1,426 research outputs found

    On the confluence of lambda-calculus with conditional rewriting

    Get PDF
    The confluence of untyped \lambda-calculus with unconditional rewriting is now well un- derstood. In this paper, we investigate the confluence of \lambda-calculus with conditional rewriting and provide general results in two directions. First, when conditional rules are algebraic. This extends results of M\"uller and Dougherty for unconditional rewriting. Two cases are considered, whether \beta-reduction is allowed or not in the evaluation of conditions. Moreover, Dougherty's result is improved from the assumption of strongly normalizing \beta-reduction to weakly normalizing \beta-reduction. We also provide examples showing that outside these conditions, modularity of confluence is difficult to achieve. Second, we go beyond the algebraic framework and get new confluence results using a restricted notion of orthogonality that takes advantage of the conditional part of rewrite rules

    Rewriting Modulo \beta in the \lambda\Pi-Calculus Modulo

    Full text link
    The lambda-Pi-calculus Modulo is a variant of the lambda-calculus with dependent types where beta-conversion is extended with user-defined rewrite rules. It is an expressive logical framework and has been used to encode logics and type systems in a shallow way. Basic properties such as subject reduction or uniqueness of types do not hold in general in the lambda-Pi-calculus Modulo. However, they hold if the rewrite system generated by the rewrite rules together with beta-reduction is confluent. But this is too restrictive. To handle the case where non confluence comes from the interference between the beta-reduction and rewrite rules with lambda-abstraction on their left-hand side, we introduce a notion of rewriting modulo beta for the lambda-Pi-calculus Modulo. We prove that confluence of rewriting modulo beta is enough to ensure subject reduction and uniqueness of types. We achieve our goal by encoding the lambda-Pi-calculus Modulo into Higher-Order Rewrite System (HRS). As a consequence, we also make the confluence results for HRSs available for the lambda-Pi-calculus Modulo.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759

    Deciding Confluence and Normal Form Properties of Ground Term Rewrite Systems Efficiently

    Full text link
    It is known that the first-order theory of rewriting is decidable for ground term rewrite systems, but the general technique uses tree automata and often takes exponential time. For many properties, including confluence (CR), uniqueness of normal forms with respect to reductions (UNR) and with respect to conversions (UNC), polynomial time decision procedures are known for ground term rewrite systems. However, this is not the case for the normal form property (NFP). In this work, we present a cubic time algorithm for NFP, an almost cubic time algorithm for UNR, and an almost linear time algorithm for UNC, improving previous bounds. We also present a cubic time algorithm for CR

    Uniqueness of Normal Forms is Decidable for Shallow Term Rewrite Systems

    Get PDF
    Uniqueness of normal forms (UN=) is an important property of term rewrite systems. UN= is decidable for ground (i.e., variable-free) systems and undecidable in general. Recently it was shown to be decidable for linear, shallow systems. We generalize this previous result and show that this property is decidable for shallow rewrite systems, in contrast to confluence, reachability and other properties, which are all undecidable for flat systems. Our result is also optimal in some sense, since we prove that the UN= property is undecidable for two superclasses of flat systems: left-flat, left-linear systems in which right-hand sides are of depth at most two and right-flat, right-linear systems in which left-hand sides are of depth at most two

    On the Expressivity and Applicability of Model Representation Formalisms

    Get PDF
    A number of first-order calculi employ an explicit model representation formalism for automated reasoning and for detecting satisfiability. Many of these formalisms can represent infinite Herbrand models. The first-order fragment of monadic, shallow, linear, Horn (MSLH) clauses, is such a formalism used in the approximation refinement calculus. Our first result is a finite model property for MSLH clause sets. Therefore, MSLH clause sets cannot represent models of clause sets with inherently infinite models. Through a translation to tree automata, we further show that this limitation also applies to the linear fragments of implicit generalizations, which is the formalism used in the model-evolution calculus, to atoms with disequality constraints, the formalisms used in the non-redundant clause learning calculus (NRCL), and to atoms with membership constraints, a formalism used for example in decision procedures for algebraic data types. Although these formalisms cannot represent models of clause sets with inherently infinite models, through an additional approximation step they can. This is our second main result. For clause sets including the definition of an equivalence relation with the help of an additional, novel approximation, called reflexive relation splitting, the approximation refinement calculus can automatically show satisfiability through the MSLH clause set formalism.Comment: 15 page

    Automatically Proving and Disproving Feasibility Conditions

    Full text link
    [EN] In the realm of term rewriting, given terms s and t, a reachability condition s>>t is called feasible if there is a substitution O such that O(s) rewrites into O(t) in zero or more steps; otherwise, it is called infeasible. Checking infeasibility of (sequences of) reachability conditions is important in the analysis of computational properties of rewrite systems like confluence or (operational) termination. In this paper, we generalize this notion of feasibility to arbitrary n-ary relations on terms defined by first-order theories. In this way, properties of computational systems whose operational semantics can be given as a first-order theory can be investigated. We introduce a framework for proving feasibility/infeasibility, and a new tool, infChecker, which implements it.Supported by EU (FEDER), and projects RTI2018-094403-B-C32, PROMETEO/2019/098, and SP20180225. Also by INCIBE program "Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguridad" (Raul Gutiérrez).Gutiérrez Gil, R.; Lucas Alba, S. (2020). Automatically Proving and Disproving Feasibility Conditions. Springer Nature. 416-435. https://doi.org/10.1007/978-3-030-51054-1_27S416435Andrianarivelo, N., Réty, P.: Over-approximating terms reachable by context-sensitive rewriting. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 128–139. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24537-9_12Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1/2), 69–116 (1987). https://doi.org/10.1016/S0747-7171(87)80022-6Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol. 250, pp. 1–22. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0014969Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 287–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_17Kojima, Y., Sakai, M.: Innermost reachability and context sensitive reachability properties are decidable for linear right-shallow term rewriting systems. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 187–201. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70590-1_13Kojima, Y., Sakai, M., Nishida, N., Kusakari, K., Sakabe, T.: Context-sensitive innermost reachability is decidable for linear right-shallow term rewriting systems. Inf. Media Technol. 4(4), 802–814 (2009)Kojima, Y., Sakai, M., Nishida, N., Kusakari, K., Sakabe, T.: Decidability of reachability for right-shallow context-sensitive term rewriting systems. IPSJ Online Trans. 4, 192–216 (2011)Lucas, S.: Analysis of rewriting-based systems as first-order theories. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS, vol. 10855, pp. 180–197. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94460-9_11Lucas, S.: Context-sensitive computations in functional and functional logic programs. J. Funct. Logic Program. 1998(1) (1998). http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.htmlLucas, S.: Proving semantic properties as first-order satisfiability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103174Lucas, S.: Using well-founded relations for proving operational termination. J. Autom. Reasoning 64(2), 167–195 (2019). https://doi.org/10.1007/s10817-019-09514-2Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.04.002Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005). https://doi.org/10.1016/j.ipl.2005.05.002Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Chitil, O., King, A., Danvy, O. (eds.) Proceedings of the 16th International Symposium on Principles and Practice of Declarative Programming, Kent, Canterbury, United Kingdom, 8–10 September 2014, pp. 111–122. ACM (2014). https://doi.org/10.1145/2643135.2643152Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018). https://doi.org/10.1016/j.jcss.2018.04.002Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems—Part II: advanced processors and implementation techniques. J. Autom. Reasoning (2020, in press)McCune, W.: Prover9 and Mace4. https://www.cs.unm.edu/~mccune/mace4/Meßner, F., Sternagel, C.: nonreach – a tool for nonreachability analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 337–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_19Middeldorp, A., Nagele, J., Shintani, K.: Confluence competition 2019. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 25–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_2Nishida, N., Maeda, Y.: Narrowing trees for syntactically deterministic conditional term rewriting systems. In: Kirchner, H. (ed.) Proceedings of the 3rd International Conference on Formal Structures for Computation and Deduction. FSCD 2018. Leibniz International Proceedings in Informatics (LIPIcs), vol. 108, pp. 26:1–26:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.FSCD.2018.26Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002). http://www.springer.com/computer/swe/book/978-0-387-95250-5Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Dover, New York (2006)Sternagel, C., Sternagel, T., Middeldorp, A.: CoCo 2018 Participant: ConCon 1.5. In: Felgenhauer, B., Simonsen, J. (eds.) Proceedings of the 7th International Workshop on Confluence. IWC 2018, p. 66 (2018). http://cl-informatik.uibk.ac.at/events/iwc-2018/Sternagel, C., Yamada, A.: Reachability analysis for termination and confluence of rewriting. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 262–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_15Winkler, S., Moser, G.: MædMax: a maximal ordered completion tool. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_3
    • …
    corecore