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a b s t r a c t

Given a convexity spaceX whose structure is induced by an interval
operator I , we define a parameter, called the pre-hull number of
X , which measures the intrinsic non-convexity of X in terms of
the number of iterations of the pre-hull operator associated with
I which are necessary in the worst case to reach the canonical
extension of copoints of X when they are being extended by
the adjunction of an attaching point. We consider primarily the
geodesic convexity structure of connected graphs in the casewhere
the pre-hull number is at most 1, with emphasis on bipartite
graphs, in particular, partial cubes.
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1. Introduction

Hownon-convex is a convexity space?Wewish to assign a numerical measure to convexity spaces
which is intended to provide a meaningful answer to this question. Suppose X is a finite set endowed
with a convexity structure. Let A be a proper convex subset of X , and B a minimal convex extension
of A, i.e. the convex hull of A ∪ {x} for a suitably chosen point x in X − A. How big is the gap between
A and B—not in terms of cardinality but in terms of convexity? Assuming the convexity structure of
X to arise from an interval operator, what we are asking for is the minimum number r(x; A, B) of
iterations of the associated pre-hull operator (which builds up the convex hull of a set ‘‘from below’’)
that is necessary to get from A∪{x} to its convex hull B. The more iterations it takes, the ‘‘less convex’’
A ∪ {x} was to begin with. The measure of the gap between A and B that we have in mind then is
r(A, B) := maxx∈B−A r(x; A, B).
In using this (local)measure to define a globalmeasure for thewhole space X wewill, however, not

consider arbitrary convex subsets of X and their minimal convex extensions, but will limit ourselves
to copoints K of X as these are more tightly tied to the structure of X in the sense that they possess a
canonical minimal convex extension K+, the convex hull of K ∪ {x}, where x is any attaching point of
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K . The number r(K , K+) is what we call the pre-hull number of K in X , and the pre-hull number of the
whole space X , denoted by ph(X), is defined to bemax r(K , K+), themaximum taken over all copoints
K of X . This is the measure alluded to at the beginning of this section. Intuitively, the smaller the
value of ph(X), the ‘‘less non-convex’’ X may be considered to be. Formal definitions of these concepts
with suitable modifications allowing for infinite convexity spaces are given in Section 2. All spaces
considered in this paper will be interval spaces.
What can be said about the structure of an interval space when its pre-hull number is known?

The paper deals with the easiest case of this question, that is, when ph(X) ≤ 1. Moreover, except in
Section 3, our concern will be almost exclusively with graph convexities (the convexity structures on
the vertex-sets of connected graphs induced by the metric of the graph).
General interval spaces with ph(X) = 0 are easily seen to be precisely the convex geometries ( =

anti-matroids); in the graph case they can be characterized as arising from a special type of chordal
graphs (Section 3). The remaining sections of the paper deal primarily with the convex structure of
bipartite graphs, in particular with partial cubes. An important class of partial cubes, the median
graphs, are shown to have pre-hull number ≤1; indeed they are precisely the modular graphs (i.e.
bipartite graphs satisfying the so-called quadrangle condition) with pre-hull number ≤1 (Sections 4
and 7). On the other hand, there are partial cubes whose pre-hull number can be arbitrarily large
(Section 5). We have also considered the question whether any connected bipartite graph with pre-
hull number at most 1 is a partial cube. We have only been able to obtain a partial answer to this
question which we consider less than satisfactory as it involves a technical condition that may well
be satisfied by all bipartite graphs with ph≤1 (Sections 6 and 7).

2. Definitions and notation

2.1. Graphs

The graphs we consider are undirected, without loops or multiple edges, and may be finite or
infinite. If x ∈ V (G), the set NG(x) := {y ∈ V (G) : xy ∈ E(G)} is the neighborhood of x in G. For a
set S of vertices of a graph G we put NG(S) :=

⋃
x∈S NG(x) − S, and we denote by ∂G(S) the edge-

boundary of S in G, that is the set of all edges of G having exactly one end-vertex in S. Moreover, G[S]
is the subgraph of G induced by S, and G− S := G[V (G)− S].
Paths are considered as subgraphs rather than as sequences of vertices. Thus an (x, y)-path is also

a (y, x)-path. If u and v are two vertices of a path P , then we denote by P[u, v] the segment of P whose
end-vertices are u and v.
Let G be a connected graph. The usual distance between two vertices x and y, that is, the length of

any (x, y)-geodesic (= shortest (x, y)-path) in G, is denoted by dG(x, y). The diameter of a finite graph
G will be denoted by diam G. A connected subgraph H of G is isometric in G if dH(x, y) = dG(x, y) for
all vertices x and y of H . The (geodesic) interval IG(x, y) between two vertices x and y of G consists of
the vertices of all (x, y)-geodesics in G.

2.2. Convexities

A convexity on a set X is an algebraic closure system C on X . The elements of C are the convex sets
and the pair (X,C) is called a convex structure or a convexity space. The convex hull coC(A) of a subset
A of X is the smallest convex set which contains A. The convex hull of a finite set is called a polytope.
An element x of a convex set C is an extreme point of C if C −{x} is convex. Note that if C is the convex
hull of a set A, then every extreme point of C belongs to A. Aminimal convex extension of a convex set
C is a convex set which properly contains C and which is minimal with respect to inclusion. A copoint
at a point x ∈ X is a convex set K which is maximal with respect to the property that x 6∈ K ; x is an
attaching point of K . Note that K+ := coC(K ∪ {x}) = coC(K ∪ {y}) for any two attaching points x, y
of K . K+ is a minimal convex extension of K , called the canonical extension of K . We denote by Att(K)
the set of all attaching points of K , i.e.,

Att(K) := K+ − K . (1)
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For an extensive study of abstract convex structures, see van de Vel [11].
We will be concerned with convexities C on X that can be induced by an interval operator on X ,

that is, a map I : X × X → P (X) such that x, y ∈ I(x, y) and I(x, y) = I(y, x) for all x, y ∈ X . In this
case the pair (X, I) is called an interval space, and a subset C of X is convex provided I(x, y) ⊆ C for all
x, y ∈ C . Let I be the self-map of P (X) defined by

I(A) :=
⋃
x,y∈A

I(x, y)

for each A ⊆ X . Then I is a pre-hull operator of the convex structure (X,C), that is, I is extensive,
isotone and such that a set C ⊆ X is convex if and only if I(F) ⊆ C for each finite set F ⊆ C .
In terms of a pre-hull operator the convex hull of a set A ⊆ X is

coC(A) =
⋃
n∈N

In(A).

Let K be a copoint of X and x ∈ Att(K). If In(K ∪ {x}) is convex for some n ∈ N (i.e. if
In(K ∪ {x}) = K+) define r(x; K) to be the smallest such n; if no such n exists put r(x; K) = ∞.
Note that since K+ = K ∪ Att(K), the condition that In(K ∪ {x}) = K+ is equivalent to

Att(K) ⊆ In(K ∪ {x}). (2)

The following concept is the principal subject of this paper.

Definition 2.1. Let I be a pre-hull operator of a convex structure (X,C).
(i) Given a copoint K of X , the pre-hull number of K in X is

ph(X; K) := sup{r(x; K) : x ∈ Att(K)}. (3)

(ii) The pre-hull number of X is

ph(X) := sup ph(X; K) (4)

the supremum taken over all copoints K of X .

Several kinds of graph convexities, that is, convexities on the vertex sets of connected graphs,
have been investigated in the literature. The two most natural ones are the geodesic convexity and the
induced path (ormonophonic) convexity. Both are inducedby interval operators: the geodesic convexity
by the geodesic interval operator IG, and the induced path convexity by the induced path interval
operator (the induced path interval between two vertices x and y of a graph G is the set of vertices of
all induced (x, y)-paths in G). In the following we denote by IG the pre-hull operator of the geodesic
convex structure of a graph G, and by ph(G) the pre-hull number of the geodesic space V (G).
By way of an example, if G is the Petersen graph then the copoints are the vertex-sets of the

pentagons and the 3-claws, and ph(G; C5) = 2, ph(G; K1,3) = 3. Hence the Petersen graph has pre-hull
number 3.
Throughout this paper, when working with graphs, by an interval we always mean a geodesic

interval, and the terms convex, convex hull, polytope, copoint, etc., will always apply to the geodesic
convexity.

3. Graphs with pre-hull number zero

By Definition 2.1, if a convexity on a set X is induced by an interval operator, then ph(X) = 0 if and
only if for each point x ∈ X and each copoint K at x, the canonical extension K+ of K is obtained simply
by adding x to K , K+ = K ∪ {x}; that is, K+ is a ‘‘one-point’’ extension of K . The following proposition
shows that more generally this one-point extension property holds for all minimal convex extensions
of convex sets:

Proposition 3.1. Let C be a convexity on a set X which is induced by an interval operator. Then ph(X) = 0
if and only if, for any convex set C ⊆ X and any minimal convex extension C ′ of C, there exists x ∈ X − C
such that C ′ = C ∪ {x}.
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Proof. We only have to prove the necessity. Suppose that ph(X) = 0. Let C be a convex set, C ′ a
minimal convex extension of C , and x ∈ C ′ − C . Assume that C ′ 6= C ∪ {x}, and let y ∈ C ′ − (C ∪ {x}).
Let K be a copoint at y containing C . If x ∈ K , then K ∩ C ′ is a convex extension of C which is properly
contained in C ′, contrary to the minimality of C ′. Hence x 6∈ K .
Because ph(X) = 0 by hypothesis, it follows that K+ = K∪{y}. Hence K+∩C ′ is a convex extension

of C which is properly contained in C ′, contrary to the minimality of C ′.
Therefore C ′ = C ∪ {x}. �

We recall that a convex structure (X,C) is a convex geometry (or anti-matroid) if it has the following
equivalent properties:
Anti-Exchange Property: For any A ⊆ X and any two distinct points x, y 6∈ co(A), x ∈ co(A ∪ {y})

implies y 6∈ co(A ∪ {x}).
Minkowski–Krein–Milman Property: Each polytope is the convex hull of its extreme points.
A third equivalent condition is given by the following:

Proposition 3.2 (Jamison [7]). A convex structure (X,C) is a convex geometry if and only if, for each
point x ∈ X and for each copoint K at x, the set K ∪ {x} is convex.

Hence:

Proposition 3.3. If a convexity C on a set X is induced by an interval operator, then ph(X) = 0 if and
only if (X,C) is a convex geometry.

We now specialize to graphs. Using results of Farber and Jamison we give a characterization of
those graphs whose geodesic convexity is a convex geometry. Recall that a graph is chordal if it
contains no induced cycle of length greater than 3. A vertex of a graph is simplicial if its neighborhood
induces a simplex (= complete graph). Note that a vertex x in a convex set K of a graph G is an extreme
point of K if and only if x is a simplicial vertex of the subgraph G[K ].

Proposition 3.4 (Farber and Jamison [4, Theorem 3.2]). In a finite chordal graph, every non-simplicial
vertex lies on an induced path joining two simplicial vertices.

Proposition 3.5. Let G be a chordal graph all of whose induced paths are geodesics, and let A be a finite
subset of V (G). Then coG(A) = IG(A). More precisely, coG(A) = IG(A∗), where A∗ ⊆ A is the set of all
extreme points of coG(A).

Proof. We will first show that I2(A) = I(A). Let x ∈ I2(A) − I(A). Then x lies on a (u, v)-geodesic
P for some u, v ∈ IG(A). Hence there are a0, a1, a2, a3 ∈ A such that u lies on an (a0, a1)-geodesic Qu
and v lies on an (a2, a3)-geodesic Qv . The graph H := G[V (P) ∪ V (Qu) ∪ V (Qv)] is a finite induced
chordal subgraph of G[I2(A)] such that V (H) = coH(A ∩ V (H)). The vertex x is not simplicial in H
since it is an inner vertex of P , which is a geodesic in H . Hence by Proposition 3.4, x lies on an induced
pathW of H joining two simplicial vertices b, b′ of H , i.e. two extreme points of the convex set V (H).
Moreover b, b′ ∈ A ∩ V (H) because V (H) = coH(A ∩ V (H)).W is also an induced path of G, and thus
a geodesic of G by the hypothesis on G. It follows that x ∈ IG(b, b′) ⊆ IG(A), contrary to assumption.
Therefore coG(A) = IG(A).
We now show that, if u is a non-simplicial vertex ofK := G[coG(A)], then u lies on a geodesic joining

two vertices in A which are simplicial in K . Suppose that this is not true, and let A′ be the set of end-
vertices of all geodesics which join two elements of A and pass through u. By our assumption, each of
these geodesics has at least one end-vertex which is not simplicial. Let A′′ be the set of all these non-
simplicial end-vertices. Each a ∈ A′′ has two neighbors xa and ya in K which are not adjacent. For every
pair (a, b) of distinct elements of A, let∆ab be the union of a finite set of (a, b)-geodesics such that

{u} ∪
⋃
c∈A′
{xc, yc} ⊆

⋃
a,b∈A

V (∆ab).

Then K ′ := G[
⋃
a,b∈A V (∆ab)] is a finite induced chordal subgraph of K . By Proposition 3.4, the vertex

u lies on an induced path P of K ′ joining two simplicial vertices v,w. The path P is also an induced
path of G, and thus is a (v,w)-geodesic. Hence the vertices v and w belong to A′, and at least one
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of them, say v, belongs to A′′. It follows in particular that the two neighbors xv, yv of v in K ′ must be
adjacent since v is simplicial in K ′, contrary to the choice of these two neighbors. This proves the last
part of the proposition. �

Let G be a graph, A a non-empty proper subset of V (G) and x ∈ V (G) − A. We call entrance of x in
A a vertex a ∈ Awhich is joined to x by a geodesic having no inner vertices in A.
In the proofs of the next result and also of Theorem 3.7 we repeatedly use the following property

of a chordal graph G: if C is a cycle in G of length ≥ 4 and x ∈ V (C), then either x is incident with a
chord of C or the two neighbors of x on C are adjacent to each other. Denote this property by (∗).

Lemma 3.6. Let G be a chordal graph such that each of its 5-cycles has at least three chords, and let A be
a non-empty proper subset of V (G). Then A is convex if and only if for any x ∈ V (G)− A the entrances of
x in A are pairwise adjacent.

Proof. (a) Suppose that A is not convex. Then there is a geodesic 〈x0, . . . , xn〉 joining two vertices x0
and xn of A such that xi 6∈ A for 0 < i < n and n ≥ 2. It follows that x0 and xn are two entrances of x1,
and that they are not adjacent.
(b) Conversely suppose that A is convex, and that there exist vertices x ∈ V (G) − A that have

two distinct non-adjacent entrances a, b ∈ A. Choose a ‘‘bad’’ triple (x, a, b) such that among all bad
triples its distance sum s = dG(a, b) + dG(a, x) + dG(b, x) is minimal. Let P = 〈a, a1, . . . , ap−1, x〉,
Q = 〈b, b1, . . . , bq−1, x〉 and R = 〈a, c1, . . . , cr−1, b〉 be geodesics, where r ≥ 2 and without loss of
generality p ≤ q. Because of the minimality of s = p+ q+ r the three geodesics form a cycle.
Since a and c2 are on the geodesic R they are non-adjacent, hence by (∗), C has a chord issuing from

c1. Its other end-vertex, say d, is either some ai or bj. In either case, if r ≥ 3, then (d, b, c1) is a bad
triple violating the minimality of s. Hence r = 2. A similar minimality argument shows that C has no
chords issuing from a or b. By (∗) this implies that a1c1 and b1c1 are edges. We now distinguish two
cases (denoting c1 by c from now on).
Case 1: x is not adjacent to c . In this case there are no chords of C issuing from x, hence by (∗), ap−1

and bq−1 are neighbors. We can therefore find an edge aibj such that i+ j is minimal. Then i, j > 0 as
no chords of C issue from a or b, and without loss of generality i ≤ j. In the cycle C ′ formed by P[a, ai],
R, Q [b, bj] and the edge aibj, the two neighbors ai−1 and bj of ai are non-adjacent by the minimality
of i + j. Hence by (∗), aic is an edge of G, and by the same argument so is bjc. Consequently, i, j ≤ 2,
otherwise P and Q would not be geodesics.
If i = 2, then the pentagon aa1a2b2c has at most the two chords a1c and a2c by the minimality of

i+ j. If i = 1, j = 2 the same argument applies to the pentagon bb1b2a2c. If i = j = 1 there is again a
pentagon with at most two chords, viz. aa1b1bc. Hence we obtain a contradiction in all cases.
Case 2: x and c are adjacent. This implies that p, q ≤ 2 and without loss of generality p ≤ q. The

case p = q = 1 is impossible by convexity of A, hence q = 2. But then the pentagons bb1xa1c (if
p = 2) or bb1xac (if p = 1) have only two chords. This is the final contradiction. �

Theorem 3.7. Let G be a graph. Then the following are equivalent:

(i) ph(G) = 0.
(ii) G is chordal and each of its 5-cycles has at least three chords.
(iii) G is chordal and all induced paths of G are geodesics.
(iv) G is chordal and, for each non-empty convex subset A of V (G) and each x ∈ V (G)− A, the entrances

of x in A are pairwise adjacent.
(v) The geodesic convexity of G is a convex geometry.

Note that the equivalence of conditions (ii), (iii) and (v) is an extension to arbitrary graphs (finite
or infinite) of the equivalence of conditions (b), (d) and (e) of Theorem 4.1 of Farber and Jamison [4]
for finite graphs.

Proof. (i)⇔ (v) is a consequence of Proposition 3.3.
(ii) ⇒ (iii): Suppose that there is an induced path of G which is not a geodesic, and among all

such paths let P be of minimal length. Let a and b be its end-vertices and let Q be an (a, b)-geodesic.
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Fig. 1. Gn .

Suppose that P = 〈x0, . . . , xp〉 and Q = 〈y0, . . . , yq〉 with x0 = y0 = a and xp = yq = b. Then
V (P) ∩ V (Q ) = {a, b} and 2 ≤ q < p. Both P and Q being induced paths, the cycle P ∪ Q has no
chord issuing from a, hence applying (∗), x1 and y1 are adjacent. By the minimality of P , P[b, x1] is a
geodesic, hence p−1 = dG(b, x1) ≤ dG(b, y1)+1 = q, and therefore p = q+1. Repeated application
of (∗) then gives that yi is adjacent to xj if and only if j ∈ {i, i + 1} for all i with 1 ≤ i ≤ q − 1. Then
〈a, x1, x2, y2, y1〉 is a 5-cycle of Gwhich has only two chords.
(iii)⇒ (v) is a consequence of Proposition 3.5.
(v)⇒ (ii): Assume that the geodesic convexity of G is a convex geometry. Let C be a cycle of G and

suppose that C has no chord. Then no vertex of C is simplicial in G[coG(V (C))]. Hence the polytope
coG(V (C)) has no extreme point, contrary to it being the convex hull of its extreme points by (v).
Therefore G is a chordal graph.
Now suppose that G contains a 5-cycle C = 〈x0, x1, x2, x3, x4〉with only two chords x0x2 and x0x3.

Since dG(x1, x4) = 2, it follows that K := coG({x1, x4}) contains the set N of all common neighbors of
x1 and x4. Because G is chordal and x1 and x4 are not adjacent, it follows that these common neighbors
must be pairwise adjacent. Therefore K = {x1, x4} ∪ N , and thus x2, x3 6∈ K . On the other hand,
x3 ∈ coG(K ∪ {x2}) and x2 ∈ coG(K ∪ {x3}), contrary to the fact that the geodesic convexity of G has
the anti-exchange property. Consequently every 5-cycle of G has at least three chords.
(ii)⇒ (iv) is a consequence of Lemma 3.6.
(iv)⇒ (ii) Suppose that a chordal graph G has a 5-cycle C = 〈x0, . . . , x4〉with exactly two chords.

Then one of its vertices, say x0, is adjacent to all other vertices of C . Note than in a chordal graph, any
two distinct neighbors of two non-adjacent vertices are adjacent. Hence the interval of two vertices
at distance 2 is convex. Therefore IG(x1, x4) is convex and does not contain x2 and x3. It follows that
x1 and x4 are two entrances of x2 in IG(x1, x4), and that they are not adjacent. Hence G does not satisfy
(iv). �

Because a connected bipartite chordal graph is a tree, it follows from Theorem 3.7 that:

Corollary 3.8. The pre-hull number of a connected bipartite graph G is zero if and only if G is a tree.

In connection with condition (ii) of Theorem 3.7 note that if some pentagons of a chordal graph
have only two chords then the pre-hull number of the graph may be arbitrarily large. For the graph
Gn of Fig. 1 one has:
• Gn: K = {v, u0, . . . , un}, Att(K) = {x0, . . . , xn}, ph(Gn) = ph(Gn; K) = n;
• G∞: K = {v, u0, u1, . . .}, Att(K) = {x0, x1, . . .}, ph(G∞) = ph(G∞; K) = ∞.

4. Pre-hull number of median-like graphs

Having characterized the graphs with pre-hull number zero, naturally it is the next step to try to
do the same for graphs with pre-hull number equal to 1, or at most 1. We do not know the answer
to this question, not even when restricting ourselves to bipartite graphs. In this section we show that
it follows easily from results of Chepoi [2] that the so-called weakly median graphs have pre-hull
number at most 1. In particular, this includes the median graphs. It will be seen later (Theorem 7.7)
that within the class of bipartiteweaklymodular graphs themedian graphs are the only oneswith this
property.
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We recall the definitions (all graphs considered here are connected; they may be finite or infinite).
A graph G is weakly modular if it satisfies the following two conditions:
Triangle Condition: for any three vertices x0, x1, x2 such that 1 = dG(x1, x2) < dG(x0, x1) =

dG(x0, x2), there exists a common neighbor u of x1 and x2 such that dG(x0, u) = dG(x0, x1)− 1.
Quadrangle Condition: for any four vertices x0, x1, x2, x3 such that dG(x1, x3) = dG(x2, x3) = 1 and

dG(x0, x1) = dG(x0, x2) = dG(x0, x3) − 1, there exists a common neighbor u of x1 and x2 such that
dG(x0, u) = dG(x0, x1)− 1.
Note that chordal graphs are weakly modular.
A quasi-median of a triple (u0, u1, u2) of vertices of a graph G is a triple (x0, x1, x2) of vertices of

G such that: {xi, xj} ⊆ IG(ui, uj) for all i, j ∈ {0, 1, 2} with i 6= j, and dG(x0, x1) = dG(x1, x2) =
dG(x2, x0) = k, where k is minimal with respect to these conditions; k is called the size of the quasi-
median. A quasi-median of size 0 consists of a single vertex which is called a median of the triple
(u0, u1, u2).
In a weakly modular graph every triple of vertices has a quasi-median. Of particular interest in the

present context are:
• the weakly median graphs, i.e. the weakly modular graphs in which every triple of vertices has a

unique quasi-median, or equivalently weakly modular graphs that do not contain any pair of vertices
with an unconnected triple of common neighbors; and
• the median graphs, i.e. the weakly median graphs in which every triple of vertices has a unique

median.
Bipartite weakly modular graphs are calledmodular graphs. These are the graphs for which every

triple of vertices has at least one median. Thus the median graphs, which are the bipartite weakly
median graphs, are particular modular graphs.
The following properties of the geodesic convexity of weakly median graphs are relevant in the

present context.

Proposition 4.1 (Chepoi [2]). Every interval of a weakly median graph is convex.

Recall that an abstract convex structure (X,C) is join-hull commutative if for any convex set C ⊆ X
and any u ∈ X , the convex hull of {u} ∪ C equals the union of the convex hulls coG({u, v}) for
all v ∈ C . Clearly if X is a join-hull commutative interval space whose intervals are convex, then
coC({u} ∪ C) = I({u} ∪ C), whence ph(X) ≤ 1. But note that to have pre-hull number at most 1 is in
general a strictly weaker property than join-hull commutativity (cf. Remark 8.1).

Proposition 4.2 (Chepoi [2]). The geodesic structure of a weakly median graph is join-hull commutative.

The two preceding propositions imply:

Corollary 4.3. Let G be a weakly median graph, C a convex subset of V (G) and u ∈ V (G)− C. Then

coG({u} ∪ C) =
⋃
c∈C

IG(u, c) = IG({u} ∪ C).

Hence:

Theorem 4.4. The pre-hull number of anyweaklymedian graph (hence in particular of anymedian graph)
is at most 1.

5. Pre-hull number of partial cubes

Median graphs are particular partial cubes, i.e. isometric subgraphs of hypercubes. It is tempting to
think that – as for median graphs – the pre-hull number of arbitrary partial cubes is always at most
1. That this is not necessarily the case is shown by the example of the partial cube Q−n (the n-cube
minus a vertex). It is easy to check that ph(Q−n ) = 2 (see Theorem 5.8 for a more general result; in
Fig. 2, ph(Q−3 ;Wab) = 2). Modular partial cubes being median (cf. [9, Theorem 4]), it follows that Q

−
n
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Fig. 2. ph(Q−3 ) = 2.

is not modular (also easily seen directly). However, failure of a partial cube to be modular does not in
itself force its pre-hull number to be greater than 1, as instanced by the example of the even cycles of
length at least 6.
All graphs considered in this section are connected and finite.
We will need the well-known characterizations of partial cubes due to Djoković [3] and

Winkler [12]. For an edge ab of a graph G let

Wab := {x ∈ V (G) : dG(a, x) < dG(b, x)},
Uab := Wab ∩ NG(Wba).

Note that the setsWab andWba are disjoint and that V (G) = Wab ∪Wba if G is bipartite.
Whenever necessary, we will indicate that the sets Wab,Uab are taken within a given graph G by

writingWGab and U
G
ab.

Proposition 5.1 (Djoković [3, Theorem 1]). A connected and bipartite graph G is a partial cube if and only
if for every edge ab of G the sets Wab and Wba are convex.

Recall the definition of the Djoković–Winkler relation Θ for bipartite graphs (see [3,6,12]): two
edges e = ab and e′ = a′b′ are in relation Θ if dG(a, a′) = dG(b, b′) and dG(a, b′) = dG(b, a′). The
relationΘ is clearly reflexive and symmetric.

Proposition 5.2 (Winkler [12]). A connected bipartite graph is a partial cube if and only if the relationΘ
is transitive.

Note that in any bipartite graph G if e = ab and e′ = a′b′ are edges such that a′ ∈ Wab and b′ ∈ Wba
then eΘe′, b ∈ IG(a, b′) and b′ ∈ IG(a′, b).

5.1. Copoints in partial cubes

For use in Section 5.2 (and also in Section 6) we derive here some straightforward technical
results concerning copoints and their sets of attaching vertices in general bipartite graphs and, more
specifically, in partial cubes.

Lemma 5.3. Let K be a convex set of a bipartite graph G. Then any vertex of G not belonging to K has at
most one neighbor in K .

Proof. Suppose x ∈ V (G) has two distinct neighbors x′, x′′ ∈ K . Since G is bipartite, 〈x′, x, x′′〉 is a
geodesic, hence x ∈ K . �

If x ∈ NG(K), the unique neighbor of x in K will be called the projection of x in K andwill be denoted
by prK (x).

Lemma 5.4. (i) Let K be a convex set in a bipartite graph G, and e = ab ∈ ∂G(K), where a ∈ K, b 6∈ K.
Then a = prK (b) ∈ IG(b, x) for every x ∈ K; in particular K ⊆ Wab.

(ii) Moreover, if K is a copoint at b such that Att(K) is convex, then Att(K) ⊆ Wba.
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Proof. (i) Let x ∈ K and suppose that x 6∈ Wab. Then x ∈ Wba, i.e. dG(b, x) = dG(a, x)− 1. Therefore
b ∈ IG(a, x) and hence b ∈ K because K is convex, a contradiction.

(ii) Now suppose that K is a copoint such that Att(K) is convex and b ∈ Att(K). Let x ∈ Att(K) and
suppose that x ∈ Wab. Then dG(a, x) = dG(b, x)− 1 and hence a ∈ IG(b, x). Therefore a ∈ Att(K)
because Att(K) is convex, contradicting the hypothesis that a ∈ K . �

A short way of restating part (i) of the lemma is to say that any proper convex subset of V (G) is
contained in some Wab.

Lemma 5.5. Let e = ab be an edge of a bipartite graph G. If Wab is convex, then it is a copoint of G and
Att(Wab) ⊇ Uab.
Moreover, if both Wab and Wba are convex, then

Att(Wab) = coG(Uba) (5)

or equivalently,

coG(Wab ∪ {b}) = Wab ∪ coG(Uba). (6)

Proof. Let K be a convex set such that K ⊇ Wab and b 6∈ K . Then a ∈ K , i.e. e ∈ ∂G(K), hence K ⊆ Wab
by Lemma 5.4, proving that ifWab is convex, then it is a copoint at b.
Let u ∈ Uba. Then u ∈ IG(b, v), where v is the projection of u in Wab. If u 6∈ Att(Wab) there is a

convex set K properly containingWab such that u 6∈ K . Then b ∈ K and therefore u ∈ IG(b, v) ⊆ K , a
contradiction. Hence u ∈ Att(Wab).
For the second part of the lemma observe that in a bipartite graph Uba ⊆ IG(Wab ∪ {b}) for any

edge ab ∈ E(G), and therefore

Wab ∪ Uba ⊆ IG(Wab ∪ {b}). (7)

Moreover, one easily sees that ifWab is convex andUba ⊆ S ⊆ Wba, thenIG(Wab∪S) = Wab∪IG(S).
Hence in particular

IkG(Wab ∪ Uba) = Wab ∪ IkG(Uba) ⊆ Ik+1G (Wab ∪ {b}) (8)

for all k ∈ N, and therefore

Wab ∪ coG(Uba) = coG(Wab ∪ {b}). (9)

Furthermore, if (7) is an equality then so also is (8) for all k.
Now assume thatWba is convex. Then coG(Uba) ⊆ Wba, hence by (9),

Att(Wab) = coG(Wab ∪ {b})−Wab = coG(Uba). �

Applying the preceding lemmas to partial cubes, and using the fact that in this case the setsWab,
ab ∈ E(G), are convex, we obtain:

Proposition 5.6. The copoints of a partial cube G are precisely the sets Wab, ab ∈ E(G), and Att(Wab) =
coG(Uba).

Proof. Let K be a copoint of G. Given z ∈ Att(Wab) let a be a vertex of K closest to z, and b the neighbor
of a on some (a, z)-geodesic. Then ab ∈ ∂G(K), whence K ⊆ Wab by Lemma 5.4. SinceWab is convex
and b 6∈ Wab it follows that K = Wab. Thus every copoint of G is of the formWab.
The converse – that every Wab is a copoint – is part of Lemma 5.5, as is the statement that

Att(Wab) = coG(Uba). �
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Fig. 3. G for n odd.

5.2. Pre-hull number and diameter

For arbitrary bipartite graphs there is no relationship between the pre-hull number and the
diameter. A simple example showing the independence of the two graph parameters is the complete
bipartite join of K2 with a path of length n ≥ 3 (Fig. 3). G has diameter 3, K = {u, v} is a copoint,
Att(K) = {x0, . . . , xn}, and r(x0; K) = n (notation of Definition 2.1). Hence ph(G) ≥ n (in fact
ph(G) = n).
The situation changes drastically when one considers partial cubes. For these, the pre-hull number

does not exceed the diameter. In proving this we use the fact that the diameter of a partial cube G is
bounded above by the dimension of G. Recall that the dimension of G, i.e. the least n such that G is an
isometric subgraph of an n-cube, coincides with the number ofΘ-classes of E(G).

Theorem 5.7. If G is a partial cube of dimension n, then

ph(G) ≤ min{n− 1, diam G}. (10)

Moreover, for any positive integer n, there exists a partial cube G whose diameter and dimension are equal
to n and whose pre-hull number is n− 1.

Proof. For the proof of (10) let ab ∈ E(G) be such that ph(G) = ph(G;Wba). By Proposition 5.6,
A := Att(Wba) = coG(Uab) ⊆ Wab. We will show that ph(G;Wba) ≤ diam G[A] =: d. A being convex,
G[A] is isometric in G, hence the relationΘ of G[A] is the restriction of the relationΘ on G to E(G[A]).
Since G[A] contains no edges belonging to the Θ-class of ab, its dimension is at most n − 1, hence
d ≤ n− 1; also, d ≤ diamG.
For any x ∈ A put Sx := Wba ∪ {x}. It will suffice to show that

A ⊆ IdG(Sx) for all x ∈ A.

Let x, y ∈ A be arbitrary and let 〈x0, . . . , xr〉 be an (x, y)-geodesic (x0 = x, xr = y). Then r ≤ d, and
xi ∈ A by the convexity of A. We now show by induction that xi ∈ IiG(Sx), i = 0, . . . , r . This is obvious
for i = 0. For the induction step assume the statement true for i−1, and note thatUab∩Wxixi−1 6= ∅, for
if not thenUab ⊆ Wxi−1xi , and hence xi ∈ A = coG(Uab) ⊆ Wxi−1x1 , which is absurd. Let u ∈ Uab∩Wxixi−1
and v its projection inWba. Then uv is in relationΘ with ab but notwith xi−1xi. This in turn implies that
v ∈ Wxixi−1 . It follows that any (v, xi)-geodesic of G can be extended at xi to a (v, xi−1)-geodesic. Since
v ∈ Sx and xi−1 ∈ Ii−1G (Sx) by the induction hypothesis, we therefore have xi ∈ IiG(Sx). In particular,
for i = r , y ∈ IrG(Sx) ⊆ IdG(Sx), completing the proof of (10).
To prove the second part of the theorem letQ be an n-cube and choose an arbitrary edge ab ∈ E(G).

Let P = 〈v0, v1, . . . , vn−2〉 be a geodesic in Q with v0 = a, v1 = b. Define G to be the subgraph of Q
induced by NQ [V (P)] ∪ {z}, where z is the antipode of a in Q . This is an isometric subgraph of Q with
the property that if x, y are two distinct vertices at the same distance from a, then dG(x, y) = 2 (for
n = 2, G is a 4-cycle; for n = 3 it is the graph of Fig. 2). Furthermore,WGab ∪ {b} = NG[a] = NQ [a].
Hence for k = 0, . . . , n− 1, IkG(W

G
ab ∪ {b}) consists precisely of the vertices of G at distance ≤ k+ 1

from a. Thus ph(G;WGab) ≥ n− 1, which, together with (10) gives ph(G) = n− 1. �
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Among the isometric subgraphs of a finite hypercube Q there are those which are obtained by
removing a subhypercube from Q , e.g. the graphs Q−n mentioned at the beginning of this section. For
these particular partial cubes, the pre-hull number is small.

Theorem 5.8. Let Q be an n-cube, and Q ′ a p-subcube of Q with 0 ≤ p < n. If n ≤ 2, then
ph(Q − Q ′) = 0; and if n ≥ 3, then

ph(Q − Q ′) =
{
1 if p ≥ n− 2
2 if p ≤ n− 3.

Proof. If n ≤ 2, then Q − Q ′ is a tree and thus ph(Q − Q ′) = 0 by Corollary 3.8. Assume that n ≥ 3,
and let G := Q − Q ′. If p = n − 1, then G is an (n − 1)-cube; if p = n − 2, then G consists of two
(n − 1)-cubes attached to each other along an (n − 2)-face. In both cases, G is median, and hence
ph(G) = 1 by Theorem 4.4.
Suppose that p ≤ n− 3, and let e = ab be an edge of G.
(a) If e isΘ-equivalent in Q to some edge e′ ∈ E(Q ′), then UGba = W

G
ba, hence by (5), Att(W

G
ab) = U

G
ba

andWGba ⊆ IG(W
G
ab ∪ {u}) for any u ∈ Att(W

G
ab). Thus ph(G;W

G
ab) = 1.

(b) Now suppose that e is notΘ-equivalent to any edge e′ ofQ ′. ThenV (Q ′) is contained inWQab or in
WQba, sayV (Q

′) ⊆ WQab.WhenceU
G
ab = W

G
ab = W

Q
ab−V (Q

′). It follows in particular that ph(G;WGba) = 1.
Because Q [WQab] is an (n − 1)-cube and p ≤ n − 3, it follows that there are a subset S of U

G
ab

which induces in Q a (n − 2)-cube, and a vertex s ∈ UGab − S. Then IQ ({s} ∪ S) = W
Q
ab. Whence

IQ (UGab) = W
Q
ab. It follows that IG(U

G
ba) = W

G
ba sinceW

G
ba = W

Q
ba. Therefore Att(W

G
ab) = IG(UGba), and

thus ph(G;WGab) ≤ 2.
On the other hand, let x ∈ WGba − U

G
ba (i.e. x is the projection onW

G
ba of some vertex of Q

′). Then,
since Q [WGba] is an (n− 1)-cube, there is exactly one y ∈ W

G
ba such that dG(x, y) = dQ (x, y) = n− 1.

Moreover, because WGba − U
G
ba, which is the projection of V (Q

′) on WGba, induces a hypercube of
dimension p ≤ n − 3, it follows that y ∈ UGba. Hence x 6∈ IG(y, z) for any z ∈ U

G
ba. It follows that

ph(G;WGab) ≥ 2. Therefore ph(G;W
G
ab) = 2.

From this result and (a), we infer that ph(G) = 2. �

There are straightforward extensions of this result to infinite hypercubes. In particular, with the
part p ≤ n− 3 of the preceding proof, we obtain the following theorem.

Theorem 5.9. Let Q be an infinite hypercube, and Q ′ a subhypercube of Q of finite dimension. Then
ph(Q − Q ′) = 2.

6. A characterization of partial cubes

For application in the next section we derive here a (somewhat technical) characterization of
partial cubes based on properties of the sets of attaching vertices of copoints. As always, all graphs
under consideration are connected. They may be infinite except where stated otherwise.

Lemma 6.1 (Imrich and Klavžar [5, Lemma 2.6]). The vertex-set of an induced connected subgraph H of a
bipartite graph G is convex if and only if no edge in ∂G(V (H)) is in relationΘ with an edge of H.

Although proved in [5] only for finite graphs, the proof of the lemma is equally valid in the infinite
case.
The following lemma lists some simple properties of the set of attaching vertices of copoints in

graphs. Given a copoint K ofGwedenote by XK the set of attaching vertices of K which have a neighbor
in K , i.e.

XK := Att(K) ∩ NG(K). (11)

This notation will also be used in Lemma 7.3. Recall that we denote the canonical extension of K by
K+.
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Lemma 6.2. Let K be a copoint of G. Then:
(i) If u ∈ K and v ∈ Att(K), then any (u, v)-geodesic of G meets XK .
(ii) K+ = K ∪ coG(XK ).
(iii) If Att(K) is convex, then Att(K) = coG(XK ).

Proof. (i) Let 〈u, x1, . . . , xr−1, v〉 be a (u, v)-geodesic in G, where u ∈ K and v ∈ Att(K). Denote by
k the least subscript such that xk 6∈ K . Then xk ∈ NG(xk−1) ⊆ NG(K). Furthermore, u, v ∈ K+, hence
xk ∈ K+ by convexity of K+, so that xk ∈ K+ − K = Att(K) by (i). Therefore, xk ∈ XK .
(ii) Clearly K ′ := K ∪ coG(XK ) ⊆ K+ because XK is contained in K+. It therefore suffices to show

that K ′ is convex; the minimality of the extension K+ of K then implies that K ′ = K+.
Let u, v ∈ K and P = 〈u, x1, . . . , xr−1, v〉 a (u, v)-geodesic. If u, v ∈ K or u, v ∈ coG(XK ), then

obviously all vertices of P are in K ′, so the only case to check is u ∈ K , v ∈ coG(XK ). Without loss
of generality we may assume that u is the only vertex of P in K , whence by the proof of (i), x1 ∈ XK .
Therefore IG(x1, v) ⊆ coG(XK ), so that again all vertices of P are in K ′.
(iii) By (ii), K+ = K ∪ coG(XK ) = K ∪ Att(K), hence by (1), Att(K) = K+ − K ⊆ coG(XK ). On the

other hand, if Att(K) is convex, then coG(XK ) ⊆ Att(K). �

Definition 6.3. A bipartite graph G is said to be Att-convex (resp. Att-full) if for each copoint K of G,
Att(K) is convex (resp. NG(K) ⊆ Att(K)).

Proposition 6.4. A bipartite graph G is Att-convex if and only if XK ⊆ IG({a} ∪ K) for each copoint K of
G and each vertex a ∈ XK .

Proof. Suppose that G is Att-convex. Let K be a copoint of G, and let a, x ∈ XK . Then, by Lemma 5.4
and since Att(K) is convex, x ∈ IG(a, prK (x)). Hence XK ⊆ IG({a} ∪ K).
Conversely let K be a copoint at a vertex a. Suppose that Att(K) is not convex. Then there exist two

non-adjacent vertices a, b ∈ XK which are the end-vertices of a geodesic whose inner vertices belong
to K . Then b 6∈ IG(a, prK (b)). Let u ∈ K . Because prK (b) ∈ IG(b, u) by Lemma 5.4 and since K is convex,
it follows that b 6∈ IG(a, u). Therefore XK 6⊆ IG({a} ∪ K). �

Proposition 6.5. A bipartite graph G is Att-convex if and only if G has the following two properties:
(i) The restriction of the relationΘ to the edge-boundary of any convex set of G is transitive.
(ii) For each copoint K of G there exists a vertex a ∈ XK such that XK ⊆ IG({a} ∪ K).

Proof. (a) Suppose that G is Att-convex. Condition (ii) is a consequence of Proposition 6.4.
Let C be a convex set of G. Let ab ∈ ∂G(C)with b ∈ C , and let K be a copoint at a containing C . Then

K ⊆ Wba. Furthermore every edge in ∂G(C) which is in relation Θ with ab belongs to ∂G(K) since by
Lemma 6.1 no edge in G[K ] is in relationΘ with ab. If uv ∈ ∂G(K)with v ∈ K is in relationΘ with ab,
then u ∈ Wab, and thus u ∈ IG(a, v). Hence u ∈ Att(K). Therefore all edges of ∂G(K) in relationΘ with
ab are edges joining vertices of K with vertices of Att(K). Then any two of these edges are in relation
Θ because K and Att(K) are two disjoint convex sets.
(b) Conversely suppose that G has properties (i) and (ii). Let K be a copoint of G. By property (ii),

XK ⊆ IG({a}∪K) for some vertex a ∈ XK . Let b be the neighbor of a in K , and let u be any vertex in XK .
Then there exists a vertex v ∈ XK such that u, v ∈ IG(a, v′), where v′ is the neighbor of v in K . Then
the edges ab and vv′ are in relationΘ . Let u′ be the neighbor of u in K . Then, because K is convex and G
is bipartite, dG(b, u′) ≤ dG(a, u) and dG(u′, v′) ≤ dG(u, v). Therefore, since u, v ∈ IG(a, v′), it follows
that dG(b, u′) = dG(a, u) and dG(u′, v′) = dG(u, v), and hence the edges ab and uu′ are in relationΘ .
Consequently, each edge between Att(K) and K is in relation Θ with ab. Hence, by property (i),

every pair of edges between Att(K) and K are in relation Θ . It follows that IG(Att(K)) ∩ K = ∅, and
thus that Att(K) is convex because if some (x, y)-geodesic P with x, y ∈ Att(K)were to pass through
K , then P would contain two boundary edges of K , i.e. two edges in relation Θ , which is impossible.

�

Wedo not know if property (ii) is really necessary in Proposition 6.5. Concerning condition (i), note
that we have the following equivalence:
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Proposition 6.6. Let G be a bipartite graph. The following properties are equivalent:

(i) The restriction of the relationΘ to the edge-boundary of any copoint of G is transitive.
(ii) The restriction of the relationΘ to the edge-boundary of any convex set of G is transitive.

Proof. Suppose that the restriction of the relation Θ to the edge-boundary of any copoint of G is
transitive. Let C be a convex set ofG. Let ab ∈ ∂G(C)with b ∈ C , and letK be a copoint at a containing C .
Then K ⊆ Wba. Furthermore every edge in ∂G(C)which is in relationΘ with ab belongs to ∂G(K) since
by Lemma 6.1 no edge in G[K ] is in relation Θ with ab. Hence, because by hypothesis the restriction
ofΘ to ∂G(K) is transitive, it follows that any two edges of ∂G(C)which are in relationΘ with ab are
also in relationΘ with each other. Therefore the restriction of the relationΘ to the edge-boundary of
C is transitive.
The converse is trivial. �

We obtain the following characterizations of partial cubes.

Theorem 6.7. Let G be a finite, connected bipartite graph. The following properties are equivalent:

(i) G is a partial cube.
(ii) G is Att-convex and Att-full.
(iii) NG(K) ⊆ IG({a} ∪ K) for each copoint K of G and each vertex a ∈ NG(K).
(iv) The relation Θ on E(G) is conditionally transitive in the sense that if e0, e1, e2 are three edges of G

such that
• e1Θe0, e0Θe2, and
• the shortest intervals between end-vertices of e0 and e1, e1 and e2, and e2 and e0 are convex,

then e1Θe2.

By a ‘‘shortest interval’’ between two edges e and e′ we mean an interval formed by the geodesics
connecting a pair of end-vertices of e and e′, respectively, which are at minimum distance from each
other.

Proof. (i)⇒ (ii): Suppose that G is a partial cube. Let K be a copoint of G at a vertex b ∈ NG(K), and
let a := prK (b). Then Wab and Wba are convex by Proposition 5.1. It follows that K = Wab, and that
Att(K) is contained in Wba and thus is convex. Let x ∈ NG(K). Then x ∈ IG(b, prK (x)) by Lemma 5.4
and sinceWba is convex, and hence x ∈ coG({b} ∪ K) ∩Wba = Att(K). Therefore NG(K) ⊆ Att(K).
(ii)⇒ (i): Suppose that G is Att-convex and Att-full. Let K be a copoint of G, and ab ∈ ∂G(K) with

a ∈ K . Note that K ⊆ Wab. Let x ∈ NG(K). Then x ∈ Att(K) since G is Att-full. Hence b ∈ IG(x, a)
by Lemma 5.4 and since Att(K) is convex. It follows that K = Wab, and thus Wab is convex and
Att(K) ⊆ Wba. Then Wba is also convex because the boundary of Wba is equal to NG(K), and thus
is contained in Att(K) which is convex since G is Att-convex by hypothesis. Therefore G is a partial
cube by Djoković’s Theorem (Proposition 5.1).
(i)⇒ (iii) is a consequence of Proposition 6.4.
(iii)⇒ (ii): Let K be a copoint of G, and a ∈ XK . Because NG(K) ⊆ IG({a} ∪ K) by (iii), it follows

that NG(K) ⊆ Att(K), and thus that Att(K) is convex by Proposition 6.4. Therefore G is Att-convex and
Att-full.
(i)⇒ (iv) follows from the fact that Θ is transitive if G is a partial cube by Winkler’s Theorem

(Proposition 5.2).
(iv)⇒ (i): Suppose Θ satisfies condition (iv). Clearly it suffices to show that all intervals in G are

convex because it then follows from (iv) that Θ is transitive, whence by Winkler’s Theorem G is a
partial cube. To show that any interval IG(u, v) is convexweuse induction on dG(u, v). Trivially IG(u, v)
is convex if dG(u, v) = 1. Assume the convexity of any interval whose end-vertices are at distance≤ n
from each other.
Let u, v ∈ V (G) be such that dG(u, v) = n + 1 (hence dG(x, y) ≤ n + 1 for any x, y ∈ IG(u, v)).

Suppose that IG(u, v) is not convex. Then there is a pair of vertices w0, w1 ∈ IG(u, v) and a (w0, w1)-
geodesic not all of whose vertices belong to IG(u, v). Among all such pairs choosew0, w1 so as to have
minimum distance from each other. Then no (w0, w1)-geodesic has any inner vertex in IG(u, v). Note
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that 2 ≤ dG(w0, w1) ≤ n + 1. Let Pi be a (u, v)-geodesic such that wi ∈ V (Pi), i = 0, 1, and let Q be
any (w0, w1)-geodesic. Denote by e0 the edge of Q incident withw0. Then P0[u, w0] ∪ Q ∪ P1[w1, u]
and P0[v,w0] ∪ Q ∪ P1[w1, v] contain cycles C1 and C2, respectively, both of which pass through e0.
Hence there is an edge ei = xiyi ∈ E(Ci), ei 6= e0, such that eiΘe0, i = 1, 2. Clearly e1 6∈ E(Q ), Q being
a geodesic; likewise, e1 6∈ E(P0[u, w0]) because by the minimality of dG(w0, w1), P0[u, w0] ∪ e0 is a
geodesic. Hence e1 is in P1[u, w1]. In the same way one obtains that e2 is in P1[w1, v]. Let the notation
of the end-vertices of ei be so chosen that dG(w0, xi) < dG(w0, yi), i = 1, 2. Then dG(w0, xi) ≤ n,
i = 1, 2, and dG(y1, y2) ≤ n. By the induction hypothesis the intervals IG(w0, x1), IG(y1, y2), IG(x2, w0)
are convex, hence e1Θe2 by (iv). But this is impossible because e1 and e2 are two distinct edges of the
geodesic P1. �

7. Bipartite graphs with pre-hull number at most 1

Definition 7.1. Call a set A of vertices of a graph G ph-stable if any two vertices u, v ∈ IG(A) lie on a
geodesic joining two vertices in A.

For example any convex set and any set A such that IG(A) induces a finite or infinite path are
obviously ph-stable. Note that if a set A ⊆ V (G) is ph-stable, then any edge of G[IG(A)] is an edge of
an (a, b)-geodesic for some a, b ∈ A.

Remark 7.2. (i) The condition of Definition 7.1, which is symmetric in u and v, can be replaced by
the formally ‘‘one-sided’’ condition: for any two vertices u, v ∈ IG(A) there is a w ∈ A such that
v ⊆ IG(u, w). (To get a geodesicwhich joins two vertices inA and contains u and v, apply the one-sided
condition first to u and v, and then tow and u.)
(ii) It is immediate from the definition that if A is ph-stable, then I2G(A) = IG(A) and hence

coG(A) = IG(A). The converse is not true. For example, in the partial cube Q−3 of Fig. 2, the set Uba
is not ph-stable but coG(Uba) = Wba = IG(Uba).

Pre-hull stability plays a role in the characterization of bipartite graphs with pre-hull number at
most 1 (recall the notation introduced in (11): XK = Att(K) ∩ NG(K)):

Lemma 7.3. Let K be a copoint of a graph G. If ph(G; K) ≤ 1, then XK is ph-stable. Conversely, if G is
bipartite, Att(K) is convex and XK is ph-stable, then ph(G; K) ≤ 1.

Proof. Suppose that ph(G; K) ≤ 1. Recall from (2) that this means that Att(K) ⊆ IG(K ∪ {x}) for
every x ∈ Att(K). Hence in particular

XK ⊆ IG(K ∪ {x}) for every x ∈ XK .

Let u, v ∈ Att(K). Then v ∈ IG(K ∪ {u}), i.e. v is on some (u, w)-geodesic P , where w ∈ K . As
K is convex and v 6∈ K , there is a unique vertex of K on P which is closest to v, and without loss of
generality we may assume w to be that vertex. Therefore v ∈ IG(u, z), where z is the neighbor of w
on P not belonging to K . Thus z ∈ NG(K). On the other hand, since both u and w are in K+ it follows
that z ∈ K+ − K = Att(K), hence z ∈ XK . By Remark 7.2(i) this means that XK is ph-stable.
For the converse suppose that G is bipartite, Att(K) is convex, and XK is ph-stable. We have to

show that Att(K) ⊆ IG(K ∪ {u}) for every u ∈ Att(K). By Lemma 6.2(iv), Att(K) = coG(XK ); and by
Remark 7.2(ii), coG(XK ) = IG(XK ). Hence what has to be shown is that IG(XK ) ⊆ IG(K ∪{u}) for every
u ∈ IG(XK ).
Let u, v ∈ IG(XK ). XK being ph-stable there is a vertexw ∈ XK such that v ∈ IG(u, w). Letw′ be the

projection of w in K . As IG(XK ) = Att(K) and Att(K) is convex, it follows that IG(u, w) ⊆ Att(K), i.e.
IG(u, w) is disjoint from K . Therefore w′ 6∈ IG(u, w) and consequently v ∈ IG(u, w′) ⊆ IG(K ∪ {u}).

�

Note that the full strength of bipartiteness is not used here; all that is needed is that given any
w ∈ NG(K) there is a neighbor w′ of w in K such that IG(u, w) ∈ IG(u, w′) for any u ∈ Att(K). One
may call this property quasi-bipartiteness at K . Examples of quasi-bipartite graphs with ph = 1 that
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are non-bipartite are the odd cycles C2k+1 (the copoints of C2k+1 are the vertex-sets of the paths of
length k, the corresponding sets of attaching vertices are the complementary paths of length k+ 1).

Theorem 7.4. Let G be a bipartite graph. Then ph(G) ≤ 1 if and only if, for every copoint K of G, the set
Att(K) is convex and XK is ph-stable.

Proof. By Lemma 7.3 we only have to prove the necessity. Suppose that ph(G) ≤ 1, and let K be a
copoint of G. To prove that Att(K) is convex it is sufficient to show that IG(u, v) ⊆ Att(K) for any
two vertices u, v ∈ XK . By Lemma 5.4 and the fact that ph(G) ≤ 1, we have prK (u) ∈ IG(u, prK (v))
and v ∈ IG(u, prK (v)), respectively. It follows that dG(u, v) = dG(prK (u), prK (v)), and thus that
IG(u, v) ∩ K = ∅.
Now XK is ph-stable by Lemma 7.3. �

Since any edge is a convex set, it follows in particular that a bipartite graph G with ph(G) ≤ 1
contains no K2,3 as a subgraph. The first of the following two results follows immediately from
Theorem 7.4, and the second from Theorems 6.7 and 7.4.

Theorem 7.5. Let G be a partial cube. Then ph(G) ≤ 1 if and only if Uab and Uba are ph-stable for every
edge ab of G.

Theorem 7.6. A connected bipartite graph G such that ph(G) ≤ 1 is a partial cube if and only if
NG(K) ⊆ Att(K) for each copoint K of G.

For modular graphs we have the following theorem which adds three new ones to the long list of
characterizations of the world’s most characterized graphs (see [9]):

Theorem 7.7. Let G be a connected modular graph. Then the following assertions are equivalent:
(i) ph(G) ≤ 1.
(ii) The set of all attaching points of any copoint of G is convex.
(iii) The restriction of the relationΘ to the edge-boundary of any convex set of G is transitive.
(iv) G is a median graph.

Proof. (i)⇒ (ii) and (ii)⇒ (iii) are parts of Theorem 7.4 and Proposition 6.5, respectively.
(iii)⇒ (iv): Suppose thatG is not amedian graph. Then, by [1, Theorem4.6] (also see [9]),G contains

an induced subgraph H which is isomorphic to K2,3. Let V (H) = {a, b, c, u, v} be such that a, b and c
are adjacent to u and v. The set {a, u} is convex. The edges bu and cu are in relation Θ with the edge
av, while bu and cu are not in relation Θ . Hence the restriction of the relation Θ to ∂G({a, u}) is not
transitive.
(iv)⇒ (i) is a consequence of Theorem 4.4. �

8. Antipodal partial cubes

Besides themedian graphs there is another – albeitmuch smaller – interesting class of partial cubes
whose pre-hull number is 1, namely the antipodal partial cubes. Among these graphs are some of the
regular partial cubes mentioned by Klavžar and Lipovec [8].
A connected graph G is called antipodal if for any vertex x ∈ V (G) there is a (necessarily unique)

vertex x̄ (the antipode of x) such that IG(x, x̄) = V (G).1 In such a graph one obviously has that

dG(x, y)+ dG(y, x̄) = dG(x, x̄) = r for any x, y ∈ V (G), (12)

where r is the diameter of G. If, in addition to being antipodal, G is a partial cube, then it follows
immediately from (12) and the definition of the setsWab that for any edge ab ∈ E(G),

Wba = W ab := {x̄ : x ∈ Wab}.

1 This concept of antipodality was introduced by Kotzig [10]; it is a special case of the general concept of antipodality
commonly used in algebraic graph theory.
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Hence given any u ∈ Wba, then u, ū ∈ Wab ∪ {u}, hence V (G) = IG(u, ū) ⊆ IG(Wab ∪ {u}) so that
ph(G) ≤ 1. In fact, ph(G) = 1 unless G = K2.
Examples of antipodal partial cubes are the generalized middle-levels graphs in the lattice of the

subset representation ofQn. Given any n ≥ 3 considerQn as the Hasse diagram of the lattice of subsets
of N = {1, . . . , n}, and for 0 ≤ k < n/2 let Mn,k be the induced subgraph of Qn with vertex-set
{x ⊆ N : k ≤ |x| ≤ n − k}. Clearly Mn,k is a partial cube, and it is easy to see that it is antipodal
(the antipode of x ∈ V (Mn,k) is x̄ = N − x). Mn,0 is Qn itself; other well-known examples are M3,1
(the hexagon), andM5,2 (the Desargues graph= generalized Petersen graph P10,3). The graphsM2k+1,k
are the middle-levels graphs of odd-dimensional hypercubes in the usual sense of the term; they are
regular of degree k+ 1.

Remark 8.1. Recall that join-hull commutativity of an interval space X with convex intervals implies
that ph(X) ≤ 1. The converse fails to hold, even within such a restrictive class of spaces as the partial
cubes. An example is the graphMn,1, n ≥ 4, i.e. the cube Qn fromwhich a pair of antipodal vertices has
been removed. Clearly Mn,1 contains copies of Q−n−1 (the cube Qn−1 with only one vertex deleted) as
convex subgraphs. Since join-hull commutativity is a convex-hereditary property andQ−n−1 is not join-
hull commutative (cf. the beginning of Section 5), it follows that Mn,1 is not join-hull commutative.
On the other hand, ph(Mn,1) = 1. This example also shows that the pre-hull number is not convex-
isotone, i.e. H convex in G does not in general imply that ph(H) ≤ ph(G).
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