12 research outputs found

    Factoring bivariate lacunary polynomials without heights

    Full text link
    We present an algorithm which computes the multilinear factors of bivariate lacunary polynomials. It is based on a new Gap Theorem which allows to test whether a polynomial of the form P(X,X+1) is identically zero in time polynomial in the number of terms of P(X,Y). The algorithm we obtain is more elementary than the one by Kaltofen and Koiran (ISSAC'05) since it relies on the valuation of polynomials of the previous form instead of the height of the coefficients. As a result, it can be used to find some linear factors of bivariate lacunary polynomials over a field of large finite characteristic in probabilistic polynomial time.Comment: 25 pages, 1 appendi

    Bounded-degree factors of lacunary multivariate polynomials

    Full text link
    In this paper, we present a new method for computing bounded-degree factors of lacunary multivariate polynomials. In particular for polynomials over number fields, we give a new algorithm that takes as input a multivariate polynomial f in lacunary representation and a degree bound d and computes the irreducible factors of degree at most d of f in time polynomial in the lacunary size of f and in d. Our algorithm, which is valid for any field of zero characteristic, is based on a new gap theorem that enables reducing the problem to several instances of (a) the univariate case and (b) low-degree multivariate factorization. The reduction algorithms we propose are elementary in that they only manipulate the exponent vectors of the input polynomial. The proof of correctness and the complexity bounds rely on the Newton polytope of the polynomial, where the underlying valued field consists of Puiseux series in a single variable.Comment: 31 pages; Long version of arXiv:1401.4720 with simplified proof

    Detecting lacunary perfect powers and computing their roots

    Get PDF
    We consider solutions to the equation f = h^r for polynomials f and h and integer r > 1. Given a polynomial f in the lacunary (also called sparse or super-sparse) representation, we first show how to determine if f can be written as h^r and, if so, to find such an r. This is a Monte Carlo randomized algorithm whose cost is polynomial in the number of non-zero terms of f and in log(deg f), i.e., polynomial in the size of the lacunary representation, and it works over GF(q)[x] (for large characteristic) as well as Q[x]. We also give two deterministic algorithms to compute the perfect root h given f and r. The first is output-sensitive (based on the sparsity of h) and works only over Q[x]. A sparsity-sensitive Newton iteration forms the basis for the second approach to computing h, which is extremely efficient and works over both GF(q)[x] (for large characteristic) and Q[x], but depends on a number-theoretic conjecture. Work of Erdos, Schinzel, Zannier, and others suggests that both of these algorithms are unconditionally polynomial-time in the lacunary size of the input polynomial f. Finally, we demonstrate the efficiency of the randomized detection algorithm and the latter perfect root computation algorithm with an implementation in the C++ library NTL.Comment: to appear in Journal of Symbolic Computation (JSC), 201

    Faster real feasibility via circuit discriminants

    Full text link

    Sublinear Root Detection and New Hardness Results for Sparse Polynomials over Finite Fields

    Get PDF

    Faster Algorithms for Sparse Decomposition and Sparse Series Solutions to Differential Equations

    Get PDF
    Sparse polynomials are those polynomials with only a few non-zero coefficients relative to their degree. They can appear in practice in polynomial systems as inputs, where the degree of the input sparse polynomial can be exponentially larger than the bit length of the representation of it. This leads to the difficulties when computing with sparse polynomials, as many efficient algorithms for dense polynomials take polynomial-time in the degree, and hence an exponential number of operations in a natural representation of the sparse polynomial. In this thesis, we explore new and faster methods for sparse polynomials and power series. We reconsider algorithms for the sparse perfect power problem and derive a faster sparsity-sensitive algorithm. We then show a fast new algorithm for sparse polynomial decomposition, again sensitive to the sparsity of the input and output. Finally, our algorithms to solve the sparse perfect power and decomposition problems lead us to explore a generalization to solving the linear differential equation with sparse polynomial coefficients using a Newton-like method. We demonstrate an algorithm which will find sparse solutions if they exist, in time polynomial in the input and the output

    On The Computational Hardness Of Testing Square-Freeness Of Sparse Polynomials

    No full text
    We show that deciding square-freeness of a sparse univariate polynomial over ZZ and over the algebraic closure of a finite field IFq of p elements is NP-hard. We also discuss some related open problems about sparse polynomials
    corecore