28,194 research outputs found

    Radon Numbers for Trees

    Full text link
    Many interesting problems are obtained by attempting to generalize classical results on convexity in Euclidean spaces to other convexity spaces, in particular to convexity spaces on graphs. In this paper we consider P3P_3-convexity on graphs. A set UU of vertices in a graph GG is P3P_3-convex if every vertex not in UU has at most one neighbour in UU. More specifically, we consider Radon numbers for P3P_3-convexity in trees. Tverberg's theorem states that every set of (k−1)(d+1)−1(k-1)(d+1)-1 points in Rd\mathbb{R}^d can be partitioned into kk sets with intersecting convex hulls. As a special case of Eckhoff's conjecture, we show that a similar result holds for P3P_3-convexity in trees. A set UU of vertices in a graph GG is called free, if no vertex of GG has more than one neighbour in UU. We prove an inequality relating the Radon number for P3P_3-convexity in trees with the size of a maximal free set.Comment: 17 pages, 13 figure

    On the convexity number of graphs

    Get PDF
    A set of vertices S in a graph is convex if it contains all vertices which belong to shortest paths between vertices in S. The convexity number c(G) of a graph G is the maximum cardinality of a convex set of vertices which does not contain all vertices of G. We prove NP-completeness of the problem to decide for a given bipartite graph G and an integer k whether c(G)\geq k. Furthermore, we identify natural necessary extension properties of graphs of small convexity number and study the interplay between these properties and upper bounds on the convexity number

    On the geodesic pre-hull number of a graph

    Get PDF
    AbstractGiven a convexity space X whose structure is induced by an interval operator I, we define a parameter, called the pre-hull number of X, which measures the intrinsic non-convexity of X in terms of the number of iterations of the pre-hull operator associated with I which are necessary in the worst case to reach the canonical extension of copoints of X when they are being extended by the adjunction of an attaching point. We consider primarily the geodesic convexity structure of connected graphs in the case where the pre-hull number is at most 1, with emphasis on bipartite graphs, in particular, partial cubes

    The general position number and the iteration time in the P3 convexity

    Full text link
    In this paper, we investigate two graph convexity parameters: the iteration time and the general position number. Harary and Nieminem introduced in 1981 the iteration time in the geodesic convexity, but its computational complexity was still open. Manuel and Klav\v{z}ar introduced in 2018 the general position number of the geodesic convexity and proved that it is NP-hard to compute. In this paper, we extend these parameters to the P3 convexity and prove that it is NP-hard to compute them. With this, we also prove that the iteration number is NP-hard on the geodesic convexity even in graphs with diameter two. These results are the last three missing NP-hardness results regarding the ten most studied graph convexity parameters in the geodesic and P3 convexities

    On interval number in cycle convexity

    Get PDF
    International audienceRecently, Araujo et al. [Manuscript in preparation, 2017] introduced the notion of Cycle Convexity of graphs. In their seminal work, they studied the graph convexity parameter called hull number for this new graph convexity they proposed, and they presented some of its applications in Knot theory. Roughly, the tunnel number of a knot embedded in a plane is upper bounded by the hull number of a corresponding planar 4-regular graph in cycle convexity. In this paper, we go further in the study of this new graph convexity and we study the interval number of a graph in cycle convexity. This parameter is, alongside the hull number, one of the most studied parameters in the literature about graph convexities. Precisely, given a graph G, its interval number in cycle convexity, denoted by incc(G)in_{cc} (G), is the minimum cardinality of a set S ⊆ V (G) such that every vertex w ∈ V (G) \ S has two distinct neighbors u, v ∈ S such that u and v lie in same connected component of G[S], i.e. the subgraph of G induced by the vertices in S.In this work, first we provide bounds on incc(G)in_{cc} (G) and its relations to other graph convexity parameters, and explore its behavior on grids. Then, we present some hardness results by showing that deciding whether incc(G)in_{cc} (G) ≤ k is NP-complete, even if G is a split graph or a bounded-degree planar graph, and that the problem is W[2]-hard in bipartite graphs when k is the parameter. As a consequence, we obtainthat incc(G)in_{cc} (G) cannot be approximated up to a constant factor in the classes of split graphs and bipartite graphs (unless P = N P ).On the positive side, we present polynomial-time algorithms to compute incc(G)in_{cc} (G) for outerplanar graphs, cobipartite graphs and interval graphs. We also present fixed-parameter tractable (FPT) algorithms to compute it for (q, q − 4)-graphs when q is the parameter and for general graphs G when parameterized either by the treewidth or the neighborhood diversity of G.Some of our hardness results and positive results are not known to hold for related graph convexities and domination problems. We hope that the design of our new reductions and polynomial-time algorithms can be helpful in order to advance in the study of related graph problems

    Convexities related to path properties on graphs

    Get PDF
    AbstractA feasible family of paths in a connected graph G is a family that contains at least one path between any pair of vertices in G. Any feasible path family defines a convexity on G. Well-known instances are: the geodesics, the induced paths, and all paths. We propose a more general approach for such ‘path properties’. We survey a number of results from this perspective, and present a number of new results. We focus on the behaviour of such convexities on the Cartesian product of graphs and on the classical convexity invariants, such as the Carathéodory, Helly and Radon numbers in relation with graph invariants, such as the clique number and other graph properties

    Right-convergence of sparse random graphs

    Get PDF
    The paper is devoted to the problem of establishing right-convergence of sparse random graphs. This concerns the convergence of the logarithm of number of homomorphisms from graphs or hyper-graphs \G_N, N\ge 1 to some target graph WW. The theory of dense graph convergence, including random dense graphs, is now well understood, but its counterpart for sparse random graphs presents some fundamental difficulties. Phrased in the statistical physics terminology, the issue is the existence of the log-partition function limits, also known as free energy limits, appropriately normalized for the Gibbs distribution associated with WW. In this paper we prove that the sequence of sparse \ER graphs is right-converging when the tensor product associated with the target graph WW satisfies certain convexity property. We treat the case of discrete and continuous target graphs WW. The latter case allows us to prove a special case of Talagrand's recent conjecture (more accurately stated as level III Research Problem 6.7.2 in his recent book), concerning the existence of the limit of the measure of a set obtained from RN\R^N by intersecting it with linearly in NN many subsets, generated according to some common probability law. Our proof is based on the interpolation technique, introduced first by Guerra and Toninelli and developed further in a series of papers. Specifically, Bayati et al establish the right-convergence property for Erdos-Renyi graphs for some special cases of WW. In this paper most of the results in this paper follow as a special case of our main theorem.Comment: 22 page
    • …
    corecore