categories: With Applications to Wreath Products and

Graphs. A Handbook for Students and Researchers. De Gruyter Expositions in Mathematics, De Gruyter.
[25] Klement, E.P., Mesiar, R., Pap, E., 2000. Triangular Norms. volume 8 of Trends in Logic. Kluwer Academic Publishers,

Dordrecht.
[26] Ljapin, E., 1974. Semigroups. American Mathematical Society, Rhode Island.
[27] Mas, M., Mayor, G., Torrens, J., 2002. The distributivity condition for uninorms and t-operators. Fuzzy Sets and Systems

128, 209 – 225.
[28] Mas, M., Monserrat, M., Torrens, J., 2007. Two types of implications derived from uninorms. Fuzzy Sets and Systems

158, 2612 – 2626.
[29] Massanet, S., Torrens, J., 2010. Some remarks on the solutions to the functional equation I(x, y) = I(x, I(x, y)) for D-
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