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Abstract

Sparse polynomials are those polynomials with only a few non-zero coefficients relative
to their degree. They can appear in practice in polynomial systems as inputs, where the
degree of the input sparse polynomial can be exponentially larger than the bit length
of the representation of it. This leads to the difficulties when computing with sparse
polynomials, as many efficient algorithms for dense polynomials take polynomial-time in
the degree, and hence an exponential number of operations in a natural representation of
the sparse polynomial.

In this thesis, we explore new and faster methods for sparse polynomials and power
series. We reconsider algorithms for the sparse perfect power problem and derive a faster
sparsity-sensitive algorithm. We then show a fast new algorithm for sparse polynomial
decomposition, again sensitive to the sparsity of the input and output. Finally, our algo-
rithms to solve the sparse perfect power and decomposition problems lead us to explore a
generalization to solving the linear differential equation with sparse polynomial coefficients
using a Newton-like method. We demonstrate an algorithm which will find sparse solutions
if they exist, in time polynomial in the input and the output.
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Chapter 1

Introduction

Sparse polynomials are those polynomials with many zero coefficients. They often ap-
pear in practice in polynomial systems as inputs, where the specification of a problem
through polynomials might have a small number of constraints (as represented by non-zero
coefficients) relative to the degree. Mathematically, they can also appear as solutions to
polynomial problems due to some structure or constraint, which may or may not be well
understood.

The degree of a sparse polynomial can be exponentially larger than the bit length of the
representation of it. This leads to the difficulties when computing with sparse polynomials,
as many efficient algorithms for dense polynomials (where most coefficients are assumed
to be non-zero, or we are oblivious to whether they are zero) take polynomial-time in the
degree, and hence and exponential number of operations in a natural representation of the
sparse polynomial.

On the mathematical side, there are famous conjectures which have only be recently
resolved. The conjecture of Erdös (1949) asks whether a given sparse polynomial can only
be a perfect power of similarly sparse polynomial. This has only been recently (partially)
resolved by Zannier (2008). Another classic problem is sparse polynomial decomposition:
given sparse f ∈ F [x] with degree n = rs, determine whether there exists g, h ∈ F [x] such
that g ◦ h = f with deg g = r and deg h = s. Mathematically, Zannier (2008) has shown
that if f is sparse, then h must be sparse as well, and g must be of relatively low degree.
Even here, Zannier (2008) only shows sparsity of h to be computable from the sparsity of
f (independent of the degree), and tight bounds are not known.

On the computational side, some fundamental problems like computing the gcd of two
sparse polynomials are provably intractable, due to foundational early work of Plaisted
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(1977). Other problems, like determining the irreducibility of a univariate sparse polyno-
mial, are unknown. However, there are algorithms for some important related problems.
Giesbrecht and Roche (2008, 2011) give a Las Vegas polynomial-time algorithm to deter-
mine whether a given sparse polynomial is a perfect power, which is polynomial-time in
the input and the output size. This output sensitivity makes the solution independent of
the mathematical conjectures which bound the output size. We employ this approach of
output-size sensitivity in this thesis as well.

In this thesis, we explore new and faster methods for sparse polynomials and power
series. We reconsider algorithms for the sparse perfect power problem, and derive a faster
algorithm than that presented by Giesbrecht and Roche (2011). We then show a fast
new algorithm for sparse polynomial decomposition, again sensitive to the sparsity of the
input and output. We believe it is the first provably polynomial-time algorithm known for
this problem. Finally, our algorithms to solve the sparse perfect power and decomposition
problems lead us to explore a generalization to solving the linear differential equation with
sparse polynomial coefficients using a Newton-like method. We demonstrate an algorithm
which will find sparse solutions if they exist, in time polynomial in the input and the
output.

The remainder of the thesis is structured as follows.

In Chapter 2, we will discuss the basic mathematical concepts for sparse polynomials
and the generalized linear differential equation with sparse polynomial coefficients, and the
related work for computing with sparse polynomials, especially the algorithms for perfect
power problem.

In Chapter 3, we will derive a new algorithm to solve the perfect power problem. Two
proofs of the algorithm are presented (an inductive one and a direct combinatorial one). We
show how this algorithm can be modified to derive a new algorithm for sparse polynomial
decomposition.

In Chapter 4, we generalize the undetermined coefficient method to solve a linear dif-
ferential equations over power series to exploit sparsity. We derive a Newton-like algorithm
to accomplish this.

In Chapter 5, we describe the implementations and experiment results of the presented
algorithms for general differential equation and the special case perfect power.

Open questions for future exploration are discussed in Chapter 6.
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Chapter 2

Background and Related Work

In this chapter, we will review the background knowledge and previous work of this thesis.
Section 2.1 reviews basic concepts and arithmetic for sparse polynomials. Section 2.2
discusses the setup for perfect power problem and the mathematical background for solving
it. Section 2.3 introduces the polynomial decomposition problem, which can be inspired
by perfect power problem. Section 2.4 reviews basic concepts about differential equations
over formal power series and introduces the generalized linear differential equation problem
with sparse polynomial coefficients.

2.1 Sparse Polynomials

Sparse polynomials, also called lacunary or supersparse polynomials, are those polynomials
with relatively few nonzero terms compared to their degrees. Alternatively, they are poly-
nomials with significant “gaps” or “lakes” (lacuna) between the degreess of consecutive
terms. For example f = x100 + x2 is sparse. We will refer to standard polynomials as
“dense” polynomials, where most terms are non-zero, or at least we treat them as such;
for example f = x4 + x3 + x2 + x+ 1.

Definition 2.1.1 (sparsity, support, sparse representation).
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Consider a sparse polynomial f ∈ F[x] of degree n,

f =
n∑
i=0

fix
i where n = deg f and fn 6= 0

=

τ(f)∑
j=1

fnjx
nj where fnj 6= 0 and n1 < n2 < . . . < nτ(f) = n.

We call τ(f) the sparsity of f , n1, . . . , nτ(f) the exponents of f , and xn1 , . . . , xnτ(f) the
support of f .

The representation of f is a set of coefficients and exponents, we call it the sparse
representation of f , so in particular f as above is represented as{

(fn1 , n1), . . . , (fnτ(f) , nτ(f))
}
,

and has size O(τ(f) log n) assuming that field elements are represented with unit size.

2.1.1 Computing with Sparse Polynomials

We denote τ as the sparsity bound of the input polynomials. Note that n can be ex-
ponentially larger than τ , i.e. the degree can be much larger than the bit-length of the
representation. This leads to the difficulty when computing with sparse polynomials. Usu-
ally researchers have to modify the dense algorithms or come up with new algorithms for
sparse polynomials to achieve a complexity which is sensitive to the sparsity. Roche (2018)
surveyed recent progress for sparse polynomials algorithms in arithmetic, interpolation
and factorization. Sparse addition can be solved using a merge operation, which requires
O(`2τ log n) when adding/subtracting ` sparse polynomials. We can avoid the quadratic-
time cost when each polynomial is ordered by the exponents, and addition can be solved
using a max-heap in O(`τ log n log `) = Õ(`τ log n) time. For multiplication, the output
size potentially grows quadratically. Dense polynomials of degree n can be multiplied in
O(n log n) operations Harvey and Van Der Hoeven (2019), but for the sparse case, the
classic algorithm of repeated monomial multiplications takes O(τ 2 log n log τ) operations
as discussed in Roche (2018); it is still an open problem to avoid quadratic time.

For sparse division, things become more difficult as the output size can be large even
if the input is sparse, for example, xn − 1 divides x − 1 produces 1 + x + · · · + xn−1.
Monagan and Pearce (2011) developed heap-based algorithms to compute the quotient q
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for given sparse polynomials f, g such that f = qg + r in O(τ(q)τ(g) log(min(τ(q), τ(g)))),
which is still quadratic in τ , it is also an open problem to avoid quadratic time to achieve
Õ(τ log n) operations. Even the corresponding decision problem is not known to have a
polynomial-time algorithm:

Problem 2.1.2 (sparse polynomial exact division decision). Given two sparse polynomials
f1, f2, the maximum degree of these polynomials is n and the maximum sparsity of f1, f2
is τ , determine whether f2 divides f1.

As discussed in Plaisted (1984), it is not known that whether Problem 2.1.2 is in P
or whether it is NP-complete, though Grigoriev et al. (1992) proved that determining
the nondivisibility of sparse polynomials is in NP if the Extended Riemann Hypothesis
holds, i.e., Problem 2.1.2 belongs to the class co-NP. Plaisted (1977, 1984); Davenport
and Carette (2009) also pointed out that some other basic computing problems involving
sparse polynomials are NP-hard although there already exists fast algorithms for these
problems when the input is dense.

Problem 2.1.3 (gcd of 2 sparse polynomials over integer field). Given two sparse polyno-
mials f1, f2 ∈ Z[x] with integer coefficients, determine whether f1 and f2 are not relatively
prime, i.e. deg(gcd(f1, f2)) > 0.

Theorem 2.1.4 (Theorem 5.1 in Plaisted (1984)). Problem 2.1.3 is NP-hard. Proof is a
reduction based on cyclotonmic polynomials.

Also note that the computation of GCD relates to square-free decomposition.

Definition 2.1.5 (square-free polynomial). A polynomial f is said to be square-free if f
has no divisor (factor) of multiplicity ≥ 2.

Problem 2.1.6 (square-freeness). Given a sparse polynomial f ∈ Z[x] with integer coef-
ficients, determine whether f is square-free.

If α is a repeated root of f , then it is a root of f ′, and thus a root of gcd(f, f ′).
Also it is known that the roots of gcd(f, f ′) are exactly the repeated roots of f . So
a square-free polynomial has no repeated roots, thus gcd(f, f ′) has no nontrivial roots.
Using randomized poly-time reduction, Karpinski and Shparlinski (1999) proved the the
equivalence of square-freeness and gcd :

Theorem 2.1.7 (Theorem 1 & 2 in Karpinski and Shparlinski (1999)). Problem 2.1.3 and
Problem 2.1.6 are equivalent, both are NP-hard. The results also hold over the algebraic
closure of a finite field with prime characteristic.
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2.2 Perfect Power Problem for Sparse Polynomials

We now consider the perfect power problem defined as :

Problem 2.2.1 (Polynomial perfect power). Given f =
∑n

i=0 fix
i ∈ F[x] with deg f = n

and fn 6= 0, suppose that n = rs for some r, s ∈ N, determine whether there exists h ∈ F[x]
with deg h = s such that f = hr.

Steady progress for developing fast sparse polynomial algorithms has been proceeded
over the past few decades, especially for the sparse perfect power problem :

Problem 2.2.2 (Sparse polynomial perfect power). Given sparse f of degree n, suppose
n = rs for some r ∈ N, determine if there exists some h ∈ F[x] of degree s such that
f = hr. If so, find h in a manner whose cost is polynomial in log n, τ(f), τ(h).

To test whether f is a perfect power, for dense polynomials, it is efficient to check
whether each exponent of the squarefree decomposition of f is divisible by 2, which is
discussed by Yun (1976). Other methods also exist, and effectively require linear time in
the degree of the input. For sparse polynomials, Giesbrecht and Roche (2008, 2011) give
a Las Vegas poly-time algorithm to determine whether a given sparse polynomial f is hr.

To find the polynomial root h, things can be more difficult. Using Newton iteration,
Brent and Kung (1978); von zur Gathen (1990) showed that computing the root h takes
O(M(n) log r) operations if f(0) = 1 and r not divisible by char(F ), where M(n) =
n log n log log n. For the the sparse case, the first question is whether h is sparse? Erdös’s
famous conjecture asks, when f is sparse and f = h2, whether h is “kind of” sparse:

Conjecture 2.2.3 (Erdös (1949)). Let h ∈ F[x] be a polynomial of τ(h) non-zero terms,
consider f = h2. Let τ(f) denote the sparsity of h2, define Q(τ(h)) = min{τ(f) : f = h2

where h is a sparse polynomial with τ(h) terms}, then there exists constants 0 < c1 < 1
and 0 < c2 such that Q(τ(h)) < c2 · τ(h)1−c1.

Later Schinzel (1987); Zannier and Schinzel (2009) generalized the result of square to
any power:

Theorem 2.2.4 (Theorem 1 & 2 in Zannier and Schinzel (2009)). Let h ∈ F[x] and f = hr

with τ(h) ≥ 2,

1) if either char(F) = 0 or char(F) > r · deg h, then

τ(f) ≥ 2 +
log(τ(h)− 1)

log 4r
;
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2) if char(F) > 0 and rτ(h)−1(τ(h)2 − τ(h) + 2) < char(F), then

τ(f) ≥ 2 +
log(τ(h)− 1)

log 4r
.

Schinzel (1987) conjectured the case when g is a fixed perfect power polynomial, then
Zannier (2007) proved the result for any general g that a polynomial with few terms and
large degree cannot have an inner noncyclic composition factor of small degree:

Theorem 2.2.5 (Theorem 1 in Zannier (2007) & Theorem 2 in Zannier (2008)). Let
f ∈ F[x] with τ(f) sparsity. Suppose f = g ◦ h for some g, h ∈ F[x] and h is not of the
form axs + b. Then

deg g ≤ 2τ(f)(τ(f)− 1) < 2τ(f)2,

deg f + τ(f)− 1 ≤ 2τ(f)(τ(f)− 1) · deg h.

In his breakthrough partial proof of Schinzel’s conjecture, Zannier (2008) showed that
the degree of g is related to the sparsity of f instead of the degree of f , and that τ(h) is
a computable function of τ(f), independent of the degree, i.e., that “sparse” polynomials
have sparse decompositions. It is expected that τ(h) is comparable to τ(f), though this is
not known. This also means if f = hr, then r < 2τ(f)2.

The perfect power problem is a special case of polynomial decomposition, where g = xr.
With the work by Erdös, Schinezel and Zannier, and all known examples supporting this,
Giesbrecht and Roche (2008, 2011) made the following conjecture:

Conjecture 2.2.6 (Conjecture 3.1 in Giesbrecht and Roche (2008)). For r, x ∈ N, if
char(F ) = 0 or > rs, and h ∈ F [x] with degree s, then

τ(hi mod x2s) < τ(hs mod x2s) + r, ı = 1, · · · , r − 1.

Assuming this conjecture, Giesbrecht and Roche (2008, 2011) presented an algorithm
to compute h using a kind of Newton iteration in polynomial time.

A private observation by Koiran (2011) suggests a faster algorithm for sparse perfect
power is possible as follows. Assume f = hr. Then

f ′ = r · hr−1h′ = r · (f/h)h′

giving
f ′h = rfh′, (2.1)
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where f ′ and h′ are the usual derivatives of f and h respectively. That is, h is a kind
of solution to a differential equation involving f and f ′. Note that this assumes the
characteristic of F does not divide r, or in other words the image of r in F is non-zero.
We will assume this throughout this thesis. We explore this approach in more detail in
Chapter 3.

One follow-up problem of Problem 2.2.2 is to consider the perfect power problem for
rational functions:

Problem 2.2.7 (rational function perfect square). Given a rational function f of the form
f = f1/f2 for some sparse polynomials f1, f2 ∈ F [x], f2 6= 0 of degrees n1, n2 respectively,
determine if there exists some rational h = h1/h2 with h1, h2 ∈ F [x], h1, h2 6= 0 such that
f = hr, if so, find h in a manner whose costs is poly(τ(f1), τ(f2), τ(h1), τ(h2), log n1, log n2).

A discussion of this problem is presented in Section 3.4.

2.3 Polynomial Decomposition

Let F be any field and g, h ∈ F[x], we say f = g ◦ h = g(h(x)) ∈ F[x] is the composition
of g and h, and the pair (g, h) is a decomposition of f . The polynomial decomposition
problem is:

Problem 2.3.1 (polynomial decomposition). Given f =
∑n

i=0 fix
i ∈ F[x] with deg f = n

and fn 6= 0, suppose that n = rs for some r, x ∈ N, determine whether there exists
g, h ∈ F[x] with deg g = r and deg h = s such that f = g ◦ h.

Note that the composition of given polynomials is unique but the decomposition of a
given polynomial may not be unique. A polynomial may have distinct decompositions:
f = g1 ◦ g2 ◦ · · · ◦ gm = h1 ◦ h2 ◦ · · · ◦ hn, where gi 6= hi for some i. If the degrees of
the polynomials are given and we fix the constant term, Ritt (1922) proved that m = n
and the degrees of the polynomials in one decomposition are the same as those in the
other, but possibly in different order. For this thesis, we only consider to find one of the
decompositions of prescribed degree, if it exists, and the problem will be normalized so
that this solution is unique.

For dense polynomials, Barton and Zippel (1985) gave an exponential-time algorithm
by directly solving rs + 1 equations obtained by equating the coefficients of f and g(h).
After this, Kozen and Landau (1989) presented an O(n2)-time algorithm without using
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polynomial factorization, which works over any commutative ring containing a multiplica-
tive inverse of r. Based on the work of Kozen & Landau, von zur Gathen (1990) used the
trick of reversal to improve the cost to O(n log2 n log log n) for the “tame” case, where the
characteristic of the field does not divide r.

In this thesis, we also assume we are in the “tame” case. Following von zur Gathen
(1990), we may assume that f, g, h are monic and h(0) = 0. von zur Gathen (1990) uses
an observation on polynomial reversals which we will also exploit. Let f̃(x) = xn · f(1/x),
the reversal of f . Similarly, let h̃(x) = xs · h(1/s). He then shows that f(x) = g(h(x))
implies f̃(x) ≡ h̃(x)r mod xs. Moreover, since deg h̃(x) = deg h = s and h(0) = 0, if such
an h̃ exists it is unique. Thus, von zur Gathen (1990) showed computing h such that there
exists a g with f(x) = g(h(x)) is equivalent to computing h̃ such that h̃r ≡ f̃ mod xs. The
polynomial g such that f(x) = g(h(x)) can be found by interpolation.

For sparse polynomials, it is not at all clear that a similar approach will work, and
indeed Giesbrecht and Roche (2011) did not solve this, though did present a conjectural
approach which is close. In Section 3.5 we present a faster algorithm for sparse polynomial
decomposition inspired by solving our new solution to the sparse perfect power problem.

2.4 Differential Equations Over Formal Power Series

Note that solving the perfect power problem is in fact solving the differential equation
(2.1). We would like to consider the general differential equation problem, looking for
sparse power series solutions. In this section, we will review the basic concepts about the
linear differential equations with polynomial coefficients.

Definition 2.4.1 (the ring of formal power series).

Recall that the expression
∑

i≥0 aix
i for ai ∈ F is called a formal power/Taylor

series, and the ring of formal power series over F , denoted as F [[x]], is defined as the
set of expressions of the above form, i.e.

F[[x]] =

{∑
i≥0

aix
i for ai ∈ F

}
,

with addition and multiplication defined as:

∑
i≥0

aix
i +
∑
i≥0

bix
i =

∑
i≥0

(ai + bi)x
i,

(∑
i≥0

aix
i
)
·
(∑
i≥0

bix
i
)

=
∑
i≥0

(
i∑

j=0

ajbi−j)x
i.
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This forms a commutative ring.

Definition 2.4.2 (formal derivative, differential operator).

For
a =

∑
i≥0

aix
i ∈ F[[x]],

we define the formal derivative as

a′ =
∑
i≥0

iaix
n−1 ∈ F[[x]],

and define the differential operator D : F[[x]] → F[[x]] such that D(a) = Da = a′.
Similarly D2a = D(D(a)) is the second derivative of a, and Dka = D(Dk−1(a)) is the kth
derivative, etc.

Note that (2.1) is in fact a differential equation:

0 = f ′h− rfh′ = (f ′ − rfD)h,

where (f ′ − rfD) is a given linear operator, so finding h is equivalent to solving this
differential equation. So solving perfect power problem is a special case of solving the
general linear differential equation.

Definition 2.4.3 (linear differential operator (with polynomial coefficients)).

A linear differential operator (with polynomial coefficients) is defined as a
polynomial

L = f0 + f1D + f2D2 + · · ·+ f`D`

for f0, . . . , f` ∈ F[x] and f` 6= 0. We call the integer ` the order of L.

Such a linear operator can be applied to a formal power series a ∈ F[[x]] as above by

La = L(a) = f0a+ f1D(a) + f2D2(a) + · · ·+ f`D`(a).

Definition 2.4.4 (the ring of linear differential operators with polynomial coefficients).

The ring of linear differential operators with polynomial coefficients or skew
polynomials or Ore polynomials is defined to be the set of all linear differential operators
with polynomial coefficients, i.e.

F[x][D;′ ] =
{
f0 + f1D + f2D2 + · · ·+ f`D` : fi ∈ F[x]

}
.
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The addition is defined by the usual polynomial addition (+) and the multiplication is
defined by

Dx = xD + 1.

We can quickly check that the above definition gives a ring. If L1,L1 ∈ F[x][D;′ ], then
clearly L1 + L2 ∈ F[x][D;′ ] and easily (L1 + L2)(a) = L1(a) + L2(a). Straightforward
manipulation also shows that that (Dx)(a) = (xD+ 1)(a) = xD(a) +a = xa′+a and more
generally. (Df(x))(a) = (fD + f ′)(a) = fD(a) + f ′a = fa′ + f ′a. It is easily shown that
F[x][D;′ ] is a non-commutative ring.

The application of linear differential operators

F[x][D;′ ]× F[[x]]→ F[[x]]

(L, a) 7→ L(a)

forms a ring action of F[x][D;′ ] on F[[x]]. A solution of a linear differential operator
L ∈ F[x][D;′ ] is a Taylor series a ∈ F[[x]] such that La = 0.

We now consider the following computational problem for linear differential equations.

Problem 2.4.5 (linear differential equation). Suppose we are given

L = f0 + f1D + · · ·+ f`D` ∈ F[x][D;′ ], (2.2)

where τ(fi) ≤ t for 0 ≤ i ≤ ` (i.e., each fi has at most t non-zero terms) and an m ∈ N.
The problem is to find an h ∈ F[x] such that

Lh ≡ 0 mod xm,

i.e., that all terms of h of degree less than or equal to m are zero. The polynomial h
is an “approximation” modulo xm to a power series solution to the differential equation.
Sometimes we have a priori knowledge that h must be sparse. Our goal is to design an
algorithm which finds such h with (`+ t+ τ(h))O(1) operations in F, i.e., polynomial in the
input and output size.

Previous work has discussed the m-sparse solution for linear differential equation with
polynomial coefficients (Abramov, 2000; Abramov and Ryabenko, 2004). For an m-sparse
polynomial f =

∑
i fix

i, it means there exists an integer N such that (fi 6= 0) ⇒ (i ≡
N mod m), i.e. the gaps of the nonzero terms are divided by N . Problem 2.4.5 consider
the settings when we consider the sparsity of the polynomials, which was not studied by
previous work. More details are discussed in Chapter 4.

11



Chapter 3

New Algorithms for Sparse Perfect
Power and Polynomial Decomposition

In this chapter, we examine two related problems for a sparse polynomial f ∈ F [x].

• Perfect powers: determining is there is a formal polynomial r-th root h ∈ F [x] of f ,
that is, an h such that f = hr, where r is a positive integer, and if so computing h;

• Polynomial decomposition: determining if there exists a polynomial g ∈ F [x] and
h ∈ F [x] such that f(x) = g(h(x)), and if so computing g, h.

For both these problems we will present algorithms whose output is polynomial in the
sparsity of both the input f and the output h. Following Zannier (2008) we expect that
if f is sparse then h is (reasonably) sparse. Generally we will assume that deg f = n,
deg g = r and deg h = s, so n = rs. We will use fk, gk, hk to denote the k- coefficient of
f, g, h respectively in this chapter.

This work is predicated on a clever observation of Koiran (2011), relating perfect pow-
ers to logarithmic derivatives (this observation is also employed in Giesbrecht and Roche
(2011)). In Section 3.1, we discuss two algorithms to compute the r-th root h of f , which
are derived by differentiating both sides of f = hr. One algorithm assumes f0 is nonzero
and recovers the coefficients of h in the order from h0 to hs, the other deal with the case
when f0 = 0 and recovers the coefficients of h in the order from hs to h0. We observe that
the cost of each algorithm is in terms of the degree s, which can be a problem when we
move to the sparse setting. We also give a combinatorial proof of the algorithm.
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In Section 3.2, to solve the perfect power problem for sparse polynomials, we develop
fast algorithm modified from the dense case using a Newton-like way to update the residual
in each iteration and find the next nonzero exponent of h. The cost of the algorithm is
in terms of the sparsity of f and the sparsity of h as desired, and is faster than those
previously known (Giesbrecht and Roche, 2011).

Our algorithms in Section 3.2 require that characteristic of the field F not divide the
power r. This is analogous to polynomial decomposition where the “wild” case (character-
istic divides the degree) is much harder than the “tame” case. See von zur Gathen (1990).
In Section 3.3, we discuss how to solve the perfect power problem for sparse polynomials
problem in the “wild” case, by reducing it to the “tame” case.

In Section 3.4, we discuss the challenges when taking the rational functions into con-
sideration and address interesting open problems.

Finally, in Section 3.5 we examine the problem of sparse polynomial decomposition
in the “tame” case. We show that a reduction of von zur Gathen (1990) is sensitive to
sparsity, and transforms the problem into a variant of perfect powers we can solve with our
methods. This is the first polynomial-time algorithm for sparse polynomial decomposition.

A pictorial representation of how some of the ideas in this chapter can be derived is
illustrated in Figure 3.1. We will fill in the details in the subsequent sections of the chapter.
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Figure 3.1: The main structure of Chapter 3

3.1 Perfect Power Problem for Dense Polynomials

In this section we develop a recurrence relation for the coefficients of the polynomial rth
root of another polynomial. It is presented here for dense polynomials and later adapted
to sparse polynomials.

As before, we assume that f ∈ F [x] is a polynomial of degree n, h ∈ F [x] is a polynomial
of degree s, f = hr and n = rs. For what follows we will not worry about whether f is sparse
or dense. Following the standard notation of generating functions, we write [xk]f = fk for
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the kth coefficient of f and [xk]h = hk for the kth coefficient of h . We observe that

[xk]f ′ = (k + 1)[xk+1]f = (x+ 1)fk+1.

To solve Problem 2.2.1, we look at both sides of Equation (2.1) f ′h = rfh′:

[xk](f ′h) =
k∑
i=0

(k + 1− i)fk+1−ihi,

[xk](rfh′) = r

k∑
i=0

(i+ 1)fk−ihi+1 =
k+1∑
i=1

rifk+1−ihi.

Thus for all k ≥ 0, we have

[xk](rfh′) = [xk](f ′h),

k+1∑
i=1

rifk+1−ihi =
k∑
i=0

(k + 1− i)fk+1−ihi,

k+1∑
i=0

rifk+1−ihi =
k∑
i=0

(k + 1− i)fk+1−ihi, change the index to i = 0,

k∑
i=0

rifk+1−ihi + r(k + 1)f0hk+1 =
k∑
i=0

(k + 1− i)fk+1−ihi,

rf0(k + 1)hk+1 =
k∑
i=0

(k + 1− i− ri)fk+1−ihi.

Shifting k down by 1 and we will get, for all k ≥ 1,

rf0khk =
k−1∑
i=0

(k − i− ri)fk−ihi. (3.1)

3.1.1 When f0 6= 0

Note that when f0 6= 0, (3.1) will give:

hk =
1

rf0k
·
k−1∑
i=0

(k − i− ri)fk−ihi. (3.2)
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Equation (3.2) says that given coefficients of f of degree up to k and coefficients of h up
to degree k − 1, we can determine hk. We have to compute h0 separately, but clearly
h0 = f

1/r
0 . Note that f0 has r different rth roots, and it is conventional to choose a real

root (e.g., (−8)1/3 = −2) but this is not necessary. This suggests an algorithm to solve
Problem 2.2.1 perfect power problem for dense polynomials:

Algorithm 1: DensePerfectPowerNonzeroConst

Input: polynomial f ∈ F[x] of degree n s.t. f0 6= 0 and integer s, r ∈ Z s.t. n = rs
1 ; Output: polynomial h ∈ F[x] such that f = hr

2 ; h0 = f
1/r
0 ;

3 h = h0;
4 for k = 1, . . . , s do
5 temp = 0;
6 for i = 0 · · · k − 1 do
7 temp+ = (k − i− ri) · coeff(h, i) · coeff(f, k − i);
8 end
9 hk = 1

rf0k
· temp;

10 h+ = hk · xk;
11 end
12 return h;

Theorem 3.1.1. Algorithm 1 takes O(s2) operations. The justification is straightforward.

Note that when we consider the sparse case, i.e. when f and h are sparse, Algorithm 1
takes O(s · τ(f)) operations, which can be quite large when s, the degree of h, is large. We
need to construct an algorithm which is sensitive to τ(f) and τ(h).

3.1.2 When f0 = 0

When f0 = 0, shifting k up by 1 in (3.1) will give:

k∑
i=0

(k + 1− i− ri)fk+1−ihi = 0,∀1 ≤ k ≤ n+ s− 1.

We substitute index k by n+ s− 1− k to obtain:

n+s−1−k∑
i=0

(n+ s− 1− k + 1− i− ri)fn+s−k−ihi = 0.
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Note that when i > s, hi = 0, when i < s− k, fn+s−k−i = 0 as n+ s− k − i > n, thus:

s∑
i=s−k

(n+ s− 1− k + 1− i− ri)fn+s−k−ihi = 0.

Shifting i down by s− k gives:

k∑
i=0

(n+ s− 1− k + 1− (s− i)− r(s− i))fn−k+ihs−i = 0,

rkfnhs−k +
k−1∑
i=0

(ri+ i− k)fn−k+ihs−i = 0.

Note fn 6= 0 as the leading coefficient, so it gives:

hs−k =
1

rfnk

k−1∑
i=0

(k − i− ri)fn−k+ihs−i. (3.3)

Equation (3.3) says that given coefficients of f of degree from n − k to n − 1 and
coefficients of h of degree from s − k + 1 to s, we can determine hs−k. This is different
from the f0 6= 0 case as we are recovering hk from high degree to low degree. Also we have
to compute hs separately, but clearly hs = f

1/r
n . This suggests the following algorithm to

solve Problem 2.2.1 perfect power problem for dense polynomials:

Algorithm 2: DensePerfectPowerZeroConst

Input: polynomial f ∈ F[x] of degree n s.t. f0 = 0 and integer s, r ∈ Z s.t. n = rs
Output: polynomial h ∈ F[x] such that f = hr

1 hs = f
1/r
n ;

2 h = hs · xs;
3 for k = 1 · · · s− 1 do
4 temp = 0;
5 for i = 0 · · · k − 1 do
6 temp+ = (k − i− ri) · coeff(h, s− i) · coeff(f, n− k + i);
7 end
8 hs−k = 1

rfnk
· temp;

9 h+ = hs−k · xs−k;
10 end
11 return h;
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Theorem 3.1.2. Similarly as before, Algorithm 2 takes O(s2) operations.

Still, we need to come up with a sparsity-sensitive algorithm to solve Problem 2.2.2
when f0 = 0.

3.1.3 A Combinatorial Proof of Equation (3.1)

In this subsection we present an alternative combinatorial proof of Equation (3.1), to get a
further understanding of the underlying mathematical structure. Before we jump into the
sparse case, note that Algorithm 1 and Algorithm 2 are both based on (3.1), which is also:

rf0hk =
k−1∑
i=0

k − i− ri
k

fk−ihi

=
∑k−1

i=0 fk−ihi −
r+1
k

∑k−1
i=0 i · fk−ihi . (3.4)

This has a strong combinatorial meaning as the subscripts of fk−i and hi sum up to a
fixed number k. So we now try to prove Equation (3.4) without using differentiation.

Note that fh = hr+1, we have:

[xk](hr+1) =
k∑
i=0

fk−ihi =
∑k−1

i=0 fk−ihi − f0hk. (3.5)

Also note that [xk](hr+1) must have the term (r + 1)hr0hk = (r + 1)f0hk, say:

[xk](hr+1) = (r + 1)f0hk +M, (3.6)

for some M being a sum of some coefficient products. Combining (3.5) and (3.6), we have:

(r + 1)f0hk +M =
∑k−1

i=0 fk−ihi − f0hk

rf0hk =
∑k−1

i=0 fk−ihi −M.

So we need to figure out what is M . Consider:

[xk](hr+1) = [xk](
s∑

k=0

hkx
k)r+1 = [xk]

s(r+1)∑
k=0

( ∑
0≤j1,··· ,jr+1≤k
j1+···+jr+1=k

hj1 · · ·hjr+1

)
xk

=
∑

0≤j1,··· ,jr+1≤k
j1+···+jr+1=k

hj1 · · ·hjr+1 . (3.7)
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Similarly we can have:

[xk](f) = [xk](hr) =
∑

0≤t1,··· ,tr≤k
t1+···+tr=k

ht1 · · ·htr ,

fk−i = [xk−i](f) = [xk−i](hr) =
∑

0≤t1,··· ,tr≤k−i
t1+···+tr=k−i

ht1 · · ·htr , ∀i = 0, · · · , k. (3.8)

Now we modify (3.7) a little bit. Consider for any choice of j1, · · · , jr+1 satisfying the
running condition:

0 ≤ j1, · · · , jr+1 ≤ k, j1 + · · ·+ jr+1 = k.

Say there are σ ≤ r + 1 distinct elements such that {p1, · · · , pσ} = {j1, · · · , jr+1}, and
each pi appears αi times in {j1, · · · , jr+1}, i.e.:

p1 · α1 + · · ·+ pσ · ασ = j1 + · · ·+ jr+1 = k.

Thus we have:

[xk](hr+1) =
∑

0≤j1,··· ,jr+1≤k
j1+···+jr+1=k

hj1 · · ·hjr+1

=
∑

0≤j1≤···≤jr+1≤k
j1+···+jr+1=k

(
r + 1

α1, · · · , ασ

)
hj1 · · ·hjr+1 . (3.9)

where
(

r+1
α1,··· ,ασ

)
= (r+1)!

α1!···ασ ! is a multinomial coefficient. Note that (α1, · · · , ασ) depends on

(j1, · · · , jr+1). We can do similar rearrangement for Equation (3.8) to have:

fk−i =
∑

0≤t1,··· ,tr≤k−i
t1+···+tr=k−i

ht1 · · ·htr

=
∑

0≤t1≤···≤tr≤k−i
t1+···+tr=k−i

(
r

β1, · · · , βδ

)
ht1 · · ·htr . (3.10)

where distinct q1, · · · , qδ satisfy q1 · β1 + · · ·+ qδ · βδ = t1 + · · ·+ tr = k − i.
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We consider when jr+1 = k, j1 = · · · = jr = 0, thus have 0 · r + k · 1 = k with
σ = 2, α1 = r and α2 = 1, Equation (3.9) yields:

[xk](hr+1) =
∑

0≤j1≤···≤jr+1≤k
j1+···+jr+1=k

(
r + 1

α1, · · · , ασ

)
hj1 · · ·hjr+1

=
(r + 1)!

r!1!
h0 · · ·h0hk +

∑
0≤j1≤···≤jr+1<k
j1+···+jr+1=k

(
r + 1

α1, · · · , ασ

)
hj1 · · ·hjr+1

= (r + 1)f0hk +
∑

0≤j1≤···≤jr+1<k
j1+···+jr+1=k

(
r + 1

α1, · · · , ασ

)
hj1 · · ·hjr+1

= (r + 1)f0hk +
∑

0≤j1≤···≤jr+1<k
j1+···+jr+1=k

r + 1

k
· k
(

r

α1, · · · , ασ

)
hj1 · · ·hjr+1

= (r + 1)f0hk +M.

We do some modification in the running index of M:

M =
r + 1

k

∑
0≤j1≤···≤jr+1<k
j1+···+jr+1=k

k ·
(

r

α1, · · · , ασ

)
hj1 · · ·hjr+1

=
r + 1

k

k−1∑
jr+1=0

( ∑
0≤j1≤···≤jr≤k−jr+1
j1+···+jr=k−jr+1

k ·
(

r

α1, · · · , ασ

)
hj1 · · ·hjr

)
hjr+1

=
r + 1

k

k−1∑
i=0

( ∑
0≤j1≤···≤jr≤k−i
j1+···+jr=k−i

k ·
(

r

α1, · · · , ασ

)
hj1 · · ·hjr

)
hi

=
r + 1

k

k−1∑
i=0

(
k ·

∑
0≤j1≤···≤jr≤k−i
j1+···+jr=k−i

(
r

α1, · · · , ασ

)
hj1 · · ·hjr

)
hi

= r+1
k

∑k−1
i=0

(
k · fk−i

)
hi by Equation (3.10).

20



Therefore we have:

rfohk = (r + 1)f0hk − f0hk
= ([xk](hr+1)−M)− f0hk by Equation (3.6)

= ([xk](hr+1)−M)− ([xk](hr+1)−
∑k−1

i=0 fk−ihi ) by Equation (3.5)

=
∑k−1

i=0 fk−ihi −M

=
∑k−1

i=0 fk−ihi −
r+1
k

∑k
i=0

(
k · fk−i

)
hi as desired.

3.2 Algorithms for Sparse Perfect Powers

We have algorithms for the perfect power problem in the dense setting. However, the total
cost can be exponential, regardless of sparsity. In this section we will present fast sparsity
sensitive algorithms for the sparse case modified from Algorithm 1. We will discuss the
f0 6= 0 and f0 = 0 cases separately.

3.2.1 When f0 6= 0

Now we want to solve Problem 2.2.2 sparse polynomial perfect power problem by modifying
Algorithm 1. Instead of computing h1, · · · , hs as in Algorithm 1, we need to figure out the
next highest coefficient of h in each iteration. Suppose we have computed h0, . . . , hk−1 for
some k > 0. Let

ȟ =
k−1∑
i=0

hix
i,

ĥ =
s∑

i=k+1

hix
i−(k+1),
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so h = ȟ+ hkx
k + ĥxk+1. We know that f ′ȟ− rfȟ′ ≡ 0 mod xk−1 since no coefficient of h

of degree k or higher affects this equation. Then Equation (2.1) can be written as:

0 = f ′h− rfh′

= f ′(ȟ+ hkx
k + ĥxk+1)− rf(ȟ+ hkx

k + ĥxk+1)′

= f ′(ȟ+ hkx
k + ĥxk+1)− rf(ȟ′ + khkx

k−1 + ĥ′xk+1 + (k + 1)ĥxk)

≡ f ′ȟ− rfȟ′ − rkfhkxk−1 mod xk

≡ f ′ȟ− rfȟ′ − rkf0hkxk−1 mod xk

≡ Rxk−1 mod xk,

for some R ∈ F; Rxk−1 is the “residual” or error at this step. This is a “Newton-like”
method. When f0 6= 0, we can then solve

hk = R/(rf0k). (3.11)

Equation (3.11) leads to the following algorithm:

Algorithm 3: SparsePerfectPowerNonzeroConstAttempt

Input: sparse polynomial f ∈ F[x] of degree n s.t. f0 6= 0 and integer s, r ∈ Z s.t.
n = rs

Output: sparse polynomial h ∈ F[x] such that f = hr

1 h0 = f
1/r
0 ;

2 h = h0;
3 k = 1;
4 while degree(h) < s do
5 res = f ′h− rfh′;
6 k = ldegree(res) + 1;
7 hk = 1

rf0k
· coeff(res, k − 1);

8 h+ = hk · xk;
9 end

10 return h;

Note that the condition degree(h) < s for the while loop in line 5 can also be
ldegree(res) < s+ 1.

Theorem 3.2.1. Algorithm 3 takes O(τ(f)τ(h)2) operations.
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Proof. At every iteration the cost is dominated by the multiplication of sparse polynomials
f ′ȟ and fȟ′ in line 6. Using the “traditional” method, this costs O(τ(f)τ(h)) operations for
each. Each iteration we recover one non-zero coefficient of h, so there are τ(h) iterations.
Thus, the whole algorithm can be done with O(τ(f)τ(h)2) operations.

We can we make the algorithm faster by modifying the computation of res. We can
compare how res changes in each iteration as only h is updated each time. We use hlo to
note h in the current iteration, so we have:

res = f ′ · (hlo+ hk · xk)− r · f · (hlo+ hk · xk)′

= f ′ · hlo+ f ′ · hk · xk − r · f · hlo′ − r · f · (hk · xk)′

= res′ + f ′hkx
k − rf · khkxk−1,

where res’ is the residual computed in the previous iteration. And also note that initial-
ization of res gives:

res = f ′ · h0 − rf · h′0 = f ′ · h0.

Therefore we have the following modified algorithm:

Algorithm 4: SparsePerfectPowerNonzeroConst

Input: sparse polynomial f ∈ F[x] of degree n s.t. f0 6= 0 and integer s, r ∈ Z s.t.
n = rs

Output: sparse polynomial h ∈ F[x] such that f = hr

1 h0 = f
1/r
0 ;

2 h = h0;
3 res = f ′h0;
4 k = 1;
5 while ldegree(res) < s+ 1 do
6 k = ldegree(res) + 1;
7 hk = coeff(res, k − 1)/(rf0k);
8 h+ = hk · xk;
9 res+ = f ′ · hkxk − rkf · hkxk−1;

10 end
11 return h;

Theorem 3.2.2. Algorithm 4 takes O(τ(f)τ(h)) operations.
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Proof. In each iteration, the cost of computation of res in line 10 is reduced to τ(f) since
hkx

k and khkx
k−1 only have one term and multiplying them to f takes τ(f). Also the

condition for the while loop in line 6 is equivalent to degree(h) < s. Hence there are τ(h)
iterations, so in total, there will be O(τ(f)τ(h)) operations.

Hence Algorithm 4 is a sparsity-sensitive algorithm to solve the perfect power problem
when f0 6= 0.

3.2.2 When f0 = 0

When we consider the case that f0 = 0, if we try to modify Algorithm 2 as what we did in
the previous f0 6= 0 case, things may not work as Algorithm 2 recovers the coefficients of
h from the highest degree to lower degrees, with which the modulo xk trick will not work.

One possible method is to find the lowest exponents of f , say d, then we have f = fxd,
for some f ∈ F[x] with f(0) 6= 0, if and only if h = hxd/r where h ∈ F[x] with h(0) 6= 0.
Then it goes back to the f0 6= 0 case. This suggests the following algorithm:

Algorithm 5: SparsePerfectPowerZeroConst

Input: sparse polynomial f ∈ F[x] of degree n s.t. f0 = 0 and integer s, r ∈ Z s.t.
n = rs

Output: sparse polynomial h ∈ F[x] such that f = hr

1 d = ldegree(f);

2 f = f/xd;

3 h = Algorithm 4 SparsePerfectPowerNonzeroConst(f, r, s);

4 h = h · xd/r;
5 return h;

Theorem 3.2.3. Algorithm 5 takes O(τ(f)τ(h)) operations.

Proof. Line 2 takes O(τ(f)) operations and line 4 takes O(τ(h)) operations, so the total
running time is dominated by line 3, which is O(τ(f)τ(h)).

Hence Algorithm 5 is a sparsity-sensitive algorithm to solve the perfect power problem
when f0 = 0. We now claim we have solved Problem 2.2.2 sparse perfect power problem.

It is a direct interesting follow up question to ask whether this is the fastest possible
algorithm. This suggests the following open problem:
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Open Problem 3.2.4. Does there exist an algorithm for sparse perfect power problem that
takes O(τ(f) + τ(h)) operations? If so, this algorithm would be optimal, since the input
has size O(τ(f) + τ(h) and any algorithm must access its entire input.

Algorithm 4 and Algorithm 5 actually compute the r-th root h of f assuming that
f = hr. When f does not equal to hr for any h, the algorithm still produces an hcomp.
Since we are using “residual” to recover h in each iteration, hcomp is actually a solution to
(f ′ − rfD)h ≡ 0 mod xs while (f ′ − rfD)h 6= 0.

This suggests the following algorithm for the more general problem f = hr mod xs:

Algorithm 6: SparsePerfectPowerMod

Input: sparse polynomial f ∈ F[x] of degree n and integer s, r ∈ Z
Output: sparse polynomial h ∈ F[x] such that f = hr mod xs

1 if f0 6= 0 then
2 h = Algorithm 4 SparsePerfectPowerNonzeroConst(f, r, s);
3 else
4 h = Algorithm 5 SparsePerfectPowerZeroConst(f, r, s);
5 end
6 return h;

The total complexity is the same as the previous algorithms, i.e. O(τ(f)τ(h)).

More details about solving more general differential equations are discussed in the next
chapter. This sparse modular algorithm will also be key in what follows to solve the
polynomial decomposition for sparse polynomials.

We also need to consider how to check f = hr to verify the algorithm. First note
that computing the r−th power of a polynomial is expensive, so we consider to check
whether f ′h = rh′f and lc(f) =lc(h)r. This idea has been discussed in Giesbrecht and
Roche (2008). Note the total operation should be the complexity of sparse polynomial
multiplication, which is O(τ(f)τ(h)).

3.3 Perfect Power Problem for the “Wild” Case

In the previous sections, we have developed algorithms to solve the perfect power problem
based on Equation (3.2) and Equation (3.3). We note that both of the equations assume
r 6= 0, which follows by the “tame” case assumption that char(F ) does not divide r. In
this section, we will deal with the perfect power problem for the “wild” case, i.e. when
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char(F ) = p divides r. Say r = pα · q, for some integer α and gcd(p, q) = 1. Recalling
some properties for a, b, c ∈ F and any α ≥ 1, we have: (a + b)p

α
= ap

α
+ bp

α
, and

(a+ b+ c)p = ap + bp + cp. Then we can have:

f = hr

= (h0 + h1x+ · · ·+ hsx
s)p

α·q

=
(

(h0 + h1x+ · · ·+ hsx
s)p

α
)q

=
(
hp

α

0 + (h1x)p
α

+ · · ·+ (hsx
s)p

α
)q

=
(
hp

α

0 + hp
α

1 x
1·pα + · · ·+ hp

α

s x
s·pα
)q

=
(
h̃0 + h̃1x

1·pα + · · ·+ h̃sx
s·pα
)q

= h̃q,

where h̃i = hp
α

i . Note that p does not divide q, so we can solve f = h̃q using the algorithms
developed before and then recover h using h̃. So this will lead to the following algorithm

26



for perfect power problem for the “wild” case:

Algorithm 7: WildPerfectPower

Input: polynomial f ∈ F[x], integer s, r ∈ Z s.t. n = rs, characteristic p of F ,
integers α, q such that r = pα · q

Output: polynomial h ∈ F[x], h2 6= 0 such that f = hr

1 if in the dense settings then
2 if f0 6= 0 then

3 h̃ = Algorithm 1 DensePerfectPowerNonzeroConst(f, q, spα);
4 else

5 h̃ = Algorithm 2 DensePerfectPowerZeroConst(f, q, spα);
6 end

7 else
8 in the sparse settings;
9 if f0 6= 0 then

10 h̃ = Algorithm 4 SparsePerfectPowerNonzeroConst(f, q, spα);
11 else

12 h̃ = Algorithm 5 SparsePerfectPowerZeroConst(f, q, spα);
13 end

14 end

15 Let I be the exponents of h̃;
16 h = 0;
17 for i ∈ I do

18 h+ = h̃
1/pα

i · xi/pα ;
19 end
20 return h;

This would solve the “wild” case, and the total cost is still dominated by the “tame” case
algorithms, which is O((spα)2) or O(τ(f)τ(h)) respectively for dense and sparse settings.

Previous algorithms for computing the r-th root of sparse polynomials requiresO((τ(f)+
r)4 log r log n) operations in Giesbrecht and Roche (2008). Here we have solved the perfect
power problem for sparse polynomials with a faster algorithm in O(τ(f)τ(h)) operations.

We also want to check f = hr in the “wild” case. Similarly as before, we can check
f ′h̃ = qh̃′f and lc(f) =lc(h̃)q as p does not divide q. The complexity would be the same
as O(τ(f)τ(h)).
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3.4 Perfect Power Problem for Rational Functions

A further exploration would be Problem 2.2.7 the perfect power problem for rational func-
tions. A rational function f has the form f = f1/f2 for some f1, f2 ∈ F[x] and f2 6= 0.
Suppose n = rs for some r ∈ N. The goal now is to determine if f = hr for some rational
function h, where h = h1/h2 for some h1, h2 ∈ F[x] and h1, h2 6= 0. Assume f = hr,
similarly as Equation (2.1), we will have the following observation:

f ′ = (hr)′,

(f1/f2)
′ = r · (h1/h2)r−1 · (h1/h2)′

= r · (h1/h2)r−1 ·
h′1h2 − h1h′2

h22

= r · (h1/h2)r ·
h2
h1
· h
′
1h2 − h1h′2

h22

= r · (f1/f2) ·
(h1/h2)

′

h1/h2
,

(f1/f2)
′

f1/f2
= r · (h1/h2)

′

h1/h2
,

which still gives us:

f ′h = rfh′.

We can utilize the algorithms for perfect power problem to solve the rational case.
Since f is a rational function, so first we need to reduce it to the lowest terms, i.e. find
fgcd = gcd(f1, f2), where we will have

f =
f1
f2

=
f̃1 · fgcd

f̃2 · fgcd
=
h̃r1 · fgcd

h̃r2 · fgcd
.

where gcd(h̃1, h̃2) = 1. Now we can apply the previous algorithm to f̃1 and f̃2 separately
to get h̃1 and h̃2. Suppose gcd(f1, f2) = fgcd is given. Then we can have the following
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algorithm:

Algorithm 8: SparseRationalPerfectPower

Input: rational polynomial f = f1/f2, f1, f2 ∈ F[x], f2 6= 0 of degrees n1, n2

separately, integer r ∈ Z, the greatest common divisor fgcd=gcd(f1, f2) of
degree n0

Output: rational polynomial h = h1/h2, h1, h2 ∈ F[x], h2 6= 0 such that f = hr

1 f̃1 =quo(f1, fgcd);

2 f̃2 =quo(f2, fgcd);

3 if f̃1(0) 6= 0 then

4 h̃1 = Algorithm 4 SparsePerfectPowerNonzeroConst(f̃1, r,
n1−n0

r
);

5 else

6 h̃1 = Algorithm 5 SparsePerfectPowerZeroConst(f̃1, r,
n1−n0

r
);

7 end

8 if f̃2(0) 6= 0 then

9 h̃2 = Algorithm 4 SparsePerfectPowerNonzeroConst(f̃2, r,
n2−n0

r
);

10 else

11 h̃2 = Algorithm 5 SparsePerfectPowerZeroConst(f̃2, r,
n2−n0

r
);

12 end

13 h = h̃1/h̃2;
14 return h;

Note the algorithm returns one solution while there are infinitely many solutions in
terms of multiples.

It is tricky to consider the running time of this algorithm. In total, the algorithm takes
O(τ(f̃1)τ(h̃1)+τ(f̃2)τ(h̃2)). However, τ(f̃) can be large even if τ(f) is small. For example,
f = xn−1 = (x−1)(xn−1+xn−2+ · · ·+1) = (x−1)f̃ , where f is sparse but f̃ can be really
dense. This means it is still challenging to have an input-sparsity-sensitive algorithm for
rational polynomials.

Also note that this algorithm assumes the greatest common divisors of f1, f2 are given.
When it is not given, it becomes hard as the first step is to compute the gcd. Theorem 2.1.7
proves that determining the gcd of two sparse polynomials is NP-hard, which means
computing the gcd is also hard. Hence the original Problem 2.2.7 is still an open challenge.

In addition, Theorem 2.1.7 stated that determining whether two sparse polynomials are
not relatively prime is equivalent to determining a sparse polynomial is square-free over
integer field. Similarly, we might ask the following open problem for rational polynomials:
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Open Problem 3.4.1. Given sparse polynomials f1, f2 ∈ F [x], not necessarily rela-
tively prime. Suppose we have a polynomial-time algorithm to determine whether f1/f2 =
(h1/h2)

2 for some polynomials h1, h2 ∈ F [x]. Then given sparse polynomials f3, f4 ∈ F [x],
does there exist polynomial-time algorithm to determine whether gcd(f3, f4) = 1?

3.5 Sparse Polynomial Decomposition in the “Tame”

Case

Solving the sparse perfect power problem Problem 2.2.2 modulo xs leads to an algorithm for
decomposition of sparse polynomials in the “tame” case. This is the first polynomial-time
algorithm for this problem that we know of.

We first make use of a reduction of von zur Gathen (1990), and show that it does not
change the sparsity of our problem. We also note that solving the sparse perfect power
problem Problem 2.2.2 will lead to a faster algorithm for sparse polynomial decomposition
in the “tame” case. As discussed in von zur Gathen (1990), if f = g ◦ h and α, β are the
leading coefficients of f and h, then consider the affine linear transformation :

f̄ =
f

α
=
g(h)

α
=
g
(
β · h−h(0)

β
+ h(0)

)
α

=
( g(βx+ h(0)

)
α

)
◦ h− h(0)

β
= ḡ ◦ h̄,

where f̄ = f
α
, ḡ(x) = 1

α
· g
(
βx + h(0)

)
, h̄ = h−h(0)

β
. In this way f̄ , ḡ, h̄ are monic and

h̄(0) = 0. So we can assume f, g, and h are monic and h(0) = 0. To recover h, we follow
the method of von zur Gathen (1990) using the reversal of polynomial.

Definition 3.5.1. For a polynomial f = f0 + · · · + fn−1x
n−1 + xn ∈ F [x], we define the

reversal of f to be:

f̃ = 1 + fn−1x+ · · ·+ f0x
n = xn · f(

1

x
) ∈ F [x].

As discussed in von zur Gathen (1990), to solve the function polynomial decomposition
f = g ◦ h where g, h are monic and h(0) = 0, we can instead solve f̃ ≡ h̃r mod xs, then
h = xs · h̃( 1

x
) is a solution candidate to f = hr. Note that h is monic, so h̃(0) = 1 6= 0, we

can apply Algorithm 6 to obtain h̃. Given f and a candidate h, we can use interpolation
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to find g such that f = g ◦ h. This will suggest the following algorithm:

Algorithm 9: SparsePolyDecomp

Input: sparse polynomial f ∈ F[x] of degree n,integer s, r ∈ Z s.t n = rs
Output: sparse polynomials g, h ∈ F[x] such that f = g ◦ h

1 α = lc(f), β = α1/r, h0 = f
1/r
0 ;

2 f̄ = f/α;

3 f̃ = reversal(f̄);

4 h̃ = Algorithm 6 SparsePerfectPowerMod(f̃ , r, s);

5 h̄ = xs · h̃(1/x);
6 h = β · h̄+ h0;
7 // Next we recover g;
8 Fix a set S ⊆ F with 2n elements
9 Let a1 = h(0);

10 For i from 2 to r do
11 Choose a random ai ∈ S repeatedly until h(ai) 6∈ {h(a1), . . . , h(ai−1)};
12 Interpolate g ∈ F[x] from points {(f(a1), h(a1)), . . . , (f(ar), h(ar))};
13 return g, h;

The cost of steps 1-6 of this algorithm is O(τ(f)τ(h)).

Each evaluation of h requires O(τ(h) log s) operations in F using repeated squaring to
compute powers, and we thus expect to require O(rτ(h) log s) operations in F for step 11.

We claim that each iteration of step 11 takes an expected 2 evaluations of h at some
random ai in S. To see this, observe that h(ai) ∈ {h(a1), . . . , h(ai−1)} if and only if ai is a
root of the polynomial

Γi(x) =
i−1∏
j=1

(h(x)− h(aj)) .

Γi has degree (i− 1)s, thus the chance of hitting a root of Γ in S is at most (i− 1)s/2n <
rs/2n ≤ 1/2. Thus an expected two choices at each iteration of Step 11 will be required.

Once we have found the r distinct evaluations of h in step 11, we also need r evaluation
of f , which requires O(rτ(f) log n), the remaining steps are from dense polynomial interpo-
lation, which can be done using fast polynomial interpolation with O(r log2 r) operations
in F (see von zur Gathen and Gerhard (2013), Corollary 10.12).

Theorem 3.5.2. Algorithm 9 above works as stated and requires O(τ(f)τ(h) + r log2 r +
rτ(h) log s+ rτ(f) log n) operations in F
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Given f ∈ F [x], for monic f , such that f = g ◦ h, this algorithm computes the unique
monic g, h with h(0) = 0. But what if no such decomposition exists. In the perfect power
case, we used the “trick” that f ′h = rh′f when f = hr, but we know of no such certificate
for general polynomial decomposition.

When F is sufficiently large, we can do a randomized test that our decomposition is
correct. Let u = f − g ◦h, then u ∈ F [x] clearly has degree at most n. Fix a subset S ⊂ F
of size at least 2n. Then for random α ∈ S, we can quickly compute u(α) = f(α)−g(h(α)),
since f and h are sparse. If f = g ◦ h then u(α) = f(α) − g(h(α)) will always be zero.
But if u 6= 0, then u(α) = 0 only when α is a root of the polynomial u. A polynomial u of
degree at most n can only be zero at n points, so

Prob {α ∈ S, u(α) = 0} < n/#S < 1/2.

Repeating this experiment k times and always getting f(α) − g(h(α)) = 0 gives us confi-
dence that f = g ◦ h with probability at least 1− 1/2k, so we can increase our confidence
as much as desired.

Nonetheless, there remains an open problem to come up with a deterministic certificate
that f = g ◦ h for sparse f .

Open Problem 3.5.3. Given sparse polynomials f, h ∈ F [x] of degree n, s respectively,
and g ∈ [x] of degree r, give a deterministic or Las Vegas (error-free probabilistic) algorithm
to determine whether f = g ◦ h using poly(τ(f), τ(h), log n, log r, s) operations.

Finally, when the characteristic of the field F divides r, our algorithm does not work.
While we were able to modify our sparse perfect power algorithm to accommodate this
case, it is not clear how to do this for polynomial decomposition. This leads to the following
open question:

Open Problem 3.5.4. Does there exist a fast algorithm for sparse polynomial decompo-
sition for the “wild” case?
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Chapter 4

Generalization to Differential
Equations over Formal Power Series

In the previous chapter, we presented fast algorithms to compute the r-th root h of a
given sparse polynomial f using (3.1) obtained by f ′h = rfh′. We noted that solving
Problem 2.2.2, the sparse perfect power problem, is in fact solving a differential equation
over power series:

0 = (f ′ − rfD)h,

where (f ′ − rfD) can be viewed as a differential operator. Consider the linear differential
operator with polynomial coefficients defined as a polynomial

L = f0 + f1D + f2D2 + · · ·+ f`D` ∈ F[x][D;′ ],

for f0, . . . , f` ∈ F[x] and f` 6= 0, ` ∈ Z as the order of L. In this chapter, we consider how
to solve Problem 2.4.5, i.e. find the solution for

Lh ≡ 0 mod xm.

We also assume f`(0) 6= 0 in this chapter to prove theorems and develop algorithms. In
Section 4.1, we prove the existence and the uniqueness of the solution using the undeter-
mined coefficient method. In Section 4.2, we discuss how the perfect power problem serves
as a special case for ` = 1 to inspire sparse-sensitive algorithm to solve Problem 2.4.5 when
` = 1 or 2. In Section 4.3, we present fast algorithm for general ` and discuss the open
questions if f`(0) = 0. Note that in this chapter, we use fi ∈ F [x] to note the polynomial
coefficient of L, and fi,j ∈ F to note the j-th coefficient of fi.
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4.1 Undetermined Coefficient Method

Before we jump to designing algorithms, we need to make sure the solution exists.

We consider the ` = 2 case, which is discussed in Birkhoff and Rota (1991):

Lh = (f0 + f1D + f2D2)h = 0. (4.1)

Theorem 4.1.1 (Theorem 1 of Chapter 4 in Birkhoff and Rota (1991)).

Given h0, h1, assume f2(0) 6= 0, Equation (4.1) has a unique power series solution.

Proof. Here we restate the proof in the manner to enlighten the follow up theorem for the
generalized case. First note that since f2(0) 6= 0, then there exists f−12 ∈ F [x] such that
f−12 f2 = 1, so we can assume f2 = 1 by multiplying f−12 to both sides of Equation (4.1), so
now we need to solve:

f0h+ f1h
′ + h′′ = 0.

Similarly we can do term-by-term differentiation:

h′′ = 2h2 + 6h3x+ · · ·+ (k + 1)(k + 2)hk+2x
k + · · · ;

f1h
′ = f1,0h1 + (2f1,0h2 + f1,1h1)x+ · · ·+

( k∑
i=0

(k + 1− i)f1,ihk+1−i

)
xk + · · · ;

f0h = f0,0h0 + (f0,0h1 + f0,1h0)x+ · · ·+
( k∑
i=0

f0,ihk−i

)
xk + · · · .

Summing up these terms, we get:

h′′ + f1h
′ + f0h =

(
2h2 + f1,0h1 + f0,0h0

)
+(

6h3 + 2f1,0h2 + f1,1h1 + f0,0h1 + f0,1h0

)
x+ · · ·+(

(k + 1)(k + 2)hk+2 +
k∑
i=0

(k + 1− i)f1,ihk+1−i +
k∑
i=0

f0,ihk−i

)
xk + · · · .

Equate the coefficients of 1, x, · · · , xk, · · · to zero, so we get:

hk+1 = −
∑k

i=0(k − i)f1,ihk−i +
∑k

i=0 f0,ihk−1−i
k(k + 1)

,∀k ≥ 0.
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This method can be generalized to:

Lh = (f0 + f1D + · · ·+ f`D`)h = 0. (4.2)

Theorem 4.1.2. Given h0, · · · , h`−1, assume f`(0) 6= 0, Equation (4.2) has a unique power
series solution.

Proof. Similarly, if f`(0) 6= 0, it is reduced to solve:

f0h+ f1h
′ + · · ·+ f`−1h

(`−1) + h(`) = 0.

With term-by-term differentiation:

h(`) = `!h` +
(`+ 1)!

1!
h`+1x+ · · ·+ (`+ k)!

k!
h`+kx

k;

f`−1h
(`−1) = (`− 1)!f`−1,0h`−1 +

( `!
1!
f`−1,0h` + (`− 1)!f`−1,1h`−1

)
x+ · · ·

+
( k∑
i=0

(k + `− 1− i)!
(k − i)!

f`−1,ihk+`−1−i

)
xk + · · ·+;

...

f1h
′ = f1,0h1 + (2f1,0h2 + f1,1h1)x+ · · ·+

( k∑
i=0

(k + 1− i)f1,ihk+1−i

)
xk + · · · ;

f0h = f0,0h0 + (f0,0h1 + f0,1h0)x+ · · ·+
( k∑
i=0

f0,ihk−i

)
xk + · · · .

Add these equations together and equate the coefficients of 1, x, · · · , xk, · · · to be zero,
we will get:

− (`+ k)!

k!
h`+k

=
k∑
i=0

f0,ihk−i +
k∑
i=0

(k + 1− i)f1,ihk+1−i + · · ·+
k∑
i=0

(k + `− 1− i)!
(k − i)!

f`−1,ihk+`−1−i

=
k∑
i=0

f0,ihk−i +
`−1∑
t=1

( k∑
i=0

( t∏
j=1

(k − i+ j)
)
ft,ihk+t−i

)
.
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Shift the index from `+ k to 1 + k, therefore we will get:

hk+1 = −

∑k
i=0 f0,ihk+1−`−i +

∑`−1
t=1

(∑k
i=0

(∏t
j=1(k + 1− `− i+ j)

)
ft,ihk+1−`+t−i

)
(k+1)!

(k+1−`)!

.

This means given h0, · · · , hk−1, we can compute hk. And this procedure continues as k
goes to infinity. Our original Problem 2.4.5 considers modulo xm, i.e. only compute finitely
many hk’s, but the solution h is still uniquely determined. We have proved the existence
and uniqueness of the solution h, we now consider algorithms to compute the solution.

4.2 The ` = 1, 2 cases

We first consider the case that:
L = f0 + f1D.

We want to find h ∈ F [x] such that:

Lh = (f0 + f1D)h = f0h+ f1h
′ ≡ 0 mod xm. (4.3)

This is a simple generalization of the perfect power problem as we can take f0 = −f ′1/r.
So we still consider the previous“Newton-like” method to Equation (4.3), which gives:

0 = f0h+ f1h
′

= f0(ȟ+ hkx
k + ĥxk+1) + f1(ȟ+ hkx

k + ĥxk+1)′

= f0(ȟ+ hkx
k + ĥxk+1) + f1(ȟ

′ + khkx
k−1 + ĥ′xk+1 + (k + 1)ĥxk)

= f0ȟ+ f1ȟ
′ + kf1hkx

k−1 mod xk

= f0ȟ+ f1ȟ
′ + kf1(0)hkx

k−1 mod xk

= Rxk−1 mod xk,

where −Rxk−1 is the residual. When f1(0) 6= 0, we will have:

hk = −R/kf1(0),
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and similarly we can compute res as:

res = f0 · (hlo+ hk · xk) + f1 · (hlo+ hk · xk)′

= f0 · hlo+ hk · f0 · xk + f1 · hlo′ + k · hk · f1 · xk−1

= res′ + hkf0x
k + khkf1x

k−1.

This suggest the following algorithm:

Algorithm 10: ` = 1 Case

Input: polynomial f0, f1 ∈ F[x] of degree n0 and n1 respectively s.t. f1(0) 6= 0 and
integer m ∈ Z

Output: polynomial h ∈ F[x] such that f0h+ f1h
′ ≡ 0 mod xm

1 Pick any h0;
2 h = h0;
3 res = f0h0;
4 k = 1;
5 while ldegree(res) < m+ 1 do
6 k = ldegree(res) + 1;
7 hk = −coeff(res, k − 1)/(kf1(0));
8 h+ = hk · xk;
9 res+ = f0 · hkxk + kf1 · hkxk−1;

10 end
11 return h;

The correctness and cost is summarized as follows:

Theorem 4.2.1. If f1(0) 6= 0, then Lh ≡ 0 mod xm, where L = f0 + f1D, has a unique
solution up to the constant multiple (this is also the reason that we can pick any h0 as the
starting point). The cost of finding h is O(t · τ(h)), where τ(fi) ≤ t, i = 0, 1.

Proof. For the running time, in each iteration, it is dominated by the computation of res,
which takes O(max(τ(f0), τ(f1)). The condition for the while loop in line 5 is equivalent
to degree(h) < m. So there are τ(h) iterations, so in total, the cost will be O(t · τ(h)).

Now we consider the higher order case ` = 2:

L = f0 + f1D + f2D2.

37



Then we want to find h ∈ F [x] such that:

Lh = (f0 + f1D + f2D2)h = f0h+ f1h
′ + f2h

′′ ≡ 0 mod xm. (4.4)

Similarly we apply the “Newton-like” method to get:

0 = f0h+ f1h
′ + f2h

′′

= f0(ȟ+ hkx
k + ĥxk+1) + f1(ȟ+ hkx

k + ĥxk+1)′ + f2(ȟ+ hkx
k + ĥxk+1)′′

= f0ȟ+ f1ȟ
′ + f2ȟ

′′ + kf1hkx
k−1 + k(k − 1)f2hkx

k−2 + k(k + 1)f2ĥx
k−1 mod xk−1

=
(
f0ȟ+ f1ȟ

′ + f2ȟ
′′
)

+ k(k − 1)f2(0)hkx
k−2 mod xk−1

= Rxk−2 mod xk−1,

where −Rxk−2 is the residual. Also note that we are doing mod xk−1, which is different
from before. When f2(0) 6= 0, we will have:

hk = −R/k(k − 1)f2(0),

and similarly we can compute res as:

res = f0 · (hlo+ hk · xk) + f1 · (hlo+ hk · xk)′ + f2 · (hlo+ hk · xk)′′

= f0 · hlo+ hk · f0 · xk + f1 · hlo′ + k · hk · f1 · xk−1 + k(k − 1) · hk · f2 · xk−2

= res′ + hkf0x
k + khkf1x

k−1 + k(k − 1)hkf2x
k−2.

This approach is demonstrated in the following algorithm:

Algorithm 11: ` = 2 Case

Input: polynomial f0, f1, f2 ∈ F[x] of degree n0, n1 and n2 respectively s.t.
f2(0) 6= 0 and integer m ∈ Z

Output: polynomial h ∈ F[x] such that f0h+ f1h
′ + f2h

′′ ≡ 0 mod xm

1 Pick any h0, h1;
2 h = h0 + h1x;
3 res = f0h+ f1h

′ + f2h
′′;

4 k = 1;
5 while ldegree(res) < m+ 1 do
6 k = ldegree(res) + 2;
7 hk = −coeff(res, k − 2)/(−k(k − 1)f2(0));
8 h+ = hk · xk;
9 res+ = hkf0x

k + khkf1x
k−1 + k(k − 1)hkf2x

k−2;

10 end
11 return h;
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The cost and correctness is summarized in the following theorem:

Theorem 4.2.2. If f2(0) 6= 0, then Lh ≡ 0 mod xm, where L = f0 + f1D + f2D2, has a
unique solution up to the constant multiple (this is the reason that we can pick any h0 and
h1 as the starting point). The cost of finding h is O(t · τ(h)), where τ(fi) ≤ t,∀i.

Proof. Similarly the running time is dominated by the computation of res, which takes
O(max(τ(f0), τ(f1), τ(f2))). Also the condition for the while loop in line 5 is equivalent
to degree(h) < m+ 1, so in total the running time is still O(t · τ(h)).

4.3 Polynomial differential equations of arbitrary or-

der

Now we consider the general case:

L = f0 + f1D + · · ·+ f`D`.

We can modify the “Newton-like” method to get:

0 = f0h+ f1h
′ + · · ·+ f`h

(l)

= f0(ȟ+ hkx
k + ĥxk+1) + f1(ȟ+ hkx

k + ĥxk+1)′ + · · ·+ f`(ȟ+ hkx
k + ĥxk+1)(l)

=
(
f0ȟ+ f1ȟ

′ + · · ·+ f`ȟ
(l)
)

+
k!

(k − `)!
hkf`(0)xk−` mod xk−`+1

= Rxk−` mod xk−l+1,

where −Rxk−` is the residual. If f`(0) 6= 0, we will have:

hk = −R/
( k!

(k − `)!
f`(0)

)
.

Similarly we compute res as:

res = f0 · (hlo+ hk · xk) + f1 · (hlo+ hk · xk)′ + · · ·+ f` · (hlo+ hk · xk)(`)

= res′ + hkf0x
k + khkf1x

k−1 + · · ·+ k!

(k − `)!
hkf`x

k−`.
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This leads to the following algorithm:

Algorithm 12: GeneralCase

Input: polynomial f0, f1, · · · , f` ∈ F[x] of degree n0, n1, · · · , n` respectively s.t.
f`(0) 6= 0 and integer m ∈ Z

Output: polynomial h ∈ F[x] such that f0h+ f1h
′ + · · ·+ f`h

(`) ≡ 0 mod xm

1 Pick any h0, h1, · · · , h`−1;
2 h = h0 + h1x+ · · ·+ h`−1x

`−1;

3 res = f0h+ f1h
′ + · · ·+ f`h

(`);
4 k = 1;
5 while ldegree(res) < m+ 1 do
6 k = ldegree(res) + `;

7 hk = −coeff(res, k − `)/(− k!
(k−`)!f`(0));

8 h+ = hk · xk;
9 res+ =

∑`
i=0

k!
(k−i)!hk · fix

k−i;

10 end
11 return h;

Theorem 4.3.1. If f`(0) 6= 0, then Lh ≡ 0 mod xm, where L = f0 + f1D + · · · + f`D`,
has a unique solution up to the constant multiple (this is the reason that we can pick any
h0 · · ·h`−1 as the starting point). The cost of finding h is O(t · ` · τ(h)), where τ(fi) ≤ t,∀i.

Proof. The running time is still dominated by the computation of res, which takes O(t ·`).
The condition of the while loop in line 5 is equivalent to degree(h) < m + ` − 1, thus in
total, it takes O(t · ` · τ(h)) operations.

Similarly to Open Problem 3.2.4, it is interesting to think about the following open
problem:

Open Problem 4.3.2. Does there exist an algorithm to solve the generalized differential
equation that takes O(t+ `+ τ(h)) operations? If so, this algorithm should be optimal.

Note in this chapter we assume f`(0) 6= 0 to prove the existence and the uniqueness
and develop the algorithms. It is interesting to think about the case when f`(0) = 0. Our
algorithm would still work for a sub-case when xk divides all of f0, · · · , f` and f`

xk
(0) 6= 0,

this can be reduced to the nonzero case if k is given, and the total cost would still be
O(t · ` · τ(h)) as the sparsity of each fi does not change if divided by xk.
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A very challenging case is: if the leading polynomial coefficient still have zero constant
after dividing f0, · · · , f` by xk for the largest value of k. The algorithm will not work as
we have f`(0) in the denominator. This address the following open question:

Open Problem 4.3.3. Does there exist a sparsity sensitive algorithm to completely solve
the f`(0) = 0 case for finding polynomial solutions modulo xm?
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Chapter 5

Implementations and Experiments

Part of the goal was to find example classes where sparse solutions to differential equations
exist. One such example is Equation (2.1), where the sparsity of solutions is supported
by the deep theory of Zannier and Schinzel (2009). Unfortunately, we ultimately did not
identify any other interesting general classes of differential equations, but the search is
ongoing, and this thesis provides the tools to solve them. This chapter will describe the
implementation of Algorithm 12 to find the solution h to the general linear differential
equation with sparse polynomial coefficients. Although the algorithm works for any finite
field, the implementation is over Z computationally. The implementation and the tests are
written in Maple2020 and the source code is available in https://github.com/SaiyueLyu/

sparsesoln.

5.1 Implementation and Tests

The Maple procedure will compute the solution h to the differential equation Lh ≡ 0 mod
xm, and will take three parameters. flist is the input list of sparse polynomials fi’s, m is
the degree of the expected solution h, hlo is the starting point of h. The implementation
of Algorithm 12 is called sparse de solver in the source codes.

To test Algorithm 12, we will need to pre-compute a set of sparse polynomials fi’s and
f`(0) 6= 0. Then we will run several trials of each setting and record the average sparsity of
the solution in order to obtain a plot to visualize the trend of the sparsity of the computed
solution h.
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The first step is to consider generate sparse fi’s, here are 5 structures to build up some
examples :

• Structure a : fi’s are random generated polynomials.

• Structure b : fi+1 is generated from fi by exponents shifting, i.e. f0 =
∑

j c0,jx
ej , f1 =∑

j c1,jx
ej+1, f2 =

∑
j c2,jx

ej+2, · · · and τ(fi) = τ(fi+1) accordingly.

• Structure c : a special case of Structure b where fi = f ′i+1.

• Structure d : the perfect power root special case, i.e. the order of the equation ` = 1,
where f0 = f ′ and f1 = −r · f for some polynomial f and r is the input power of
f = hr.

Each structure is implemented such that f`(0) 6= 0 and structure d is a special case
for perfect power problem. To test the result for each structure, a Maple procedure
structure i flist (i = a, b, c) is implemented to generate a list of fi’s and takes three
parameters :

• l as the order of the differential equation Lh ≡ 0 mod m,

• tau the sparsity bound of all fi’s,

• d the exponents bound of all fi’s.

Then a trail procedure trail i will make multiple trails for the specified structure and
return the average sparsity of the computed h, taking 5 parameters :

• m the degree of the expected solution h,

• num the total number of trails,

• l as the order of the differential equation, `,

• tau the sparsity bound,

• d the exponents bound.
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Also a procedure plotl i outputs a list of average sparsity and a list of l values to
see how the solution sparsity changes when the order l changes, taking 5 parameters :
m,num,tau,d,len, where len is the length of the list of l. And a procedure plottau i

outputs a list of average sparsity and a list of tau values to see how the solution sparsity
changes when the sparsity bound of fi’s changes, taking 5 parameters : m,num,l,d,len.
Then we can utilize these procedures to output plots to visualize the relationship between
the τ(h), τ(f) and `.

5.2 Experiment Results

We set m=100, num=50, tau=10, d=100 for plotl i; and we set m=100, num=50, l=10,
d=100 for plottau i. Below illustrates the experiment results.

5.2.1 Structure a

(a) ` v.s avg sparsity of h (b) τ v.s avg sparsity of h

Figure 5.1: Experiment results for structure a

Figure 5.1a shows the impact of the order of differential equation ` on the trend of
average sparsity of h; Figure 5.1b shows the impact of the sparsity bound of fi’s τ on the
trend of average sparsity of h.
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We can observe from Figure 5.1a that the sparsity of h is always quite large (compared
to the degree of h, m = 100) no matter how l changes. And according to Figure 5.1b, when
tau increase, the sparsity of h increases sharply and then converges to around 100(= m).
This suggests that for randomly generated sparse polynomials fi’s, the solution density is
high.

5.2.2 Structure b and Structure c

(a) ` v.s avg sparsity of h (b) τ v.s avg sparsity of h

Figure 5.2: Experiment results for structure b

Figure 5.2 shows a quite different result compared to structure a. We can observe
from Figure 5.2a that the starting point of the sparsity of h is relatively low compared to
structure a, it decreases rapidly and then converges to around 10, which is around 10%
of the degree m. And according to Figure 5.2b, the sparsity of h starts at 0, increases
gradually and then converges but does not arrive 100. Figure 5.3 presents similar results
as in Figure 5.2. These suggest the following observation, though formal proofs are not
known :

Observation 5.2.1. When the order of the differential equation increases, the solution
sparsity decreases; When the sparsity of fi’s increases, the solution sparsity increases. And
the coefficients of fi’s do not change the results between structure b and c.
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(a) ` v.s avg sparsity of h (b) τ v.s avg sparsity of h

Figure 5.3: Experiment results for structure c

5.2.3 Structure d : Perfect Power Problem

We then set up trails for perfect power problem, to compare structure d with structure a,b
and c, we set l=1 and r=5. We want to see the relations regarding tau.

As illustrated in Figure 5.4, structure d makes the trend of solution sparsity look more
linear than others, this suggests the following observation:

Observation 5.2.2. The perfect power structure might lead the relationship between the
sparsity of h and the sparsity of hr to be more linear compared with other structures.
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(a) τ v.s avg sparsity of h for structure a (b) τ v.s avg sparsity of h for structure b

(c) τ v.s avg sparsity of h for structure c (d) τ v.s avg sparsity of h for structure d

Figure 5.4: Perfect power experiment result comparison
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Chapter 6

Conclusion and Future Work

In the previous chapters, we have explored Problem 2.2.2 as a starting point. Given a
sparse polynomial over integers, rational numbers, or a finite field, we developed efficient
algorithms to compute the r-th (r ≥ 2) root of the given polynomial with polynomial time
in terms of the sparsity of the input polynomial and the sparsity of the output polynomial.
This technique was generalized to the first known sparsity-sensitive fast algorithm for
polynomial decomposition of sparse polynomials. We provide a mathematical proof of
correctness and complexity for all algorithms.

Our methods for sparse perfect powers and polynomial decomposition are based on a
relationship with derivatives, suggested by Koiran (2011). This led to an exploration of
a more general problem Problem 2.4.5. Given a linear differential equation with sparse
polynomial coefficients, we developed efficient algorithm to solve Lh ≡ 0 mod xm with
polynomial time in terms of the sparsity of the polynomial coefficients, the sparsity of the
output and the order of the differential operator.

Several interesting problems remain unsolved. In Chapter 3, we have addressed the
following open questions :

Open Problem 6.0.1. Does there exist a fast algorithm for sparse polynomial decompo-
sition for the “wild” case?

A follow up problem would be to think of a series of polynomials for decomposition :

Open Problem 6.0.2. Given monic f ∈ F [x], determine whether there exists g1, · · · , gk ∈
F [x] such that f = g1 ◦ · · · ◦ gk such that each gi is indecomposable.
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Open Problem 6.0.3. Does there exist an algorithm for sparse perfect power problem
that takes O(τ(f) + τ(h)) operations?

Although we have shown we can utilize the algorithms for the perfect power problem
to solve the rational case when the greatest common divisor of the input is also given, the
total cost might not be input sparsity sensitive, and it remains futher exploration for the
Problem 2.2.7 when the gcd is not pre-computed.

Open Problem 6.0.4. Given rational function f = f1/f2 where f1, f2 are some sparse
polynomials over finite field. If gcd(f1, f2) is not given, is there an algorithm to find some
rational h = h1/h2 such that f = hr with polynomial time in terms of τ(f1), τ(f2), τ(h1), τ(h2)?

We also address a similarly open problem for rational case :

Open Problem 6.0.5. Given sparse polynomials f1, f2 ∈ F [x], not necessarily rela-
tively prime. Suppose we have a polynomial-time algorithm to determine whether f1/f2 =
(h1/h2)

2 for some polynomials h1, h2 ∈ F [x]. Then given sparse polynomials f3, f4 ∈ F [x],
does there exist polynomial-time algorithm to determine whether gcd(f3, f4) = 1?

In Chapter 4, we solved the differential equation in O(t · ` · τ(h)) operations, we can
ask the following open problem :

Open Problem 6.0.6. Does there exist an algorithm to solve the generalized differential
equation that takes O(t+ `+ τ(h)) operations? If so, this algorithm should be optimal.

In addition, the developed algorithms are based on the assumption that f`(0) 6= 0.
When f`(0) = 0, we can not apply the modular trick to the newton-like algorithm, and the
reversal trick by von zur Gathen (1990) might not be that helpful as in the perfect power
case.

Open Problem 6.0.7. When f`(0) = 0, is there a fast algorithm to solve Lh ≡ 0 mod xm?

The experiment result in Chapter 5 suggest some observations of the relationship be-
tween the solution sparsity and the input sparsity or the order of the differential equation.
Intuitively these observations make sense, but lack of rigorous proofs.

Open Problem 6.0.8. Given the sparsity of the fi’s and the order ` of the differential
equation Lh ≡ modxm, can we determine the sparsity of the solution h?

More generally, do there exist other families of differential equations (beyond (2.1))
where we can expect sparse Taylor series, either provably or conjecturally.
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