5 research outputs found

    Visual analytics and team strategies in online games

    Get PDF
    Tese de Mestrado em Informática, Faculdade de Ciências, Universidade de Lisboa, 2022The eSports (electronic sports) phenomenon has been growing and so does the interest in online video games, from players and spectators. With technological advancements it has become easier to use techniques to retrieve data about the events occurring during a game, generating big volumes of data that can be used for a performance analysis. Casual players are looking for methods to better themselves overall or with specific characters, whereas, in a professional context, the focus is to study other teams and how to defeat them. For efficiency, it is imperative to explore data analysis mechanisms combined with visualisation techniques (visual analytics) applied to spatiotemporal data and to various relevant events during a match such as a player’s position (space) in a given instant (time) or, for example, the position where the player died. The goal of this project is the study of previous work and the development and ap plication of the acquired knowledge in analytic visualisation techniques to League of Legends[31] (LoL) spatiotemporal datasets. The developed tool used Tableau Desktop[24] to create a series of dashboards depicting the behaviour of multiple LoL matches, using the Riot API (Application Programming Interface) provided dataset, and clustering algorithms. The tool was evaluated by a team of semi-professional players in order to understand if the visualisation techniques and data used was adequate, useful or innovative compared to already existing tools for game analysis and the players’ needs. The results were mostly positive, with the participants pointing out the interactivity of the visualisations and ability of analysing multiple games as an advantage compared to existing tools. To conclude, even though spatiotemporal data is not yet implemented in MOBA (Multiplayer Online Battle Arena) videogame analysis tools, it is still relevant for the players’ personal goals and overall an interesting approach

    Assertion level proof planning with compiled strategies

    Get PDF
    This book presents new techniques that allow the automatic verification and generation of abstract human-style proofs. The core of this approach builds an efficient calculus that works directly by applying definitions, theorems, and axioms, which reduces the size of the underlying proof object by a factor of ten. The calculus is extended by the deep inference paradigm which allows the application of inference rules at arbitrary depth inside logical expressions and provides new proofs that are exponentially shorter and not available in the sequent calculus without cut. In addition, a strategy language for abstract underspecified declarative proof patterns is developed. Together, the complementary methods provide a framework to automate declarative proofs. The benefits of the techniques are illustrated by practical applications.Die vorliegende Arbeit beschäftigt sich damit, das Formalisieren von Beweisen zu vereinfachen, indem Methoden entwickelt werden, um informale Beweise formal zu verifizieren und erzeugen zu können. Dazu wird ein abstrakter Kalkül entwickelt, der direkt auf der Faktenebene arbeitet, welche von Menschen geführten Beweisen relativ nahe kommt. Anhand einer Fallstudie wird gezeigt, dass die abstrakte Beweisführung auf der Fakteneben vorteilhaft für automatische Suchverfahren ist. Zusätzlich wird eine Strategiesprache entwickelt, die es erlaubt, unterspezifizierte Beweismuster innerhalb des Beweisdokumentes zu spezifizieren und Beweisskizzen automatisch zu verfeinern. Fallstudien zeigen, dass komplexe Beweismuster kompakt in der entwickelten Strategiesprache spezifiziert werden können. Zusammen bilden die einander ergänzenden Methoden den Rahmen zur Automatisierung von deklarativen Beweisen auf der Faktenebene, die bisher überwiegend manuell entwickelt werden mussten

    Assertion level proof planning with compiled strategies

    Get PDF
    This book presents new techniques that allow the automatic verification and generation of abstract human-style proofs. The core of this approach builds an efficient calculus that works directly by applying definitions, theorems, and axioms, which reduces the size of the underlying proof object by a factor of ten. The calculus is extended by the deep inference paradigm which allows the application of inference rules at arbitrary depth inside logical expressions and provides new proofs that are exponentially shorter and not available in the sequent calculus without cut. In addition, a strategy language for abstract underspecified declarative proof patterns is developed. Together, the complementary methods provide a framework to automate declarative proofs. The benefits of the techniques are illustrated by practical applications.Die vorliegende Arbeit beschäftigt sich damit, das Formalisieren von Beweisen zu vereinfachen, indem Methoden entwickelt werden, um informale Beweise formal zu verifizieren und erzeugen zu können. Dazu wird ein abstrakter Kalkül entwickelt, der direkt auf der Faktenebene arbeitet, welche von Menschen geführten Beweisen relativ nahe kommt. Anhand einer Fallstudie wird gezeigt, dass die abstrakte Beweisführung auf der Fakteneben vorteilhaft für automatische Suchverfahren ist. Zusätzlich wird eine Strategiesprache entwickelt, die es erlaubt, unterspezifizierte Beweismuster innerhalb des Beweisdokumentes zu spezifizieren und Beweisskizzen automatisch zu verfeinern. Fallstudien zeigen, dass komplexe Beweismuster kompakt in der entwickelten Strategiesprache spezifiziert werden können. Zusammen bilden die einander ergänzenden Methoden den Rahmen zur Automatisierung von deklarativen Beweisen auf der Faktenebene, die bisher überwiegend manuell entwickelt werden mussten

    Standpoint Logic: A Logic for Handling Semantic Variability, with Applications to Forestry Information

    Get PDF
    It is widely accepted that most natural language expressions do not have precise universally agreed definitions that fix their meanings. Except in the case of certain technical terminology, humans use terms in a variety of ways that are adapted to different contexts and perspectives. Hence, even when conversation participants share the same vocabulary and agree on fundamental taxonomic relationships (such as subsumption and mutual exclusivity), their view on the specific meaning of terms may differ significantly. Moreover, even individuals themselves may not hold permanent points of view, but rather adopt different semantics depending on the particular features of the situation and what they wish to communicate. In this thesis, we analyse logical and representational aspects of the semantic variability of natural language terms. In particular, we aim to provide a formal language adequate for reasoning in settings where different agents may adopt particular standpoints or perspectives, thereby narrowing the semantic variability of the vague language predicates in different ways. For that purpose, we present standpoint logic, a framework for interpreting languages in the presence of semantic variability. We build on supervaluationist accounts of vagueness, which explain linguistic indeterminacy in terms of a collection of possible interpretations of the terms of the language (precisifications). This is extended by adding the notion of standpoint, which intuitively corresponds to a particular point of view on how to interpret vague terminology, and may be taken by a person or institution in a relevant context. A standpoint is modelled by sets of precisifications compatible with that point of view and does not need to be fully precise. In this way, standpoint logic allows one to articulate finely grained and structured stipulations of the varieties of interpretation that can be given to a vague concept or a set of related concepts and also provides means to express relationships between different systems of interpretation. After the specification of precisifications and standpoints and the consideration of the relevant notions of truth and validity, a multi-modal logic language for describing standpoints is presented. The language includes a modal operator for each standpoint, such that \standb{s}\phi means that a proposition ϕ\phi is unequivocally true according to the standpoint ss --- i.e.\ ϕ\phi is true at all precisifications compatible with ss. We provide the logic with a Kripke semantics and examine the characteristics of its intended models. Furthermore, we prove the soundness, completeness and decidability of standpoint logic with an underlying propositional language, and show that the satisfiability problem is NP-complete. We subsequently illustrate how this language can be used to represent logical properties and connections between alternative partial models of a domain and different accounts of the semantics of terms. As proof of concept, we explore the application of our formal framework to the domain of forestry, and in particular, we focus on the semantic variability of `forest'. In this scenario, the problematic arising of the assignation of different meanings has been repeatedly reported in the literature, and it is especially relevant in the context of the unprecedented scale of publicly available geographic data, where information and databases, even when ostensibly linked to ontologies, may present substantial semantic variation, which obstructs interoperability and confounds knowledge exchange

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    corecore