57 research outputs found

    Analysis of a buyer-seller watermarking protocol for trustworthy purchasing of digital contents

    Get PDF
    In ubiquitous environments where human users get to access diverse kinds of (often multimedia enabled) services irrespective of where they are, the issue of security is a major concern. Security in this setting encompasses both in the interest of the human users as well as their information and objects that they own. A typical kind of transaction interaction among users and/or machines in these environments is that of exchanging digital objects via purchases and/or ownership transfers, e.g. someone buying a song from iTunes via his iPhone, or downloading either bought or rented movies onto a portable DVD player. Here, there is a need to provide trustworthy protection of the rights of both parties; i.e. the seller’s copyright needs to be protected against piracy, while on the other hand it has been highlighted in literature the need to protect innocent buyers from being framed. Indeed, if either party cannot be assured that his rights are protected when he is involved in transactions within such environments, he would shy away and instead prefer for instance the more conventional non-digital means of buying and selling. And therefore without active participation from human users and object owners it is difficult to fully kick off the actual realization of intelligent environments. Zhang et al. recently proposed a buyer–seller watermarking protocol without a trusted third party based on secret sharing. While it is a nice idea to eliminate the need of a trusted third party by distributing secret shares between the buyer and the seller such that neither party has knowledge of the fingerprint embedded in a content, we show that it is possible for a buyer to remove his part of the fingerprint from the content he bought. This directly disproves the piracy tracing property claimed by the protocol. In fact, since piracy tracing is one of the earliest security applications of watermarking schemes, it raises doubts as to the soundness of the design of this protocol

    Digital Copyright Protection: Focus on Some Relevant Solutions

    Get PDF
    Copyright protection of digital content is considered a relevant problem of the current Internet since content digitalization and high performance interconnection networks have greatly increased the possibilities to reproduce and distribute digital content. Digital Rights Management (DRM) systems try to prevent the inappropriate or illegal use of copyrighted digital content. They are promoted by the major global media players, but they are also perceived as proprietary solutions that give rise to classic problems of privacy and fair use. On the other hand, watermarking protocols have become a possible solution to the problem of copyright protection. They have evolved during the last decade, and interesting proposals have been designed. This paper first presents current trends concerning the most significant solutions to the problem of copyright protection based on DRM systems and then focuses on the most promising approaches in the field of watermarking protocols. In this regard, the examined protocols are discussed in order to individuate which of them can better represent the right trade-off between opposite goals, such as, for example, security and easy of use, so as to prove that it is possible to implement open solutions compatible with the current web context without resorting to proprietary architectures or impairing the protection of copyrighted digital content

    A buyer-seller watermarking protocol for digital secondary market

    Get PDF
    In the digital right management value chain, digital watermarking technology plays a very important role in digital product’s security, especially on its usage tracking and copyrights infringement authentication. However, watermark procedures can only effectively support copyright protection processes if they are applied as part of an appropriate watermark protocol. In this regard, a number of watermark protocols have been proposed in the literature and have been shown to facilitate the use of digital watermarking technology as copyright protection. One example of such protocols is the anonymous buyer-seller watermarking protocol. Although there are a number of protocols that have been proposed in the literature and provide suitable solutions, they are mainly designed as a watermarking protocol for the first-hand market and are unsuitable for second-hand transactions. As the complexity of online transaction increases, so does the size of the digital second-hand market. In this paper, we present a new buyer-seller watermark protocol that addresses the needs of customer’s rights problem in the digital secondary market. The proposed protocol consists of five sub-protocols that cover the registration process, watermarking process for the first, second and third-hand transactions as well as the identification & arbitration processes. This paper provides analysis that compares the proposed protocols with existing state-of-the-arts and shows that it has met not only all the buyer’s and seller’s requirements in the traditional sense but also accommodates the same requirements in the secondary market

    Watermarking protocol of secure verification

    Get PDF
    The secure verification is important for watermarking protocols. A malicious arbitrator is able to remove an original watermark from an unauthorized copy of the digital content as a result of a security breach in the phase of arbitration and resell multiple copies of it with impunity. We propose a novel buyer-seller watermarking protocol of secure verification. In this scheme, a seller permutes an original watermark provided by a trusted Watermarking Certification Authority (WCA) and embeds it into digital content in an encrypted domain. In case an unauthorized copy is found, the seller can recover the original watermark from the watermark extracted from the copy and sends it to an arbitrator. Without the knowledge of permutations applied by the seller, the arbitrator is unable to remove the permuted watermark from the digital content. Hence, verification is secured. As an additional advantage of the proposed protocol, arbitration can be conducted without the need for the cooperation of the WCA or the buyer

    Multiparty multilevel watermarking protocol for digital secondary market based on iris recognition technology

    Get PDF
    Background: In order to design secure digital right management architecture between different producers and different consumers, this paper proposes a multiparty and multilevel watermarking protocol for primary and secondary market. Comparing with the traditional buyer-seller watermarking protocols, this paper makes several outstanding achievements. Method: First of all, this paper extends traditional buyer-seller two-party architecture to multiparty architecture which contains producer, multiply distributors, consumers, etc. Secondly, this paper pays more attention on the security issues, for example, this paper applies iris recognition technology as an advanced security method. Conclusion: Finally, this paper also presents a second-hand market scheme to overcome the copyright issues that may happen in the real world. © 2017 Bentham Science Publishers

    Approximation-based homomorphic encryption for secure and efficient blockchain-driven watermarking service

    Get PDF
    Homomorphic encryption has been widely used to preserve the privacy of watermarking process on blockchain-driven watermarking services. It offers transparent and traceable encrypted watermarking without revealing sensitive data such as original images or watermark data to the public. Nevertheless, the existing works suffer from enormous memory storage and extensive computing power. This study proposed an approximation-based homomorphic encryption for resource-efficient encrypted watermarking without sacrificing watermarking quality. We demonstrated the efficiency of the Cheon-Kim-Kim-Son (CKKS) encrypted watermarking process using discrete cosine transform-singular value decomposition (DCT-SVD) embedding. The evaluation results showed that it could preserve the watermarking quality similar to non-encrypted watermark embedding, even after geometrical and filtering attacks. Compared to existing homomorphic encryption, such as Brakerski-Gentry-Vaikuntanathan (BFV) encryption, it has superior performance regarding resource utilization and watermarking quality preservation

    Secure buyer - seller watermarking protocol

    Full text link
    In the existing watermarking protocols, a trusted third party (TTP) is introduced to guarantee that a protocol is fair to both the seller and buyer in a digital content transaction. However, the TTP decreases the security and affects the protocol implementation. To address this issue, in this article a secure buyer&ndash;seller watermarking protocol without the assistance of a TTP is proposed in which there are only two participants, a seller and a buyer. Based on the idea of sharing a secret, a watermark embedded in digital content to trace piracy is composed of two pieces of secret information, one produced by the seller and one by the buyer. Since neither knows the exact watermark, the buyer cannot remove the watermark from watermarked digital content, and at the same time the seller cannot fabricate piracy to frame an innocent buyer. In other words, the proposed protocol can trace piracy and protect the customer&rsquo;s rights. In addition, because no third party is introduced into the proposed protocol, the problem of a seller (or a buyer) colluding with a third party to cheat the buyer (or the seller), namely, the conspiracy problem, can be avoided.<br /

    On the Implementation of Spread Spectrum Fingerprinting in Asymmetric Cryptographic Protocol

    Get PDF
    <p/> <p>Digital fingerprinting of multimedia contents involves the generation of a fingerprint, the embedding operation, and the realization of traceability from redistributed contents. Considering a buyer's right, the asymmetric property in the transaction between a buyer and a seller must be achieved using a cryptographic protocol. In the conventional schemes, the implementation of a watermarking algorithm into the cryptographic protocol is not deeply discussed. In this paper, we propose the method for implementing the spread spectrum watermarking technique in the fingerprinting protocol based on the homomorphic encryption scheme. We first develop a rounding operation which converts real values into integer and its compensation, and then explore the tradeoff between the robustness and communication overhead. Experimental results show that our system can simulate Cox's spread spectrum watermarking method into asymmetric fingerprinting protocol.</p

    A Digital Rights Management System based on Cloud

    Get PDF
    In the current Internet, digital entertainment contents, such as video or audio files, are easily accessible due to the new multimedia technologies and to broadband network connections. This causes considerable economic loss to global media players since digital contents, once legitimately obtained, can be illegitimately shared through file sharing services on the Internet. Digital Rights Management (DRM) systems have been proposed to support the protection of copyrighted digital contents. Even though such systems have been widely adopted and promoted by global media players, they are based on proprietary mechanisms that usually work only in closed, monolithic environments. In this regard, systems based on watermarking technologies appear more suited to protect digital copyrighted content. This paper describes the implementation scheme of a DRM system able to ensure the copyright protection of digital content according to an innovative buyer-friendly watermarking protocol. The DRM system has been implemented by exploiting a cloud environment in order to improve the overall performance of the system. In particular, cloud behaves as a service infrastructural provider, since the content provider involved in the watermarking protocol uses cloud to speed up the watermark embedding process and to save storage and bandwidth costs needed to store and to deliver protected contents
    • …
    corecore