
Fuzzy Sets and Systems 475 (2024) 108763

Contents lists available at ScienceDirect

Fuzzy Sets and Systems

journal homepage: www.elsevier.com/locate/fss

Short communication

A representation of a class of quasi-arithmetic means using a 

unary modifier operator

József Dombi a,b, Tamás Jónás c,∗

a ELKH-SZTE Research Group on Artificial Intelligence, Szeged, Tisza Lajos körút, Szeged H-6720, Hungary
b Institute of Informatics, University of Szeged, Árpád tér 2, Szeged H-6720, Hungary
c Faculty of Economics, Eötvös Loránd University, Egyetem tér 1-3, Budapest H-1053, Hungary

A R T I C L E I N F O A B S T R A C T

Keywords:
Strict t-norms

Quasi-arithmetic means

Tau function

Idempotency

In this short communication, we will show that a quasi-arithmetic mean induced by an additive 
generator of a strict t-norm (strict t-conorm, respectively) can be represented by the composition 
of a unary operator (called the tau function) and the strict t-norm (strict t-conorm, respectively), 
both induced by the same generator function as the quasi arithmetic mean. Here, we will also 
state a connection between the idempotency of a transformed strict t-norm (strict t-conorm, 
respectively) and the tau function.

1. Preliminaries

Here, we will give an overview of the concepts and notations that will be utilized later on. We will use the common notation ℝ
for the real line and ℝ for the extended real line, i.e., ℝ = [−∞, ∞]. Since we will operate on ℝ, based on [1] and [2], we will adopt 
the following conventions:

1
0
=∞,

1
∞

= 0, e−∞ = 0, e∞ =∞, ln(0) = −∞, and ln(∞) =∞.

1.1. Strict triangular norms and strict triangular conorms

The Archimedean triangular norms (t-norms in short) and triangular conorms (t-conorms in short) as well as their strict class both 
play an important role in continuous-valued logic (for more details, see [1]). These norms are defined as follows (see, e.g., [1,3]).

Definition 1. We say that a continuous t-norm 𝑇 ∶ [0, 1]2 → [0, 1] (t-conorm 𝑆 ∶ [0, 1]2 → [0, 1], respectively) is Archimedean, if 
𝑇 (𝑥, 𝑥) < 𝑥 (𝑆(𝑥, 𝑥) > 𝑥, respectively) holds for any 𝑥 ∈ (0, 1).

Definition 2. We say that a continuous Archimedean t-norm 𝑇 (t-conorm 𝑆, respectively) is a strict t-norm (strict t-conorm, respec-

tively), if 𝑇 (𝑥, 𝑦) < 𝑇 (𝑥, 𝑧) whenever 𝑥 ∈ (0, 1] and 𝑦 < 𝑧 (if 𝑆(𝑥, 𝑦) < 𝑆(𝑥, 𝑧) whenever 𝑥 ∈ [0, 1) and 𝑦 < 𝑧, respectively).

The strict t-norms and t-conorms can be represented as follows (see [1,4]).
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Theorem 1. A function 𝑇 ∶ [0, 1]2 → [0, 1] (𝑆 ∶ [0, 1]2 → [0, 1], respectively) is a strict t-norm (t-conorm, respectively) if and only if there 
exists a continuous, strictly decreasing (increasing, respectively) function 𝑡∶ [0, 1] → [0, ∞] (𝑠∶ [0, 1] → [0, ∞], respectively) with 𝑡(0) =∞ and 
𝑡(1) = 0 (𝑠(0) = 0 and 𝑠(1) =∞, respectively), which is uniquely determined up to a positive constant multiplier, such that for any 𝑥, 𝑦 ∈ [0, 1],

𝑇 (𝑥, 𝑦) = 𝑡−1 (𝑡(𝑥) + 𝑡(𝑦))

(𝑆(𝑥, 𝑦) = 𝑠−1 (𝑠(𝑥) + 𝑠(𝑦)) , respectively).

In Theorem 1, the function 𝑡 (𝑠, respectively) is called an additive generator of the strict t-norm 𝑇 (strict t-conorm 𝑆, respectively).

We will now use the following class of functions.

Notation 1. Let  denote the set of all continuous and strictly monotonic functions 𝑔∶ [0, 1] → [0, ∞] for which exactly one of the 
following two cases holds:

(a) 𝑔 is strictly decreasing with 𝑔(0) =∞ and 𝑔(1) = 0;

(b) 𝑔 is strictly increasing with 𝑔(0) = 0 and 𝑔(1) =∞.

Based on Theorem 1 and Notation 1, 𝑔 ∈  means that 𝑔 is an additive generator function of either a strict t-norm or a strict 
t-conorm.

Taking into account the associativity of strict t-norms (strict t-conorms, respectively) (see, e.g., [1,5]), we will simply interpret 
the 𝑛-ary strict t-norm (strict t-conorm, respectively) 𝑜𝑔 ∶ [0, 1]𝑛 → [0, 1], induced by an additive generator 𝑔 ∈ , as

𝑜𝑔(𝐱) = 𝑔−1

(
𝑛∑
𝑖=1

𝑔(𝑥𝑖)

)
, (1)

where 𝐱 =
(
𝑥1, 𝑥2,… , 𝑥𝑛

)
∈ [0, 1]𝑛.

1.2. Quasi-arithmetic means

Based on [2], we will use the following definition of a quasi-arithmetic mean on [0, 1]𝑛 (see also [6]).

Definition 3. Let 𝑛 ∈ ℕ, 𝑛 ≥ 1, and let 𝑓 ∶ [0, 1] → ℝ be a continuous and strictly monotonic function. We say that the function 
𝑀𝑓 ∶ [0, 1]𝑛 → [0, 1] is an 𝑛-ary quasi-arithmetic mean on [0, 1]𝑛 generated by the function 𝑓 if for any 𝐱 =

(
𝑥1, 𝑥2,… , 𝑥𝑛

)
∈ [0, 1]𝑛, 

𝑀𝑓 (𝐱) is given by

𝑀𝑓 (𝐱) = 𝑓−1

(
1
𝑛

𝑛∑
𝑖=1

𝑓 (𝑥𝑖)

)
. (2)

The function 𝑓 in (2) is called a generator of 𝑀𝑓 . Aczél [5] showed that 𝑓 is uniquely determined up to a linear transformation 
(also see [7]).

Noting Definition 3, we readily note that for any 𝑔 ∈ ,

𝑀𝑔(𝐱) = 𝑔−1

(
1
𝑛

𝑛∑
𝑖=1

𝑔(𝑥𝑖)

)
(3)

is an 𝑛-ary quasi-arithmetic mean, where 𝐱 =
(
𝑥1, 𝑥2,… , 𝑥𝑛

)
∈ [0, 1]𝑛. In this short communication, we will concentrate on the class of 

𝑛-ary quasi-arithmetic means induced by all the additive generators of strict t-norms and strict t-conorms (i.e., by functions that are 
members of ).

Based on [2], we will make use of the following definition of the idempotency of an 𝑛-ary operator.

Definition 4. Let 𝑛 ∈ ℕ and 𝑛 ≥ 1. We say that an operator 𝑜∶ ℝ
𝑛
→ℝ is idempotent if for any 𝑥 ∈ℝ,

𝑜(𝑥,𝑥,… , 𝑥
⏟⏞⏞⏟⏞⏞⏟

𝑛-times

) = 𝑥.

It immediately follows from (2) that a quasi-arithmetic mean is idempotent. In contrast, an 𝑛-ary strict t-norm (strict t-conorm, 
respectively) 𝑜𝑔 ∶ [0, 1]𝑛 → [0, 1], which is induced by an additive generator 𝑔 ∈  according to (1), is not idempotent. Namely, if 𝑜𝑔 is 
an 𝑛-ary strict t-norm (strict t-conorm, respectively), then for any 𝑥 ∈ (0, 1),

𝑜𝑔(𝑥,𝑥,… , 𝑥) < 𝑥
2

⏟⏞⏞⏟⏞⏞⏟
𝑛-times
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(𝑜𝑔(𝑥,𝑥,… , 𝑥
⏟⏞⏞⏟⏞⏞⏟

𝑛-times

) > 𝑥, respectively).

Later, we will show how the so-called tau function, which we will present in the next subsection, can be used to transform an 𝑛-ary 
strict t-norm (strict t-conorm, respectively) into a quasi-arithmetic mean.

1.3. The tau function

The tau function, which is a unary modifier operator in continuous-valued logic, was first introduced by Dombi (see [8]). This 
function is defined as follows.

Definition 5. Let 𝑔 ∈  and let 𝜈, 𝜈0 ∈ (0, 1). We say that the mapping 𝜏𝑔,𝜈,𝜈0 ∶ [0, 1] → [0, 1] is a tau function with the parameters 𝜈 and 
𝜈0, induced by function 𝑔, if 𝜏𝑔,𝜈,𝜈0 is given by

𝜏𝑔,𝜈,𝜈0 (𝑥) = 𝑔−1
(
𝑔(𝜈0)

𝑔(𝑥)
𝑔(𝜈)

)
. (4)

Here, the function 𝑔 is called a generator function of 𝜏𝑔,𝜈,𝜈0 .

The following properties of a tau function immediately follow from its definition (for more details, see [8]):

(a) 𝜏𝜈,𝜈0 is continuous in [0, 1]
(b) 𝜏𝜈,𝜈0 is strictly increasing in [0, 1], 𝜏𝜈,𝜈0 (0) = 0 and 𝜏𝜈,𝜈0 (1) = 1
(c) 𝜏𝜈,𝜈0 (𝜈) = 𝜈0
(d) For any 𝑥 ∈ (0, 1),

(d1) if 𝜈 = 𝜈0, then 𝜏𝜈,𝜈0 (𝑥) = 𝑥

(d2) if 𝜈 < 𝜈0, then 𝜏𝜈,𝜈0 (𝑥) > 𝑥

(d3) if 𝜈 > 𝜈0, then 𝜏𝜈,𝜈0 (𝑥) < 𝑥.

2. Representation of quasi-arithmetic means induced by additive generators of strict t-norms and strict t-conorms

Now, we will demonstrate that a quasi-arithmetic mean induced by an additive generator of a strict t-norm (strict t-conorm, 
respectively) is none other than the composition of a tau function and the strict t-norm (strict t-conorm, respectively) both induced 
by the same generator function as the quasi arithmetic mean.

Theorem 2. Let 𝑛 ∈ ℕ, 𝑛 ≥ 1 and let 𝑔 ∈ . Suppose that 𝑀𝑔 ∶ [0, 1]𝑛 → [0, 1] is a quasi-arithmetic mean generated by 𝑔 according to (3), and 
𝑜𝑔 ∶ [0, 1]𝑛 → [0, 1] is an 𝑛-ary strict t-norm or strict t-conorm also generated by 𝑔 according to (1). Then, for any 𝐱 =

(
𝑥1, 𝑥2,… , 𝑥𝑛

)
∈ [0, 1]𝑛

and a strictly increasing and continuous function 𝜏 ∶ [0, 1] → [0, 1],

𝑀𝑔(𝐱) = 𝜏
(
𝑜𝑔(𝐱)

)
(5)

holds if and only if there exist 𝜈, 𝜈0 ∈ (0, 1) such that

𝜈0 = 𝑔−1
( 1
𝑛
𝑔(𝜈)

)
(6)

and for any 𝑥 ∈ [0, 1],

𝜏(𝑥) = 𝜏𝑔,𝜈,𝜈0 (𝑥), (7)

where 𝜏𝑔,𝜈,𝜈0 ∶ [0, 1] → [0, 1] is a tau function with the parameters 𝜈 and 𝜈0, induced by the 𝑔 function.

Proof. Proof of necessity. Assume that for any 𝐱 =
(
𝑥1, 𝑥2,… , 𝑥𝑛

)
∈ [0, 1]𝑛, (5) holds with a strictly increasing and continuous function 

𝜏 ∶ [0, 1] → [0, 1]. Then, based on (1) and (3), we have

𝑔−1

(
1
𝑛

𝑛∑
𝑖=1

𝑔(𝑥𝑖)

)
= 𝜏

(
𝑔−1

(
𝑛∑
𝑖=1

𝑔(𝑥𝑖)

))
. (8)

Noting (1), we also have

𝑛∑
𝑖=1

𝑔(𝑥𝑖) = 𝑔
(
𝑜𝑔(𝐱)

)
,

and so (8) can be written as( ( )) ( )

3

𝑔−1
1
𝑛
𝑔 𝑜𝑔(𝐱) = 𝜏 𝑜𝑔(𝐱) .
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The previous equation means that for any 𝑥 ∈ [0, 1],

𝜏 (𝑥) = 𝑔−1
(1
𝑛
𝑔 (𝑥)

)
.

Since for any 𝑥 ∈ [0, 1], 𝑔(𝑥) ∈ [0, ∞], there exist 𝜈, 𝜈0 ∈ (0, 1) such that 1
𝑛
= 𝑔(𝜈0)

𝑔(𝜈) , or equivalently,

𝜈0 = 𝑔−1
( 1
𝑛
𝑔(𝜈)

)
.

Therefore we find that for any 𝑥 ∈ [0, 1],

𝜏 (𝑥) = 𝑔−1
(1
𝑛
𝑔 (𝑥)

)
= 𝑔−1

(
𝑔(𝜈0)

𝑔(𝑥)
𝑔(𝜈)

)
,

which means that (7) holds.

Proof of sufficiency. Assume that 𝜈, 𝜈0 ∈ (0, 1), (6) holds, and for any 𝑥 ∈ [0, 1], 𝜏(𝑥) is given by (7). Noting that (6) is equivalent 
to 1

𝑛
= 𝑔(𝜈0)

𝑔(𝜈) , using (7), (4) and (1), for any 𝐱 =
(
𝑥1, 𝑥2,… , 𝑥𝑛

)
∈ [0, 1]𝑛, we can write

𝜏
(
𝑜𝑔(𝐱)

)
= 𝜏𝑔,𝜈,𝜈0

(
𝑜𝑔(𝐱)

)
= 𝑔−1

(
𝑔(𝜈0)

𝑔
(
𝑜𝑔(𝐱)

)
𝑔(𝜈)

)

= 𝑔−1

(
1
𝑛

𝑛∑
𝑖=1

𝑔(𝑥𝑖)

)
.

Taking into account (3), the last equation means that (5) holds for any 𝐱 =
(
𝑥1, 𝑥2,… , 𝑥𝑛

)
∈ [0, 1]𝑛. □

The following theorem concerns the idempotency of the composition 𝜏◦𝑜𝑔 ∶ [0, 1]𝑛 → [0, 1], where 𝜏 ∶ [0, 1] → [0, 1] is a strictly 
increasing and continuous function.

Theorem 3. Let 𝑛 ∈ ℕ, 𝑛 ≥ 1 and let 𝑔 ∈ . Let 𝑜𝑔 ∶ [0, 1]𝑛 → [0, 1] be an 𝑛-ary strict t-norm or strict t-conorm generated by 𝑔 according to 
(1). Then, for a strictly increasing and continuous function 𝜏 ∶ [0, 1] → [0, 1], the composition 𝜏◦𝑜𝑔 ∶ [0, 1]𝑛 → [0, 1] is idempotent if and only 
if there exist 𝜈, 𝜈0 ∈ (0, 1) so that (6) holds, and for any 𝑥 ∈ [0, 1], (7) holds as well.

Proof. Proof of necessity. Assume that 𝜏◦𝑜𝑔 ∶ [0, 1]𝑛 → [0, 1] is idempotent. Taking into account (1), the idempotency of 𝜏◦𝑜𝑔 means 
that for any 𝑥 ∈ [0, 1],

𝜏(𝑜𝑔(𝑥,𝑥,… , 𝑥
⏟⏞⏞⏟⏞⏞⏟

𝑛-times

)) = 𝜏
(
𝑔−1 (𝑛𝑔(𝑥))

)
= 𝑥. (9)

Let 𝑦 = 𝑔−1 (𝑛𝑔(𝑥)). Then, 𝑥 can be expressed in terms of 𝑦 as 𝑥 = 𝑔−1
(
1
𝑛
𝑔(𝑦)

)
, and so the right hand side equation in (9) can be written 

as

𝜏 (𝑦) = 𝑔−1
(1
𝑛
𝑔 (𝑦)

)
,

where 𝑦 ∈ [0, 1]. Again, since 𝑔(𝑦) ∈ [0, ∞], there exist 𝜈, 𝜈0 ∈ (0, 1) such that 1
𝑛
= 𝑔(𝜈0)

𝑔(𝜈) holds. This implies that (6) holds, and for any 
𝑥 ∈ [0, 1], (7) holds as well.

Proof of sufficiency. Assume that 𝜈, 𝜈0 ∈ (0, 1) so that (6) holds, and for any 𝑥 ∈ [0, 1], 𝜏(𝑥) is given by (7). Let 𝑀𝑔 ∶ [0, 1]𝑛 → [0, 1]
be a quasi-arithmetic mean generated by 𝑔 according to (3). Then, based on Theorem 2, we immediately find that for any 𝐱 =(
𝑥1, 𝑥2,… , 𝑥𝑛

)
∈ [0, 1]𝑛, 𝑀𝑔(𝐱) = 𝜏

(
𝑜𝑔(𝐱)

)
holds. Therefore, since the quasi-arithmetic mean 𝑀𝑔 is idempotent, we get that 𝜏◦𝑜𝑔 is 

idempotent as well. □

The following corollary is a direct consequence of Theorems 2 and 3.

Corollary 1. Let 𝑛 ∈ ℕ, 𝑛 ≥ 1 and let 𝑔 ∈ . Suppose that 𝑜𝑔 ∶ [0, 1]𝑛 → [0, 1] is an 𝑛-ary strict t-norm or strict t-conorm generated by 𝑔
according to (1). If 𝜈, 𝜈0 ∈ (0, 1) such that

𝜈0 = 𝑔−1
( 1
𝑛
𝑔(𝜈)

)
,

then 𝜏𝑔,𝜈,𝜈0◦𝑜𝑔 ∶ [0, 1]𝑛 → [0, 1] is the quasi-arithmetic mean 𝑀𝑔 given in (3), which is an idempotent 𝑛-ary operator.

Corollary 1 tells us that a tau function with suitably chosen parameter values can be viewed as a transformation that converts an 
4

𝑛-ary strict t-norm (strict t-conorm, respectively) into an 𝑛-ary averaging operator, i.e., quasi arithmetic mean.
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Example 1. Let 𝑔(𝑥) = − ln(𝑥), 𝑥 ∈ [0, 1]. It is well known that 𝑔 is an additive generator of the product t-norm, which is a strict 
t-norm. Since 𝑔−1(𝑥) = e−𝑥, 𝑥 ∈ [0, ∞], the 𝑛-ary strict t-norm induced by 𝑔 is

𝑜𝑔(𝑥1, 𝑥2,… , 𝑥𝑛) = 𝑔−1

(
𝑛∑
𝑖=1

𝑔(𝑥𝑖)

)
= e−

∑𝑛
𝑖=1(− ln(𝑥𝑖)) =

𝑛∏
𝑖=1

𝑥𝑖.

The tau function with the parameters 𝜈, 𝜈0 ∈ (0, 1) induced by 𝑔 is

𝜏𝑔,𝜈,𝜈0 (𝑥) = 𝑔−1
(
𝑔(𝜈0)

𝑔(𝑥)
𝑔(𝜈)

)
= 𝑥

ln(𝜈0)
ln(𝜈) .

In line with Corollary 1, if 𝜈0 = 𝑔−1
(
1
𝑛
𝑔(𝜈)

)
, i.e., ln(𝜈0)ln(𝜈) = 1

𝑛
, then

𝜏𝑔,𝜈,𝜈0

(
𝑜𝑔(𝑥1, 𝑥2,… , 𝑥𝑛)

)
=

(
𝑛∏
𝑖=1

𝑥𝑖

) 1
𝑛

= 𝑛
√
𝑥1𝑥2⋯𝑥𝑛.

That is, in this case, 𝜏𝑔,𝜈,𝜈0◦𝑜𝑔 is the geometric mean operator.
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