3,150 research outputs found

    Factoring Polynomials over Finite Fields using Balance Test

    Get PDF
    We study the problem of factoring univariate polynomials over finite fields. Under the assumption of the Extended Riemann Hypothesis (ERH), (Gao, 2001) designed a polynomial time algorithm that fails to factor only if the input polynomial satisfies a strong symmetry property, namely square balance. In this paper, we propose an extension of Gao's algorithm that fails only under an even stronger symmetry property. We also show that our property can be used to improve the time complexity of best deterministic algorithms on most input polynomials. The property also yields a new randomized polynomial time algorithm

    Note on Integer Factoring Methods IV

    Get PDF
    This note continues the theoretical development of deterministic integer factorization algorithms based on systems of polynomials equations. The main result establishes a new deterministic time complexity bench mark in integer factorization.Comment: 20 Pages, New Versio

    Deterministic Factorization of Sparse Polynomials with Bounded Individual Degree

    Full text link
    In this paper we study the problem of deterministic factorization of sparse polynomials. We show that if fF[x1,x2,,xn]f \in \mathbb{F}[x_{1},x_{2},\ldots ,x_{n}] is a polynomial with ss monomials, with individual degrees of its variables bounded by dd, then ff can be deterministically factored in time spoly(d)logns^{\mathrm{poly}(d) \log n}. Prior to our work, the only efficient factoring algorithms known for this class of polynomials were randomized, and other than for the cases of d=1d=1 and d=2d=2, only exponential time deterministic factoring algorithms were known. A crucial ingredient in our proof is a quasi-polynomial sparsity bound for factors of sparse polynomials of bounded individual degree. In particular we show if ff is an ss-sparse polynomial in nn variables, with individual degrees of its variables bounded by dd, then the sparsity of each factor of ff is bounded by sO(d2logn)s^{O({d^2\log{n}})}. This is the first nontrivial bound on factor sparsity for d>2d>2. Our sparsity bound uses techniques from convex geometry, such as the theory of Newton polytopes and an approximate version of the classical Carath\'eodory's Theorem. Our work addresses and partially answers a question of von zur Gathen and Kaltofen (JCSS 1985) who asked whether a quasi-polynomial bound holds for the sparsity of factors of sparse polynomials

    Character Sums and Deterministic Polynomial Root Finding in Finite Fields

    Full text link
    We obtain a new bound of certain double multiplicative character sums. We use this bound together with some other previously obtained results to obtain new algorithms for finding roots of polynomials modulo a prime pp

    Factoring bivariate sparse (lacunary) polynomials

    Get PDF
    We present a deterministic algorithm for computing all irreducible factors of degree d\le d of a given bivariate polynomial fK[x,y]f\in K[x,y] over an algebraic number field KK and their multiplicities, whose running time is polynomial in the bit length of the sparse encoding of the input and in dd. Moreover, we show that the factors over \Qbarra of degree d\le d which are not binomials can also be computed in time polynomial in the sparse length of the input and in dd.Comment: 20 pp, Latex 2e. We learned on January 23th, 2006, that a multivariate version of Theorem 1 had independently been achieved by Erich Kaltofen and Pascal Koira

    Algorithms in algebraic number theory

    Get PDF
    In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to be done in the area. We hope to show that the study of algorithms not only increases our understanding of algebraic number fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the determination of Galois groups, the determination of the ring of integers of an algebraic number field, and the computation of the group of units and the class group of that ring of integers.Comment: 34 page
    corecore