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Abstract. A set of vertices S in a graph is convex if it contains all vertices which belong
to shortest paths between vertices in S. The convexity number c(G) of a graph G is the
maximum cardinality of a convex set of vertices which does not contain all vertices of G.

We prove NP-completeness of the problem to decide for a given bipartite graph G and
an integer k whether c(G) ≥ k. Furthermore, we identify natural necessary extension
properties of graphs of small convexity number and study the interplay between these
properties and upper bounds on the convexity number.
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1 Introduction

We consider finite, undirected and simple graphs G with vertex set V (G) and edge set
E(G). For two vertices u and v of a graph G, let I[u, v] denote the set of vertices of G
which belong to a shortest path between u and v in G. For a set of vertices S, let I[S]
denote the union of the sets I[u, v] over all pairs of vertices u and v in S. A set of vertices
S is convex if I[S] = S. The convex hull H[S] of a set S of vertices is the smallest convex
set of vertices which contains S. Since the intersection of two convex sets is convex, the
convex hull is well defined.

Chartrand, Wall, and Zhang [4] define the convexity number c(G) of a graph G as
the largest cardinality of a convex set of vertices which does not contain all vertices of
G. Gimbel [8] proved that the decision problem associated to the convexity number is
NP-complete. For further related results, we refer the reader to [2, 3, 6, 7, 9, 10].
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Our contributions in the present paper concern the algorithmic complexity of the con-
vexity number and the structure of graphs of small convexity number. In Section 2, we
refine Gimbel’s hardness result [8] by proving NP-completeness for the class of bipartite
graphs. Furthermore, we describe how to efficiently decide whether the convexity number
is at least k for some fixed k and how to determine the convexity number for cographs in
linear time. In Section 3, we study graphs of small convexity number. We identify natural
necessary extension properties of such graphs and prove best possible upper bounds on the
convexity number implied by these necessary conditions.

2 NP-completeness for bipartite graphs

Our main result in this section is the NP-completeness of the following decision problem
restricted to bipartite graphs.

Convexity Number
Instance: A graph G and an integer k.
Question: Is c(G) ≥ k?

We start by showing how to solve the above problem in polynomial time, for fixed k. Let
G be a graph and let S be a set of vertices of G. By definition, S is not convex if and
only if there are two vertices x and y in S such that I[x, y] 6⊆ S. Choosing such a pair of
vertices at minimum distance, we obtain that S is not convex if and only if there are two
vertices x and y in S such that there exists a shortest path P between x and y which is of
length at least 2 and whose internal vertices all belong to V (G) \ S. Applying a shortest
path algorithm to the induced subgraphs G − (S \ {x, y}) = G[{x, y} ∪ (V (G) \ S)] of G
for all pairs of distinct vertices x and y in S, such paths can be found in polynomial time.
Furthermore, iteratively extending a non-convex set by the internal vertices of such paths,
one can determine the convex hull of a set of vertices in polynomial time.

By definition, the convexity number of a graph G is less than some integer k if and
only if the convex hull of every set of exactly k vertices contains all vertices of G. Hence
for fixed k, it can be decided in polynomial time whether the convexity number of a graph
is at least k.

We proceed to our main result in this section.

Theorem 1 Convexity Number restricted to bipartite graphs is NP-complete.

Proof: Since the convex hull of a set can be determined in polynomial time, Convexity
Number is in NP. In order to prove NP-completeness, we reduce an instance (H, k) of
the well-known NP-complete problem Clique [5] to an instance (G, k′) of Convexity
Number such that the graph H has a clique of order at least k if and only if c(G) ≥ k′,
the encoding length of (G, k′) is polynomially bounded in terms of the encoding length of
(H, k), and G is bipartite.
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Let (H, k) be an instance of Clique. Clearly, we may assume that H is connected and
that k ≥ 3. We construct G as follows. For every vertex u of H, we create four vertices
wu, xu, yu, and zu in G and add the three edges xuzu, yuzu, and wuzu as shown in Figure
1 (a). For every edge uv of H, we create a set Vuv of n + 5 further vertices in G where
n denotes the order of H and add edges such that zu, wu, zv, and wv together with the
vertices in Vuv induce the graph Guv as shown in Figure 1 (b) where the set Iuv denotes an
independent set of n vertices all of which have exactly the same four neighbours as shown
in Figure 1 (b). Note that the vertex set of Guv is {wu, zu, wv, zv} ∪ Vuv. To complete the
construction, we create two vertices x and y in G and add the edges xxu and yyu for all
vertices u of H.

Note that G is bipartite.
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Figure 1: Gadgets for the construction of G.

Figure 2 illustrates the complete construction of G for the case that H is a path P3

with the three vertices a, b and c.
Let k′ = 3k + (n+ 5)

(
k
2

)
+ 1.

Clearly, the encoding length of (G, k′) is polynomially bounded in terms of the encoding
length of (H, k).

It remains to prove that H has a clique of order at least k if and only if the convexity
number of G is at least k′.

First, we assume that H has a clique C of order at least k and construct a set S as
follows. For every two vertices u and v in C, we add all vertices of Guv to S. For every
vertex u in C, we add the vertex xu to S. Finally, we add x to S. It is easy to check that
S is a convex set of at least k′ vertices which does not contain y, i.e. c(G) ≥ k′.

Next, we assume that G has a convex set of vertices S of order at least k′ which does
not contain all vertices of G.
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Figure 2: The graph G constructed from H = P3.

Let

Vx = {xu | u ∈ V (H)},
Vy = {yu | u ∈ V (H)},
Vz = {zu | u ∈ V (H)}, and

Vw = {wu | u ∈ V (H)}.

Since H[x, y] contains all vertices of G, at most one of the two vertices x and y belongs to
S. If S contains more than n vertices from Vx ∪ Vy, then there are distinct vertices u and
v in H such that xu and yv both belong to S. Since x, y ∈ I[xu, yv], we obtain x, y ∈ S
which is a contradiction. Hence S contains at most n vertices from Vx ∪ Vy.

Claim A If S contains three vertices of Guv for some edge uv of H, then S contains all
vertices of Guv.

Proof: This property is easily verified. 2

Claim B S contains at least two vertices from Vz.

Proof of Claim B: For contradiction, we assume that S contains at most one vertex from
Vz.

Using Claim A it follows easily that there is no edge uv of H such that

• either |S ∩ {zu, wu}|+ |S ∩ Vuv| ≥ 3,

• or |S ∩ {zu, wu}| ≥ 1 and |S ∩ {zv, wv}| ≥ 1.
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Similarly, there are no three vertices u, v and w of H such that uv and vw are edges of H
and

• |S ∩ {zv, wv}| = 0, |S ∩ Vuv| ≥ 1, and |S ∩ Vvw| ≥ 1.

These observations imply that the set of vertices u of H for which S intersects {zu, wu}
forms an independent set. By assumption, there is at most one vertex u of H for which
S contains both vertices zu and wu. Furthermore, if uv and u′v′ are two edges of H such
that u and u′ are distinct and S intersects {zu, wu}, {zu′ , wu′}, Vuv, and Vu′v′ , then v and
v′ are distinct. Finally, if S contains two vertices from Vuv for some edge uv of H, then
S contains no vertex from {zu, wu, zv, wv} or from Vuv′ for an edge uv′ of H different from
uv.

These observations easily implies that S contains at most n+ 1 vertices from

Vz ∪ Vw ∪
⋃

uv∈E(H)

Vuv.

Together with the remarks preceeding Claim A, we obtain that |S| ≤ 2n+ 2. Since k ≥ 3,
this is a contradiction. 2

Let C = {u ∈ V (H) | zu ∈ S}.
By Claim B, the set C contains at least two elements.
If S contains two vertices zu and zv such that u and v are not adjacent in H, then the

distance of zu and zv in G is 4. Hence x and y belong to S which is a contradiction. Hence
C is a clique of H.

For contradiction, we assume that |C| = t < k.
Let S ′ denote the union of the vertex sets of the graphs Guv for all pairs of distinct

vertices u and v in C. Note that S ′ contains exactly 2t + (n + 5)
(

t
2

)
vertices. Since S is

convex, S ′ is a subset of S.

Claim C S \ S ′ contains no vertex from Vw ∪
⋃

uv∈E(H)

Vuv.

Proof of Claim C: For contradiction, we assume that S contains a vertex a from this set.
First, we assume that a = wu for some vertex u of H. By the definition of S ′, u 6∈ C.

Let v be some vertex in C. Now I[wu, zv] contains zu which is a contradiction. Hence a
belongs to Vuv for some edge uv of H.

If v ∈ C, then, by the definition of S ′, u 6∈ C and Claim A implies that S contains all
vertices of Guv which is a contradiction. Hence u, v 6∈ C.

Let w be some vertex in C. Now H[a, zw] contains either zu or zv which is a contradic-
tion.

This completes the proof of the claim. 2

Together with the remarks preceeding Claim A, we obtain that S contains at most 2t +
(n+ 5)

(
t
2

)
+ n+ 1 < k′ elements which is a contradiction.
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This completes the proof. 2

We close this section with a positive result concerning the computation of the convexity
number of cographs [1].

Theorem 2 Let G be a cograph of order n.

(i) If G is connected, G1, . . . , Gk, Gk+1, . . . , Gt are the subgraphs of G induced by the
vertex sets of the connected components of the complement of G where |V (Gi)| ≥ 2
if and only if i ≤ k, and ω denotes the clique number of G, then

c(G) =


n− 1 , if k = 0,
c(G1) + t− 1 , if k = 1, and
ω , if k ≥ 2.

(ii) If G is disconnected, then

c(G) = n−min {|V (H)| − c(H) | H is a connected component of G} .

Proof: (i) First, let k = 0. In this case, G is a complete graph and c(G) = n− 1.
Next, let k = 1. In this case, every vertex u in G2, . . . , Gt is adjacent to all vertices in

V (G)\{u}. Let S be a convex set of vertices of cardinality c(G). Let S1 be the intersection
of S and the vertex set of G1. Clearly, S1 is a convex set with respect to G1. If S1 is a
clique, then S1 does not contain all vertices of the graph G1, because G1 is not complete.
By the choice of S, S contains all vertices in G2, . . . , Gt. If S1 is not a clique, then S
contains all vertices in G2, . . . , Gt, because S is convex. Therefore, c(G) = c(G1) + t− 1.

Finally, let k ≥ 2. Let S be a convex set of vertices of cardinality c(G). If S contains
two non-adjacent vertices from some Gi∗ , then S contains all vertices of G outside of Gi∗ .
Hence S contains two non-adjacent vertices outside of Gi∗ which implies that S contains
all vertices of Gi, i.e. S contains all vertices of G which is a contradiction. Hence S is
complete and c(G) = ω.

(ii) This follows directly from the fact that a convex set of vertices of G of cardinality c(G)
contains all but one of the connected components of G. 2

Using Theorem 2 and modular decompositions [11, 12], one can easily compute the con-
vexity number of a cograph in linear time.

3 Graphs of small convexity number

A subgraph H of a graph G is called distance-preserving if for every two vertices x and
y in H, the distance between x and y with respect to H equals the distance between x
and y with respect to G. Clearly, every distance-preserving subgraph is induced and every
subgraph induced by a convex set of vertices is distance-preserving. For some integer k,

6



we say that a graph G has the property E(k) if G has no distance-preserving subgraph H
of order k for which V (H) is convex in G.

The properties E(k) represent natural necessary extension properties of graphs with
small convexity number. In fact, the exact value of the convexity number can easily be
characterized using these properties.

Proposition 3 If G is a graph of order n and k is such that 2 ≤ k ≤ n−1, then c(G) = k
if and only if G does not have property E(k) but has property E(i) for k + 1 ≤ i ≤ n− 1.

Proof: This follows immediately from the observation, that a graph G with c(G) = k has
a convex set of k vertices which induces a distance-preserving subgraph and that no set of
vertices of cardinality between k + 1 and n− 1 is convex. 2

In this section, we investigate the interplay between the extension properties E(k) and
upper bounds on the convexity number. For k = 2, Proposition 3 can be improved in
two ways. We can restrict the properties E(i) to specific distance-preserving subgraphs
described below. Furthermore, we do not need these properties for i > max

{
4,
⌊

n−2
2

⌋}
.

Let G(3) = {K3, P3}, i.e. G(3) contains all connected graphs of order 3. For k ≥ 3,
let G(k + 1) denote the set of all graphs G which arise from a graph H in G(k) by adding
an ear P : x0x1 . . . xl of length l ≥ 2 to H and possibly by adding new edges between the
interior vertices x1, . . . , xl−1 of P and the vertices of H such that H is a distance-preserving
subgraph of G (cf. Figure 3).

s s
x0 xl

�
�

�
�

s s ssx1 x2 xl−1xl−2

. . .

H

Figure 3: The construction of a graph in G(k + 1).

It is instructive to verify that

G(4) = {C4}, G(5) = {K2,3}, and G(6) = {K2,4, K3,3, K3,3 − e}.

Note that G(k) contains graphs of order more than k for k ≥ 7. For instance, the graph
K2,6 plus an edge joining two vertices in the independent set of size 6 is a member of G(7).

For some k ≥ 3, we say that a graph G has the property E ′(k) if for every distance-
preserving subgraph H of G which belongs to G(k) there is a distance-preserving subgraph
H ′ of G which belongs to G(k+1) such that V (H) ⊆ V (H ′). The next proposition collects
some useful observations concerning the two properties E ′(3) and E ′(4) which will play a
central role.

Proposition 4 (i) A graph has property E ′(3) if and only if it is triangle-free and every
induced P3 is contained in an induced C4.
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(ii) A graph has property E ′(4) if and only if every induced C4 is contained in an induced
K2,3.

(iii) A connected graph has property E(3) if and only if it has property E ′(3).

(iv) A connected graph has properties E(3) and E(4) if and only if it has properties E ′(3)
and E ′(4).

Proof: (i) and (ii) are obvious in view of the above comments. Since the proofs of (iii) and
(iv) are very similar, we only give details for the proof of (iv).

First, we assume that G has properties E(3) and E(4). By E(3), G can not contain a
triangle T , because T would be distance-preserving and V (T ) convex. Similarly, by E(3),
every induced P3 in G must be contained in an induced C4 and, by E(4), every induced C4

must be contained in an induced K2,3, i.e. G has properties E ′(3) and E ′(4).
Next, we assume that G has properties E ′(3) and E ′(4). If H is a distance-preserving

subgraph of G of order 3, then, since G is connected, H is either a triangle or a P3. Since G
has property E ′(3), V (H) is not convex. Similarly, if H is a distance-preserving subgraph
of G of order 4, then, since G is connected and triangle-free, H is either an induced P4, or
an induced claw K1,3, or an induced C4. In the first two cases property E ′(3) implies that
V (H) is not convex and in the last case property E ′(4) implies that V (H) is not convex.
Hence G has properties E(3) and E(4).

This completes the proof. 2

Our next result shows that the extension property E(3)/E ′(3) already implies a non-trivial
upper bound on the convexity number.

Theorem 5 If G is a connected graph of order n which has property E ′(3), then

c(G) ≤ n

2

with equality if and only if G arises from a graph H of order n
2

which has property E ′(3)
by adding a disjoint isomorphic copy H ′ of H and adding a new edge between every vertex
u ∈ V (H) and its copy u′ ∈ V (H ′).

Proof: Let G be a connected graph of order n which has property E ′(3). By Proposition 4
(i), G is triangle-free and every induced P3 is contained in an induced C4.

Let C be a convex set of vertices of cardinality c(G). Let R = V (G) \ C.
If a vertex v ∈ R has two neighbours u and w in C, then u and w are not adjacent and

v ∈ I[u,w], which contradicts the convexity of C. Hence every vertex in R has at most
one neighbour in C.

Since G is connected, C induces a connected subgraph G[C] of G and there is an edge
u0u

′
0 ∈ E(G) with u0 ∈ C and u′0 ∈ R.
If uv, uu′ ∈ E(G) with u, v ∈ C and u′ ∈ R, then u′ and v are not adjacent and vuu′

is an induced P3. By E ′(3), u′ and v have a common neighbour v′ such that u′uvv′u′ is an
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induced C4. Since u′ has at most one neighbour in C, v′ ∈ R. Iteratively applying this
observation to the edges of a spanning tree of G[C] rooted at u0 implies the existence of a
matching M = {eu | u ∈ C} such that for every u ∈ C, eu = uu′ for some u′ ∈ R. This
already implies |C| ≤ |R| and hence c(G) ≤ n

2
.

If c(G) = n
2
, then M is a perfect matching.

If uu′, vv′ ∈ M are such that uv ∈ E(G) and u′v′ 6∈ E(G), then u′uv is an induced
P3 and u′ and v have a common neighbour v′′ 6= u. Since u′v′ 6∈ E(G), v′′ = w′ for some
ww′ ∈ M with w ∈ C \ {v}. Now w′ ∈ R has two neighbours w and v in C which is a
contradiction. Similarly, if uu′, vv′ ∈ M are such that uv 6∈ E(G) and u′v′ ∈ E(G), then
u′v′v is an induced P3 and u′ and v have a common neighbour v′′′ 6= v′. Since uv 6∈ E(G),
v′′′ = w′ for some ww′ ∈M with w ∈ C \ {u}. Now w′ ∈ R has two neighbours w and v in
C which is a contradiction. Altogether, this implies that the mapping defined by u 7→ u′

for every eu = uu′ ∈ M is an isomorphism between G[C] and G[R], i.e. G is as described
in the statement of the theorem.

Conversely, let G arises from a graph H of order n
2

which has property E ′(3) by adding
a disjoint isomorphic copy H ′ of H and adding a new edge between every vertex u ∈ V (H)
and its copy u′ ∈ V (H ′). Since H has property E ′(3) and every induced P3 which intersects
V (H) as well as V (H ′) is contained in an induced C4 by construction, G has property E ′(3)
which implies c(G) ≤ n

2
. Furthermore, by construction, every path of length l in G between

two vertices x and y in V (H) which intersects V (H ′) corresponds to a walk of length at
most l − 2 in H between x and y. Hence V (H) is convex and c(G) ≥ |V (H)| = n

2
which

completes the proof. 2

Adding the next extension property E(4)/E ′(4), the upper bound from Theorem 5 improves
only by 1 but the structure of the extremal graphs becomes far more restricted.

Theorem 6 If G is a connected graph of order n ≥ 6 which has properties E ′(3) and E ′(4),
then

c(G) ≤ n− 2

2

with equality if and only if either n = 6 or n ≥ 12 and the vertex set V (G) can be partitioned
into four independent sets X, X ′, Y and Y ′ such that (cf. Figure 4)

• |X ′| = |X|, |Y ′| = 2|Y | = 4,

• G[X ∪ Y ] and G[X ′ ∪ Y ′] are complete bipartite graphs,

• the edges between X and X ′ form a perfect matching,

• the edges between Y and Y ′ form two disjoint P3s,

• and there are no edges between X and Y ′ or X ′ and Y .
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Figure 4: The structure of the extremal graphs for Theorem 6 and Corollary 7.

Proof: Let G be a connected graph of order n ≥ 6 which has properties E ′(3) and E ′(4).
Let C be a convex set of vertices of cardinality c(G). Let R = V (G)\C. If n = 6 or n = 7,
then the result easily follows. Hence we may assume n ≥ 8 and |C| ≥ 3.

Since G has property E ′(3), we obtain as in the proof of Theorem 5 that every vertex
in R has at most one neighbour in C and that there is a matching M = {eu | u ∈ C} such
that for every u ∈ C, eu = uu′ for some u′ ∈ R. Since C is convex and G has properties
E ′(3) and E ′(4), this implies that also G[C] has properties E ′(3) and E ′(4). Since |C| ≥ 3,
we obtain that G[C] contains an induced K2,3.

If uv ∈ E(G) for u, v ∈ C, then uvv′u′u is an induced C4. By E ′(4), every induced C4 is
contained in an induced K2,3. This implies that either u and v′ have a common neighbour
u′′ 6∈ {u′, v} or v and u′ have a common neighbour v′′ 6∈ {u, v′}, i.e. for every edge of
G[C] at least one of the two incident vertices has at least two neighbours in R. Since G[C]
contains an induced K2,3, the independence number α of G[C] is at most |C| − 2 and we
obtain

n = |C|+ |R| = α + (|C| − α) + |R| ≥ 2α + 3(|C| − α) = 3|C| − α ≥ 2|C|+ 2

which implies c(G) ≤ n−2
2

.

If c(G) = n−2
2

, then either c(G) = 2 and n = 6 or c(G) ≥ 5, the independence number α of
G[C] equals |C|−2 and there is an independent set X ⊆ C of order |C|−2 such that every
vertex in X has exactly one neighbour in R and every vertex in Y = C \ X has exactly
two neighbours in R. Since G[C] is connected, has properties E ′(3) and E ′(4), and contains
an induced K2,3, we obtain that C induces a complete bipartite graph with partite sets X
and Y .

If u ∈ X and v ∈ Y , then let u′, v′, v′′ ∈ R be such that uu′, vv′, vv′′ ∈ E(G). Note that
uv ∈ E(G) and that vuu′ is an induced P3. By E ′(3) and E ′(4), we have u′v′, u′v′′ ∈ E(G)
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and v′v′′ 6∈ E(G). This easily implies that R induces a complete bipartite graph with
partite sets X ′ and Y ′ such that |X ′| = |X|, |Y ′| = 2|Y | = 4, the edges between X and X ′

form a perfect matching, and the edges between Y and Y ′ form two disjoint P3’s, i.e. G is
as described in the statement of the theorem.

Conversely, if G be as described in the statement of the theorem, then it is easy to
verify that G has properties E ′(3) and E ′(4), and c(G) = n−2

2
which completes the proof.

2

Adding further extension properties, the upper bound from Theorem 6 does no longer
improve. Only the lower bound on the order of the extremal graphs increases.

Corollary 7 Let k ≥ 4. If G is a connected graph of order n ≥ 2k+ 4 which has property
E(i) for 3 ≤ i ≤ k, then

c(G) ≤ n− 2

2

with equality if and only if the vertex set V (G) can be partitioned into four independent sets
X, X ′, Y and Y ′ such that the conditions stated in Theorem 6 are satisfied (cf. Figure 4).

Proof: In view of Proposition 4 and Theorem 6, it remains to prove that the graphs G
with c(G) = n−2

2
described in the statement of the result have property E(i) for 5 ≤ i ≤ k.

Note that |X| = |X ′| ≥ k.
Let H be a distance-preserving subgraph of G of order between 5 and k. If H contains

the two vertices y1 and y2 in Y , then it does not contain at least one vertex x in X. Since
x ∈ I[y1, y2], H is not convex. Similarly, if H contains two vertices y′1 and y′2 in Y ′, then it
does not contain at least one vertex x′ in X ′. Since x′ ∈ I[y′1, y

′
2], H is not convex. Hence

H contains at most one vertex from Y and at most one vertex from Y ′. If H contains
two vertices x1 and x2 in X, then it does not contain at least one vertex y in Y . Since
y ∈ I[x1, x2], H is not convex. Similarly, if H contains two vertices x′1 and x′2 in X ′, then it
does not contain at least one vertex y′ in Y ′. Since y′ ∈ I[x′1, x

′
2], H is not convex. Hence

H contains at most one vertex from X and at most one vertex from X ′.
This implies the contradiction that the order of H is at most four which completes the

proof. 2

For k = 2, Proposition 3 can be improved as follows.

Corollary 8 If G is a graph of order n ≥ 4, then c(G) = 2 if and only if G is connected
and no distance-preserving subgraph H of G which belongs to G =

⋃
i≥3

G(i) and has order

between 3 and max
{

4,
⌊

n−2
2

⌋}
is convex.

Proof: Let G be a graph of order at least 4 with c(G) = 2. If G has exactly two components,
then two adjacent vertices from one component together with one further vertex from the
other component form a convex set. Similarly, if G has at least three components, then
three vertices each belonging to a different component form a convex set. Hence G is
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connected. By Proposition 3, G has property E(i) for 3 ≤ i ≤ n − 1 which completes the
proof of one implication.

Conversely, let G be connected and let no proper distance-preserving subgraph H of G
which belongs to G and has order between 3 and max

{
4,
⌊

n−2
2

⌋}
be convex. This implies

that G is triangle-free and no induced P3 or C4 in G is convex. Hence G has properties
E ′(3) and E ′(4).

If n ≥ 6, then, by Theorem 6, c(G) ≤
⌊

n−2
2

⌋
. For contradiction, we assume that

c(G) ≥ 3. Let C be a convex set of vertices of cardinality c(G). Since G is triangle-
free, G[C] contains an induced P3, i.e. G[C] contains a distance-preserving subgraph from
G of order 3. If G[C] contains a distance-preserving subgraph H from G of order k for
some 3 ≤ k ≤

⌊
n−2

2

⌋
, then H is a proper distance-preserving subgraph of G. Hence, by

assumption, H is not convex. By the definition of G(i), this implies that G contains a
distance-preserving subgraph H ′ ∈ G such that V (H) ⊆ V (H ′) and |V (H)| < |V (H ′)|.
Since C is convex, H ′ is a subgraph of G[C]. By an inductive argument, we obtain that
G[C] contains a distance-preserving subgraph from G of order more than

⌊
n−2

2

⌋
which is a

contradiction. Hence c(G) = 2.
If 4 ≤ n ≤ 5, then Proposition 3 implies c(G) = 2 which completes the proof. 2

The graph which arises by identifying an edge from a complete graph Kk with k ≥ 2 with
an edge from a complete bipartite graph Kr,s with r, s ≥ 2, does not have property E(k)
but has properties E(i) for k + 1 ≤ i ≤ r + s− 1. This implies that for k ≥ 3, there is no
improvement of Proposition 3 comparable to Corollary 8.

Note that the class of graphs with convexity number 2 is structurally quite rich in the
sense that every connected graph G is an induced subgraph of a graph G′ with c(G′) =
2. (Such a graph G′ can be constructed from G for instance by replacing every vertex
u of G with two vertices u1 and u2 and replacing every edge uv of G with four edges
u1v1, u1v2, u2v1, u2v2. Clearly, G is an induced subgraph of G′ and it is easy to check that
c(G′) = 2.)

In our last result, we identify a class of graphs G for which c(G) equals 2 if and only if
G has the extension property E(3)/E ′(3).

u
u
u
u
u
u

u
u

u
u
u
u
u
u

u
u

Figure 5: Q3 and Q3 − e.

Theorem 9 If G is a connected graph of order at least 2 which does not contain the cube
Q3 or the cube minus an edge Q3− e as an induced subgraph (cf. Figure 5), then c(G) = 2
if and only G has property E ′(3).
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Proof: If c(G) = 2, then Proposition 3 and Proposition 4 (iii) imply that G has property
E ′(3).

Now, let G have property E ′(3). For contradiction, we assume that C is a convex set of
vertices of cardinality at least 3 which does not contain all vertices of G. Ler R = V (G)\C.
Since G is connected and has property E ′(3), C induces a connected triangle-free graph
and there are adjacent vertices u ∈ C and u′ ∈ V (G) \ C. Let v ∈ C be a neighbour of u.
Since u′uv is an induced P3, there is a vertex v′ different from u such that vv′, u′v′ ∈ E(G).
Clearly, v′ ∈ R. Since C has at least 3 elements, we may assume that there is a vertex
w ∈ C different from u such that vw ∈ E(G). Since v′vw is an induced P3, there is a vertex
w′ different from v such that ww′, v′w′ ∈ E(G). Clearly, w′ ∈ R. Since uvw is an induced
P3, there is a vertex x different from v such that ux,wx ∈ E(G). Clearly, x ∈ C. Since
w′wx is an induced P3, there is a vertex x′ different from w such that xx′, w′x′ ∈ E(G).
Clearly, x′ ∈ R.

Now the vertices u, v, w, x, u′, v′, w′, and x′ induce either Q3 or Q3 − e which is a
contradiction. 2
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