
Journal of Symbolic Computation 46 (2011) 1242–1259

Contents lists available at SciVerse ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

Detecting lacunary perfect powers and computing
their roots
Mark Giesbrecht a,1, Daniel S. Roche b

a Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
b Department of Computer Science, United States Naval Academy, Annapolis, MD, USA

a r t i c l e i n f o

Article history:
Received 4 January 2009
Accepted 18 January 2010
Available online 5 September 2011

Keywords:
Sparse/lacunary polynomial
Perfect power
Black-box computation

a b s t r a c t

We consider solutions to the equation f = hr for polynomials
f and h and integer r ≥ 2. Given a polynomial f in the
lacunary (also called sparse or super-sparse) representation, we
first show how to determine if f can be written as hr and, if so,
to find such an r . This is a Monte Carlo randomized algorithm
whose cost is polynomial in the number of non-zero terms of
f and in log deg f , i.e., polynomial in the size of the lacunary
representation, and it works over Fq[x] (for large characteristic)
as well as Q[x]. We also give two deterministic algorithms to
compute the perfect root h given f and r . The first is output-
sensitive (based on the sparsity of h) and works only over Q[x]. A
sparsity-sensitive Newton iteration forms the basis for the second
approach to computing h, which is extremely efficient and works
over both Fq[x] (for large characteristic) andQ[x], but depends on a
number-theoretic conjecture.Work of Erdös, Schinzel, Zannier, and
others suggests that both of these algorithms are unconditionally
polynomial-time in the lacunary size of the input polynomial f .
Finally, we demonstrate the efficiency of the randomized detection
algorithm and the latter perfect root computation algorithm with
an implementation in the C++ library NTL.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider the problem of determining whether a polynomial f equals hr for some
other polynomial h and integer r ≥ 2, and if so, finding h and r . The novel aspect of this current work

E-mail addresses: mwg@cs.uwaterloo.ca (M. Giesbrecht), roche@usna.edu (D.S. Roche).
1 Tel.: +1 519 888 4567 36582; fax: +1 519 885 1208.

0747-7171/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2011.08.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82768456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jsc.2011.08.006
http://www.elsevier.com/locate/jsc
http://www.elsevier.com/locate/jsc
mailto:mwg@cs.uwaterloo.ca
mailto:roche@usna.edu
http://dx.doi.org/10.1016/j.jsc.2011.08.006

M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259 1243

is that our algorithms are efficient for the lacunary (also called sparse or supersparse) representation
of polynomials. Specifically, we write

f =
−
1≤i≤t

cix ei ∈ F[x1, . . . , xℓ], (1.1)

where F is a field, c0, . . . , ct ∈ F\{0}, e1, . . . , et ∈ Nℓ are distinct exponent tuples with 0 ≤ ‖e1‖1 ≤
· · · ≤ ‖et‖1 = deg f , and x ei is the monomial xei11 xei22 · · · x

eiℓ
ℓ of degree ‖ei‖1 =

∑
1≤j≤ℓ eij. We say

f is t-sparse and write τ(f) = t . We present algorithms which require time polynomial in τ(f) and
log deg f .

Computational work on lacunary polynomials has proceeded steadily for the past three decades.
From the dramatic initial intractability results of Plaisted (1977, 1984), through progress in algorithms
(e.g., Ben-Or and Tiwari (1988), Shparlinski (2000) and Kaltofen and Lee (2003)) and complexity
(e.g., Karpinski and Shparlinski (1999), Quick (1986) and von zur Gathen et al. (1993)), to recent
breakthroughs in root finding and factorization (Cucker et al., 1999; Kaltofen and Koiran, 2006;
Lenstra, 1999), these works have important theoretical and practical consequences. The lacunary
representation is arguably more intuitive than the standard dense representation, and in fact
corresponds to the default linked-list representation of polynomials in modern computer algebra
systems such as Maple and Mathematica.

We will always assume that τ(f) ≥ 2; otherwise f = xn, and determining whether f is a perfect
power is equivalent to determining whether n ∈ N is composite, and to factoring n if we wish to
produce r dividing n such that f = (xn/r)r . Surprisingly, the intractability of the latter problem is
avoided when τ(f) ≥ 2.

We first consider detecting perfect powers and computing the power r for the univariate case

f =
−
1≤i≤t

cixei ∈ F[x], (1.2)

where 0 ≤ e1 < e2 < · · · < et = deg f .
Two cases for the field F are handled: the integers and finite fields of characteristic p greater than

the degree of f . When f ∈ Z[x], our algorithms also require time polynomial in log ‖f ‖∞, where
‖f ‖∞ = max1≤i≤t |ci| (for f ∈ Q[x], we simply work with f = cf ∈ Z[x], for the smallest c ∈ Z\{0}).
This reflects the bit-length of coefficients encountered in the computations. Efficient techniques will
also be presented for reducing the multivariate case to the univariate one, and for computing a root h
such that f = hr .

1.1. Related work and methods

Two well-known techniques can be applied to the problem of testing for perfect powers, and both
are very efficient when f = hr is dense. We can compute the squarefree decomposition of f as in
Yun (1976), and determine whether f is a perfect power by checking whether the greatest (integer)
common divisor of the exponents of all nontrivial factors in the squarefree decomposition is at least
2. An even faster method (in theory and practice) to find h given f = hr is by a Newton iteration. This
techniquehas also proven to be efficient in computing perfect roots of (dense)multi-precision integers
(Bach and Sorenson, 1993; Bernstein, 1998). In summary however, we note that both these methods
require approximately linear time in the degree of f , which may be exponential in the lacunary size.

Newton iteration has also been applied to finding perfect polynomial roots of lacunary (or other)
polynomials given by straight-line programs. Kaltofen (1987) shows how to compute a straight-line
program for h, given a straight-line program for f = hr and the value of r . This method has complexity
polynomial in the size of the straight-line program for f , and in the degree of h, and in particular is
effective for large r . We do not address the powerful generality of straight-line programs, but do avoid
the dependence on the degree of h.

Closest to this current work, Shparlinski (2000) shows how to recognize whether f = h2 for a
lacunary polynomial f ∈ Fq[x]. Shparlinski uses random evaluations and tests for quadratic residues.
How to determine whether a lacunary polynomial is any perfect power is posed as an open question.

1244 M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259

1.2. Our contributions

Given a lacunary polynomial f ∈ Z[x] with τ(f) ≥ 2 and degree n, we first present an algorithm
to compute an integer r > 1 such that f = hr for some h ∈ Z[x], or determine that no such r exists.
The algorithm requires O˜(t log2 ‖f ‖∞ log2 n) machine operations,2 and is probabilistic of the Monte
Carlo type. That is, for any input, on any execution the probability of producing an incorrect answer is
strictly less than 1/2, assuming the ability to generate randombits at unit cost. This possibility of error
can bemade arbitrarily small with repeated executions. Moreover, the error is one-sided, so we prove
specifically that deciding whether a given multivariate rational polynomial encoded in the lacunary
representation is a perfect power is in the complexity class coRP.

A similar algorithm is presented to answer Shparlinski’s open question on perfect powers of
lacunary polynomials over finite fields, at least for the case of large characteristic. That is, when
the characteristic p of a finite field F is greater than deg f , we provide a Monte Carlo algorithm that
determines if there exists an h ∈ F[x] and r such that f = hr , and finds r if it exists, which requires
O˜(t log2 n) operations in F.

An implementation of our algorithm over Z in NTL indicates excellent performance on sparse
inputs when compared to a fast implementation based on previous technology (a variable-precision
Newton iteration to find a power-series rth root of f , followed by a Monte Carlo correctness check).

Actually computing h such that f = hr is a somewhat trickier problem, at least insofar as bounds
on the sparsity of h have not been completely resolved. Conjectures of Schinzel (1987) and recent
work of Zannier (2007) suggest that, provided the characteristic of F is zero or sufficiently large, h is
lacunary as well. To avoid this lack of sufficient theoretical understanding, we develop an algorithm
which requires time polynomial in both the representation size of the input f (i.e., τ(f), log n and
log ‖f ‖∞) and the representation size of the output (i.e., τ(h) and log ‖h‖∞). This algorithm works
by projecting f into a sequence of small cyclotomic fields. Images of the desired h in these fields
are discovered by factorization over an algebraic extension. Finally, a form of interpolation of the
sparse exponents is used to recover the global h. Thanks to an efficient perfect-root certification,
this algorithm is deterministic and polynomial-time, however we do not claim it will be efficient in
practice. Instead, we also present and analyze a simpler alternative based on a kind of sparse Newton
iteration. Subject to what we believe is a reasonable conjecture, this is shown to be very fast.

It may be helpful to point out the differences between the detection algorithm in Section 2 and the
computation algorithms in Section 3. While the former is probabilistic of the Monte Carlo type and
does not actually produce the perfect rth root h of f if it exists, it provably works in polynomial-time
even if h is dense. The computation algorithms, by contrast, are deterministic but rely on the unknown
root h being sparse.

The remainder of the paper is arranged as follows. In Section 2we present themain theoretical tool
for our algorithm to determine if f = hr , and to find r . We also show how to reduce the multivariate
problem to the univariate one. In Section 3 we show how to compute h such that f = hr (given that
such h and r exist). Finally, in Section 4, we present an experimental implementation of some of our
algorithms in the C++ library NTL.

An earlier version of some of this work was presented in the ISSAC 2008 conference (Giesbrecht
and Roche, 2008).

2. Testing for perfect powers

In this section we describe a method to determine if a lacunary polynomial f ∈ F[x] is a perfect
power. That is, do there exist h ∈ F[x] and r > 1 such that f = hr? The polynomial h need not be
lacunary, though some conjectures suggest it may well have to be. We will find r , but not h.

We first describe algorithms to test if an f ∈ F[x] is an rth power of some polynomial h ∈ F[x],
where f and r are both given and r is assumed to be prime. We present and analyze variants that work

2 We employ soft-Oh notation: for functions σ and ϕ we say σ ∈ O˜(ϕ) if σ ∈ O(ϕ logc ϕ) for some constant c ≥ 0.

M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259 1245

over finite fields Fq and over Z. In fact, these algorithms for given r are for black-box polynomials:
they only need to evaluate f at a small number of points. That this evaluation can be done quickly is a
property of lacunary and other classes of polynomials.

For lacunary f we then show that, in fact, if h exists at all then r must be small unless f = xn. And
if f is a perfect power, then there certainly exists a prime r such that f is an rth power. So in fact the
restrictions that r is small and prime are sufficient to cover all nontrivial cases, and our method is
complete.

2.1. Detecting given rth powers

Ourmain tool in this work is the following theoremwhich says that, with reasonable probability, a
polynomial is an rth power if and only if themodular image of an evaluation in a specially constructed
finite field is an rth power.
Theorem 2.1. Let ϱ ∈ Z be a prime power and r ∈ N a prime dividing ϱ− 1. Suppose that f ∈ Fϱ[x] has
degree n ≤ 1+

√
ϱ/2 and is not a perfect rth power in Fϱ[x]. Then

R(r)
f = #

c ∈ Fϱ : f (c) ∈ Fϱ is an rth power

≤

3ϱ
4

.

Proof. The rth powers in Fϱ form a subgroupH of F∗ϱ of index r and size (ϱ−1)/r in F∗ϱ . Also, a ∈ F∗ϱ is
an rth power if and only if a(ϱ−1)/r

= 1. We use the method of ‘‘completing the sum’’ from the theory
of character sums. We refer to Lidl and Niederreiter (1983), Chapter 5, for an excellent discussion
of character sums. By a multiplicative character we mean a homomorphism χ : F∗ϱ → C which
necessarily maps Fϱ onto the unit circle. As usual we extend our multiplicative characters χ so that
χ(0) = 0, and define the trivial character χ

0
(a) to be 0 when a = 0 and 1 otherwise.

For any a ∈ F∗ϱ ,

1
r

−
χ r=χ0

χ(a) =

1 if a ∈ H,

0 if a ∉ H,

where χ ranges over all the multiplicative characters of order r on F∗ϱ—that is, all characters that are
isomorphic to the trivial character on the subgroup H . Thus

R(r)
f =

−
a∈F∗ϱ

1
r

−
χ r=χ0

χ(f (a))

=

1
r

−
χ r=χ0

−
a∈F∗ϱ

χ(f (a))

≤
ϱ

r
+

1
r

−
χ r
=χ0

χ≠χ0

−a∈Fϱ

χ(f (a))

 .
Here we use the obvious fact that−

a∈F∗ϱ

χ
0
(f (a)) ≤

−
a∈Fϱ

χ
0
(f (a)) = ϱ − d ≤ ϱ,

where d is the number of distinct roots of f inFϱ .Wenext employ the powerful theoremofWeil (1948)
on character sums with polynomial arguments (see Theorem 5.41 of Lidl and Niederreiter (1983)),
which shows that if f is not a perfect rth power of another polynomial, and χ has order r > 1, then−a∈Fϱ

χ(f (a))

 ≤ (n− 1)ϱ1/2
≤

ϱ

2
,

using the fact that we insisted n ≤ 1+
√

ϱ/2. Summing over the r − 1 non-trivial characters of order
r , we deduce that

R(r)
f ≤

ϱ

r
+

r − 1
r
·
ϱ

2
≤

3ϱ
4

,

since r ≥ 2. �

1246 M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259

2.2. Certifying specified powers over Fq[x]

Theorem 2.1 allows us to detect when a polynomial f ∈ Fϱ[x] is a perfect rth power, for known r
dividing ϱ − 1: choose random α ∈ Fϱ and evaluate ξ = f (α)(ϱ−1)/r ∈ Fϱ . Recall that ξ = 1 if and
only if f (α) is an rth power.

• If f is an rth power, then clearly f (α) is an rth power and we always have ξ = 1.
• If f is not an rth power, Theorem 2.1 demonstrates that for at least 1/4 of the elements of Fϱ , f (α)

is not an rth power. Thus, for α chosen randomly from Fϱ wewould expect ξ ≠ 1 with probability
at least 1/4.

For a polynomial f ∈ Fq[z] over an arbitrary finite field Fq[x], q− 1 is not necessarily divisible by
r , so we will work in a suitable extension. First, we can safely assume r - q under the requirement that
the characteristic of Fq is strictly greater than deg f , since in any case we must have r ≤ deg f . Then
from Fermat’s Little Theorem, we know that r | (qr−1−1) and so we construct an extension field Fqr−1

over Fq and proceed as above. We now present and analyze this more formally.

Algorithm IsPerfectRthPowerGF

Input: A prime power q, f ∈ Fq[x] of degree n such that char(Fq) < n ≤ 1 +
√
q/2, r ∈ N a prime

dividing n, and ϵ ∈ R>0
Output: true if f is the rth power of a polynomial in Fq[x]; false otherwise.
1: Find an irreducible Γ ∈ Fq[z] of degree r − 1, successful with probability at least ϵ/2
2: ϱ← qr−1
3: Define Fϱ = Fq[z]/(Γ)
4: m← 2.5(1+ ⌈log2(1/ϵ)⌉)
5: for i from 1 to m do
6: Choose random α ∈ Fϱ

7: ξ ← f (α)(ϱ−1)/r ∈ Fϱ

8: if ξ ≠ 1 then
9: return false

10: return true

Notes on IsPerfectRthPowerGF.
To accomplish Step 1, a number of fast probabilistic methods are available to find irreducible

polynomials. We employ the algorithm of Shoup (1994). This algorithm requires O((r2 log r +
r log q) log r log log r) operations in Fq. It is probabilistic of the Las Vegas type, and we assume that
it always stops within the number of operations specified, and returns the correct answer with
probability at least 1/2 and ‘‘Fail’’ otherwise (it never returns an incorrect answer). The algorithm is
actually presented in Shoup (1994) as always finding an irreducible polynomial, but requiring expected
time as above; by not iterating indefinitely our restatement allows for a Monte Carlo analysis in what
follows. To obtain an irreducibleΓ with failure probability at most ϵ/2we run (ourmodified) Shoup’s
algorithm 1+ ⌈log2(1/ϵ)⌉ times.

The restriction that n ≤ 1 +
√
q/2 (or equivalently that q ≥ 4(n − 1)2) is not at all limiting. If

this condition is not met, simply extend Fq with an extension of degree ν = ⌈logq(4(n − 1)2)⌉ and
perform the algorithm over Fqν . At worst, each operation in Fqν requires O(M(log n)) operations in Fq.

Here we define M(r) as a number of operations in F to multiply two polynomials of degree ≤ r
over F, for any field F, or the number of bit operations to multiply two integers with at most r bits.
Using classical arithmetic M(r) is O(r2), while using the fast algorithm of Cantor and Kaltofen (1991)
we may assume that M(r) is O(r log r log log r).

Theorem 2.2. Let q, f , n, r, ϵ be as in the input to the algorithm IsPerfectRthPowerGF. If f is a
perfect rth power the algorithm always reports this. If f is not a perfect rth power then, on any invocation,
this is reported correctly with probability at least 1− ϵ.

M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259 1247

Proof. It is clear from the above discussion that the algorithm always works when f is perfect power.
When f is not a perfect power, each iteration of the loopwill obtain ξ ≠ 1 (and hence a correct output)
with probability at least 1/4. By iterating the loop m times we ensure that the probability of failure
is at most ϵ/2. Adding this to the probability that Shoup’s algorithm (for Step 1) fails yields a total
probability of failure of at most ϵ. �

Theorem 2.3. On inputs as specified, the algorithm IsPerfectRthPowerGF requires O((rM(r) log r
log q) · log(1/ϵ)) operations in Fq plus the cost to evaluate α → f (α) at O(log(1/ϵ)) points α ∈ Fqr−1 .

Proof. As noted above, Shoup’s (1994) algorithm requires O((r2 log r + r log q) log r log log r) field
operations per iteration, which is within the time specified. The main cost of the loop in Steps 5–9 is
computing f (α)(ϱ−1)/r , which requiresO(log ϱ) orO(r log q) operations in Fϱ using repeated squaring,
plus one evaluation of f at a point in Fϱ . Each operation in Fϱ requires O(M(r)) operations in Fq, and
we repeat the loop O(log(1/ϵ)) times. �

Corollary 2.4. Given f ∈ Fq[x] of degree nwith τ(f) = t, and r ∈ N a prime dividing n, we can determine
if f is an rth power with

O ((rM(r) log r log q+ tM(r) log n) · log(1/ϵ))

operations in Fq, provided n > char(Fq). When f is an rth power, the output is always correct, while if f
is not an rth power, the output is correct with probability at least 1− ϵ.

2.3. Certifying specified powers over Z[x]

For an integer polynomial f ∈ Z[x], we proceed by working in the homomorphic image of Z in
Fp (and then in an extension of that field). We must ensure that the homomorphism preserves the
perfect power property we are interested in with high probability. For any polynomial g ∈ F[x], let
disc(g) = res(g, g ′) be the discriminant of g (the resultant of g and its first derivative). It is well
known that g is squarefree if and only if disc(g) ≠ 0. Also define lcoeff(g) as the leading coefficient of
g , the coefficient of the highest power of x in g . Finally, for g ∈ Z[x] and p a prime, denote by g rem p
the unique polynomial in Fp[x]with all coefficients in g reduced modulo p.

Lemma 2.5. Let f ∈ Z[x] and f̃ = f / gcd(f , f ′) its squarefree part. Let p be a prime such that p - disc(f̃)
and p - lcoeff(f). Then f is a perfect power in Z[x] if and only if f rem p is a perfect power in Fp[x].

Proof. Clearly if f is a perfect power, then f rem p is a perfect power in Z[x]. To show the converse,
assume that f = f s11 · · · f

sm
m for distinct irreducible f1, . . . , fm ∈ Z[x], so f̃ = f1 · · · fm. Clearly

f ≡ f s11 · · · f
sm
m mod p as well, and because p - lcoeff(f) we know deg(fi rem p) = deg fi for 1 ≤ i ≤ m.

Since p - disc(f̃), f̃ rem p is squarefree (see von zur Gathen and Gerhard (2003), Lemma 14.1), and each
of the fi rem p must be pairwise relatively prime and squarefree for 1 ≤ i ≤ m. Now suppose f rem p
is a perfect rth power modulo p. Then we must have r | si for 1 ≤ i ≤ m. But this immediately implies
that f is a perfect power in Z[x] as well. �

Given any polynomial g = g0 + g1x + · · · + gmxm ∈ Z[x], we define the height or coefficient
∞-norm of g as ‖g‖∞ = maxi |gi|. Similarly, we define the coefficient 1-norm of g as ‖g‖1 =

∑
i |gi|,

and 2-norm as ‖g‖2 =
∑

i |gi|
2
1/2. With f , f̃ as in Lemma 2.5, f̃ divides f , so we can employ the

factor bound of Mignotte (1974) to obtain

‖f̃ ‖∞ ≤ 2n
‖f ‖2 ≤ 2n

√
n+ 1 · ‖f ‖∞.

Since disc(f̃) = res(f̃ , f̃ ′) is the determinant of matrix of size at most (2n−1)× (2n−1), Hadamard’s
inequality implies

|disc(f̃)| ≤

2n (n+ 1)1/2 ‖f ‖∞

n−1
2n (n+ 1)3/2 ‖f ‖∞

n
< 22n2(n+ 1)2n · ‖f ‖2n

∞
.

1248 M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259

Also observe that |lcoeff(f)| ≤ ‖f ‖∞. Thus, the product disc(f̃) · lcoeff(f) has at most

µ =

log2

22n2 (n+ 1)2n ‖f ‖2n+1

∞

log2

4 (n− 1)2

prime factors greater than 4(n − 1)2 (we require the lower bound 4(n − 1)2 to employ Theorem 2.1
without resorting to field extensions). Choose an integer γ ≥ 4(n − 1)2 such that the number of
primes between γ and 2γ is at least 4µ+1. By Rosser and Schoenfeld (1962), Corollary 3, the number
of primes in this range is at least 3γ /(5 ln γ) for γ ≥ 21.

Now let γ ≥ max{21µ lnµ, 226}. It is easily confirmed that if µ ≤ 6 and γ ≥ 226, then
3γ /(5 ln γ) > 4µ+ 1. Otherwise, if µ ≥ 7, then ln(21 lnµ) < 2 lnµ, so

γ

ln γ
≥

21µ lnµ

lnµ+ ln(21 lnµ)
> 7µ,

and therefore 3γ /(5 ln γ) > 21µ/5 > 4µ+ 1.
Thus, if γ ≥ max{21µ lnµ, 226}, then a random prime not equal to r in the range γ . . . 2γ

divides lcoeff(f) · disc(f) with probability at most 1/4. Primes p of this size have only log2 p ∈
O(log n+ log log ‖f ‖∞) bits.

Algorithm IsPerfectRthPowerZ
Input: f ∈ Z[x] of degree n; r ∈ N a prime dividing n; ϵ ∈ R>0;
Output: true if f is the rth power of a polynomial in Z[x]; false otherwise
1: µ←

log2

22n2 (n+ 1)2n ‖f ‖2n+1

∞

/

log2

4 (n− 1)2

2: γ ← max{⌈21µ lnµ⌉, 4(n− 1)2, 226}
3: for i from 1 to ⌈log2(1/ϵ)⌉ do
4: p← random prime in the range γ . . . 2γ
5: if NOT IsPerfectRthPowerGF(p, f rem p, r , 1/4) then
6: return false
7: return true

Theorem 2.6. Let f ∈ Z[x] of degree n, r ∈ N dividing n and ϵ ∈ R>0. If f is a perfect rth power, the
algorithm IsPerfectRthPowerZ always reports this. If f is not a perfect rth power, on any invocation
of the algorithm, this is reported correctly with probability at least 1− ϵ.

Proof. If f is an rth power then so is f rem p for any prime p, and so is any f (α) ∈ Fp. Thus, the
algorithm always reports that f is an rth power. Now suppose f is not an rth power. If p | disc(f) or
p | lcoeff(f) it may happen that f rem p is an rth power. This happens with probability at most 1/4 and
we will assume that the worst happens in this case. When p - disc(f) and p - lcoeff(f), the probability
that IsPerfectRthPowerGF incorrectly reports that f is an rth power is also at most 1/4, by our
choice of parameter ϵ in the call to IsPerfectRthPowerGF. Thus, on any iteration of steps 3–6,
the probability of finding that f is an rth power is at most 1/2. The probability of this happening
⌈log2(1/ϵ)⌉ times is at most ϵ. �

Theorem 2.7. On inputs as specified, the algorithm IsPerfectRthPowerZ requires

O

rM(r) log r ·M(log n+ log log ‖f ‖∞) · (log n+ log log ‖f ‖∞) · log(1/ϵ)

,

or O˜(r2(log n+ log log ‖f ‖∞)2 · log(1/ϵ)) bit operations, plus the cost to evaluate (α, p) → f (α) mod p
at O(log(1/ϵ)) points α ∈ Fp for primes p with log p ∈ O(log n+ log log ‖f ‖∞).

Proof. The number of operations required by each iteration is dominated by Step 5, for which
O(rM(r) log r log p) operations in Fp is sufficient by Theorem2.3. Since log p ∈ O(log n+log log ‖f ‖∞)
we obtain the final complexity as stated. �

M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259 1249

We obtain the following corollary for t-sparse polynomials in Z[x]. This follows since the cost of
evaluating a t-sparse polynomial f ∈ Z[x] modulo a prime p is O(t log ‖f ‖∞ log p + t log nM(log p))
bit operations.
Corollary 2.8. Given f ∈ Z[x] of degree n, with τ(f) = t, and r ∈ N a prime dividing n, we can determine
if f is an rth power with

O˜

(r2 log2 n+ t log2 n+ t log ‖f ‖∞ log n) · log(1/ϵ)

bit operations. When f is an rth power, the output is always correct, while if f is not an rth power, the
output is correct with probability at least 1− ϵ.

2.4. An upper bound on r

In this subsection we show that if f = hr and f ≠ xn then r must be small. Over Z[x]we show that
‖h‖2 is small as well. A sufficiently strong result over many fields is demonstrated by Schinzel (1987),
Theorem 1, where it is shown that if f has sparsity t ≥ 2 then t ≥ r + 1 (in fact a stronger result
is shown involving the sparsity of h as well). This holds when either the characteristic of the ground
field of f is zero or greater than deg f .

Here we give a (much) simpler result for polynomials in Z[x], which bounds ‖h‖2 and is stronger
at least in its dependency on t though it also depends upon the coefficients of f .
Theorem 2.9. Suppose f ∈ Z[x] with deg f = n and τ(f) = t, and f = hr for some h ∈ Z[x] of degree s
and r ≥ 2. Then ‖h‖2 ≤ ‖f ‖

1/r
1 .

Proof. Let p > n be prime and ζ ∈ C a pth primitive root of unity. Then

‖h‖22 =
−
0≤i≤s

|hi|
2
=

1
p

−
0≤i<p

|h(ζ i)|2.

(this follows from the fact that the Discrete Fourier Transform (DFT) matrix is orthogonal). In other
words, the average value of |h(ζ i)|2 for i = 0 . . . p− 1 is ‖h‖22, and so there exists a k ∈ {0, . . . , p− 1}
with |h(ζ k)|2 ≥ ‖h‖22. Let θ = ζ k. Then clearly |h(θ)| ≥ ‖h‖2. We also note that f (θ) = h(θ)r and
|f (θ)| ≤ ‖f ‖1, since |θ | = 1. Thus,

‖h‖2 ≤ |h(θ)| = |f (θ)|1/r ≤ ‖f ‖1/r1 . �

The following corollary is particularly useful.
Corollary 2.10. If f ∈ Z[x] is not of the form xn, and f = hr for some h ∈ Z[x], then
(i) r ≤ 2 log2 ‖f ‖1,
(ii) τ(h) ≤ ‖f ‖2/r1 .

Proof. Part (i) follows since ‖h‖2 ≥
√
2. Part (ii) follows because ‖h‖2 ≥

√
τ(h). �

These bounds relate to the sparsity of f since ‖f ‖1 ≤ τ(f)‖f ‖∞.

2.5. Perfect power detection algorithm

We can now complete the perfect power detection algorithm, whenwe are given only the t-sparse
polynomial f (and not r).

Algorithm IsPerfectPowerZ
Input: f ∈ Z[x] of degree n and sparsity t ≥ 2, ϵ ∈ R>0
Output: true and r if f = hr for some h ∈ Z[x]; false otherwise.
1: P ← {primes r | n and r ≤ 2 log2(t‖f ‖∞)}
2: for r ∈ P do
3: if IsPerfectRthPowerZ(f , r , ϵ/#P) then
4: return true and r
5: return false

1250 M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259

Theorem 2.11. If f ∈ Z[x] = hr for some h ∈ Z[x], the algorithm IsPerfectPowerZ always returns
‘‘True’’ and returns r correctly with probability at least 1− ϵ. Otherwise, it returns ‘‘False’’ with probability
at least 1− ϵ. The algorithm requires O˜(t log2 ‖f ‖∞ log2 n log(1/ϵ)) bit operations.

Proof. From the preceding discussions, we can see that if f is a perfect power, then itmust be a perfect
rth power for some r ∈ P . So the algorithmmust return true on some iteration of the loop. However,
it may incorrectly return true too early for an r such that f is not actually an rth power; the probability
of this occurring is the probability of error when f is not a perfect power, and is less than ϵ/#P at
each iteration. So the probability of error on any iteration is at most ϵ, which is what we wanted.

The complexity result follows from the fact that each r ∈ O(log t + log ‖f ‖∞) and using
Corollary 2.8. �

For polynomials inFq[x]weuse Schinzel’s bound that r ≤ t−1 and obtain the following algorithm.

Algorithm IsPerfectPowerGF
Input: A prime power q, f ∈ Fq[x] of degree n and sparsity t such that n < char(Fq), and ϵ ∈ R>0
Output: true and r if f = hr for some h ∈ Fq[x]; false otherwise.
1: P ← {primes r | n and r ≤ t}
2: for p ∈ P do
3: if IsPerfectRthPowerGF(f , r , ϵ/#P) then
4: return true and r
5: return false

Theorem 2.12. If f = hr for h ∈ Fq[x], the algorithm IsPerfectPowerGF always returns ‘‘True’’ and
returns r correctly with probability at least 1 − ϵ. Otherwise, it returns ‘‘False’’ with probability at least
1− ϵ. The algorithm requires O˜(t3(log q+ log n)) operations in Fq.

Proof. The proof is equivalent to that of Theorem 2.11, using the complexity bounds in
Corollary 2.4. �

2.6. Detecting multivariate perfect powers

In this subsection we examine the problem of detecting multivariate perfect powers. That is, given
a lacunary f ∈ F[x1, . . . , xℓ] of total degree n as in (1.1), we want to determine if f = hr for some
h ∈ F[x1, . . . , xℓ] and r ∈ N. This is done simply as a reduction to the univariate case.

First, given f ∈ F[x1, . . . , xℓ], define the squarefree part f̃ ∈ F[x1, . . . , xℓ] as the squarefree
polynomial of highest total degree which divides f .

Lemma 2.13. Let f ∈ F[x1, . . . , xℓ] be of total degree n > 0 and let f̃ ∈ F[x1, . . . , xℓ] be the squarefree
part of f . Define

∆ = discx(f̃ (y1x, . . . , yℓx)) = resx(f̃ (y1x, . . . , yℓx), f̃ ′(y1x, . . . , yℓx)) ∈ F[y1, . . . , yℓ]

and

Λ = lcoeffx(f (y1x, . . . , yℓx)) ∈ F[y1, . . . , yℓ]

for independent indeterminates x, y1, . . . , yℓ. Assume that a1, . . . , aℓ ∈ F with ∆(a1, . . . , aℓ) ≠ 0 and
Λ(a1, . . . , an) ≠ 0. Then f (x1, . . . , xℓ) is a perfect power if and only if f (a1x, . . . , aℓx) ∈ F[x] is a perfect
power.

Proof. Clearly if f is a perfect power, then f (a1x, . . . , aℓx) is a perfect power. To prove the converse,
assume that

f = f s11 f s22 · · · f
sm
m

for irreducible f1, . . . , fm ∈ F[x1, . . . , xℓ]. Then

f (y1x, . . . , ymx) = f1(y1x, . . . , ymx)s1 · · · fm(y1x, . . . , ymx)sm

M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259 1251

and each of the fi(y1x, . . . , ymx) are irreducible. Now, since Λ(a1, . . . , am) ≠ 0, we know the
deg(f (a1x, . . . , aℓx)) = deg f (the total degree of f). Thus, deg fi(a1x, . . . , aℓx) = deg fi for 1 ≤ i ≤ ℓ
aswell. Also, by our assumption, disc(f (a1x, . . . , aℓx)) ≠ 0, so all of the fi(a1x, . . . , aℓx) are squarefree
and pairwise relatively prime for 1 ≤ i ≤ k, and

f (a1x, . . . , aℓx) = f1(a1x, . . . , aℓx)s1 · · · fm(a1x, . . . , aℓx)sm .

Assume now that f (a1x, . . . , aℓx) is an rth perfect power. Then r divides si for 1 ≤ i ≤ m. This
immediately implies that f itself is an rth perfect power. �

It is easy to see that the total degree of ∆ is less than 2n2 and the total degree of Λ is less than n,
and that both ∆ and Λ are non-zero. Thus, for randomly chosen a1, . . . , aℓ from a set S ⊆ F of size
at least 8n2

+ 4nwe have ∆(a1, . . . , aℓ) = 0 or Λ(a1, . . . , aℓ) = 0 with probability less than 1/4, by
Zippel (1979) or Schwartz (1980). This can be made arbitrarily small by increasing the set size and/or
by repetition. We then run the appropriate univariate algorithm over F[x] (depending upon the field)
to identify whether or not f is a perfect power, and if so, to find r . Note that, for integer polynomials,
f (a1x, . . . , aℓx) need not be explicitly computed over Z[x]; this can be delayed until a finite field is
chosen in the IsPerfectRthPowerZ algorithm, in order to preserve polynomial time.

3. Computing perfect roots

Once we have determined that f ∈ F[x] is equal to hr for some h ∈ F[x], the next task is to actually
compute h. Unfortunately, as noted in the introduction, there are no known bounds on τ(h)which are
polynomial in τ(f).

The question of how sparse the polynomial root of a sparse polynomial must be (or equivalently,
how dense any power of a dense polynomial must be) relates to some questions first raised by Erdös
(1949) on the number of terms in the square of a polynomial. Schinzel extended this work to the case
of perfect powers and proved that τ(hr) tends to infinity as τ(h) tends to infinity (Schinzel, 1987).
Some conjectures of Schinzel suggest that τ(h) should be O(τ (f)). A recent breakthrough of Zannier
(2007) shows that τ(h) is bounded by a function which does not depend on deg f , but this bound is
unfortunately not polynomial in τ(f).

However, our own (limited) investigations, along with more extensive ones by Coppersmith and
Davenport (1991), and later Abbott (2002), suggest that, for any h ∈ F[x], where the characteristic
of F is not too small, τ(h) ∈ O(τ (hr) + r). We skirt this problem in two ways: our first algorithm is
output-sensitive, and the second relies on a modest conjecture.

3.1. Computing rth roots in polynomial-time (without conditions)

In this subsection we present an algorithm for computing an h such that f = hr given f ∈ Z[x] and
r ∈ Z or showing that no such h exists. The algorithm is deterministic and requires time polynomial
in t = τ(f), log deg f , log ‖f ‖∞ and a given upper bound µ on m = τ(h). Neither its correctness nor
complexity is conditional on any conjecture. We will only demonstrate that this algorithm requires
polynomial time. A more detailed analysis is performed on the (more efficient) algorithm of the next
subsection (though that complexity is subject to a modest conjecture).

The basic idea of the algorithm here is that we can recover all the coefficients in Q as well as
modular information about the exponents of h from a homomorphism into a small cyclotomic field
over Q. Doing this for a relatively small number of cyclotomic fields yields h.

Assume that (the unknown) h ∈ Z[x] has the form

h =
−

1≤i≤m

bixdi for b1, . . . , bm ∈ Z\{0}, and 0 ≤ d1 < d2 < · · · < dm,

and that p > 2 is a prime distinct from r such that

p -
∏

1≤i<j≤m

(dj − di), and p -
∏

1≤i≤m

(di + 1). (3.1)

Let ζp ∈ C be a pth primitive root of unity, andΦp = 1+z+· · ·+zp−1 ∈ Z[z] its minimal polynomial,
the pth cyclotomic polynomial (which is irreducible in Q[z]). Computationally we represent Q(ζp) as

1252 M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259

Q[z]/(Φp), with ζp ≡ z mod Φp. Observe that ζ k
p = ζ

k rem p
p for any k ∈ Z, where k rem p is the least

non-negative residue of k modulo p. Thus

h(ζp) = hp(ζp) for hp =
−

1≤i≤m

bixdi rem p
∈ Z[x],

and hp is the unique representation of h(ζp) as a polynomial of degree less than p − 1. This follows
from the conditions (3.1) on our choice of prime p because

• No pair of distinct exponents di and dj of h is equivalent modulo p (since p - (di − dj));
• All the exponents reduced modulo p are strictly less than p − 1 (since our conditions imply

di ≢ (p− 1) mod p for 1 ≤ i ≤ m).

This also implies that the coefficients of hp are exactly the same as those of h, albeit in a different order.
Now observe that we can determine hp quite easily from the roots of

Γp(y) = yr − f (ζp) ∈ Q(ζp)[y].

These roots can be found by factoring the polynomial Γp(y) in Q(ζp)[y], and the roots in C must be
ωih(ζp) ∈ C for 0 ≤ i < r , where ω is a primitive rth root of unity. When r > 2, and since we chose
p distinct from r , the only rth root of unity in Q(ζp) is 1. Thus Γp(y) has exactly one linear factor, and
this must be equal to y− h(ζp) = y− hp(ζp), precisely determining hp. When r = 2, we have

Γp(y) = (y− h(ζp))(y+ h(ζp)) = (y− hp(ζp))(y+ hp(ζp))

and we can only determine hp(ζp) (and hp and, for that matter, h) up to a factor of ±1. However, the
exponents of hp and−hp are the same, and the ambiguity is only in the coefficients (which we resolve
later).

Finally, we need to perform the above operations for a sequence of cyclotomic fields Q(ζp1),
Q(ζp2), . . . , Q(ζpk) such that the primes in P = {p1, . . . , pk} allow us to recover all the exponents
in h. Each prime p ∈ P gives the set of exponents of h reduced modulo that prime, as well as all the
coefficients of h in Z. That is, from each of the computations with p ∈ P we obtain

C = {b1, . . . , bm} and Ep = {d1 rem p, d2 rem p, . . . , d rem p} ,

but with no clear information about the order of these sets. In particular, it is not obvious how to
correlate the exponents modulo the different primes directly. To do this we employ the clever sparse
interpolation technique of Garg and Schost (2008) (based on a method of Grigoriev and Karpinski
(1987) for a different problem), which interpolates the symmetric polynomial in the exponents:

g = (x− d1)(x− d2) · · · (x− dm) ∈ Z[x].

For each p ∈ P we compute the symmetric polynomial modulo p,

gp = (x− (d1 rem p))(x− (d2 rem p)) · · · (x− (dm rem p)) ≡ g mod p,

for whichwe do not need to know the order of the exponent residues.We then determine g ∈ Z[x] by
the Chinese remainder theorem and factor g over Z[x] to find the d1, . . . , dm ∈ Z. Thus the product of
all primes in p ∈ P must be at least 2‖g‖∞ to recover the coefficients of g uniquely. It is easily seen
that 2‖g‖∞ ≤ 2nm.

As noted above, the computationwith each p ∈ P recovers all the exponents of h inZ, so using only
one prime p ∈ P , we determine the jth exponent of h as the coefficient of xdj rem p in hp for 1 ≤ j ≤ m. If
r = 2 we can choose either of the roots of Γp(y) (they differ by only a sign) to recover the coefficients
of h.

Finally, once we have a candidate root h, we certify that f = hr by taking logarithmic derivatives
to obtain

f ′

f
=

rh′hr−1

hr
,

which simplifies to f ′h = rh′f . This equation only involves two sparsemultiplications and is therefore
confirmed in polynomial time, and alongwith checking leading coefficients implies that in fact f = hr .

M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259 1253

The above discussion is summarized in the following algorithm.

Algorithm ComputeRootAlgebraic
Input: f ∈ Z[x] as in (1.2) with deg f = n, and r, µ ∈ N
Output: h ∈ Z[x] such that f = hr and τ(h) ≤ µ, provided such an h exists
1: γ ← smallest integer≥ 21 such that 3γ /(5 ln γ) ≥ (µ2

+ 2µ) log2 n
2: P ←{p ∈ {γ , . . . , 2γ } and p prime}
3: for p ∈ P do
4: Represent Q(ζp) by Q[x]/(Φp), where Φp ← 1+ z + · · · + zp−1 and ζp ≡ z mod Φp

5: Compute f (ζp) =
∑

1≤i≤t ciζ
ei rem p
p ∈ Z[ζp]

6: Factor Γp(y)← yr − f (ζp) ∈ Q(ζp)[y] over Q(ζp)[y]
7: if Γp(y) has no roots in Z[ζp] then
8: return ‘‘f is not an rth power of a µ-sparse polynomial’’
9: Let hp(ζp) ∈ Z[ζp] be a root of Γp(y)

Write hp(x) =
∑

1≤i≤mp
bipxdip , for bip ∈ Z and distinct dip ∈ N for 1 ≤ i ≤ mp

10: if deg hp = p− 1 then
11: mp ← 0; Continue with next prime p ∈ P at Step 3
12: gp ← (x− d1p)(x− d2p) · · · (x− dmpp) ∈ Zp[x]
13: m← max{mp : p ∈ P }
14: P0 ← {p ∈ P : mp = m}
15: Reconstruct g ∈ Z[x] from {gp}p∈P0 by the Chinese Remainder Algorithm
16: {d1, d2, . . . , dk} ← distinct integer roots of g
17: if k < m then
18: return ‘‘f is not an rth power of a µ-sparse polynomial’’
19: Choose any p ∈ P0. For 1 ≤ j ≤ m, let bj ∈ Z be the coefficient of xdj rem p in hp

20: h←
∑

1≤j≤m bjxdj
21: if f ′h = rh′f and lc(f) = lc(h)r then
22: return h
23: else
24: return ‘‘f is not an rth power of a µ-sparse polynomial’’

Theorem 3.1. The algorithm ComputeRootAlgebraic works as stated. It requires a number of bit
operations polynomial in t = τ(f), log deg f , log ‖f ‖, and µ.

Proof. We assume throughout the proof that there does exist an h ∈ Z[x] such that f = hr and
τ(h) ≤ µ. If it does not, this will be caught in the test in Steps 21–24 by the above discussion, if not
before.

In Steps 1–2 we construct a set of primes P which is guaranteed to contain sufficiently many good
primes to recover g , where primes are good in the sense that for all p ∈ P

β = r ·
∏

1≤i<j≤m

(dj − di) ·
∏

1≤i≤m

(di + 1) ≢ 0 mod p.

It is easily derived that β < nµ2
, which has fewer than log2 β ≤ µ2 log2 n prime factors, so there are

at most µ2 log2 n bad primes. We also need to recover g in Step 15, and ‖g‖∞ ≤ nµ, for which we
need at least 1 + log2 ‖g‖ ≤ 2µ log2 n good primes. Thus if P has at least (µ2

+ 2µ) log2 n primes,
there are a sufficient number of good primes to reconstruct g in Step 15.

By Rosser and Schoenfeld (1962), Corollary 3, for γ ≥ 21 we have that the number of primes in
{γ , . . . , 2γ } is at least 3γ /(5 ln γ), which is at least (µ2

+ 2µ) log2 n by our choice of γ in Step 1, and
γ ∈ O˜(µ2 log(n)). Numbers of this size can easily be tested for primality.

Since we assume that a root h exists, Γp(y) will always have exactly one root hp ∈ Z[ζp] when
r > 2, and exactly two roots in Z[ζp]when r = 2 (differing only by sign).

Two conditions cause the primes to be identified as bad. If the map h → h(ζp) causes some
exponents of h to collide modulo p, this can only reduce the number of non-zero exponents mp in

1254 M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259

hp, and so such primes will not show up in the list of good primes P0, as selected in Step 14. Also,
if any of the exponents of h are equivalent to p − 1 modulo p we will not be able to reconstruct the
exponents of h from hp, and we identify these as bad in Step 11 (by artificially markingmp = 0, which
ensures they will not be added to P0).

Correctness of the remainder of the algorithm follows from the previous discussion.
The complexity is clearly polynomial for all steps except for factoring in Q(ζp)[y] (Step 6), which

can be performed in polynomial time with the algorithm of, for example, Landau (1985). �

As stated, the algorithm ComputeRootAlgebraic is not actually output-sensitive, as it requires
an a priori bound µ on τ(h). To avoid this, we could start with any small value for µ, say τ(f), and
after each failure double this bound. Provided that the input polynomial f is in fact an rth perfect
power, this process will terminate after a number of steps polynomial in the lacunary size of the
output polynomial h. There are also a number of other small improvements that could be made to
increase the algorithm’s efficiency, which we have omitted here for clarity.

3.2. Faster root computation subject to conjecture

Algorithm ComputeRootAlgebraic is output sensitive as the cost depends on the sparsity of
the root h. As discussed above, there is considerable evidence that, roughly speaking, the root of a
sparse polynomial must always be sparse, and so the preceding algorithm may be unconditionally
polynomial-time.

In fact, with suitable sparsity bounds we can derive a more efficient algorithm based on Newton
iteration. This approach is simpler as it does not rely on advanced techniques such as factoring over
algebraic extension fields. It is also more general as it applies to fields other than Z and to powers r
which are not prime.

Unfortunately, this algorithm is not purely output-sensitive, as it relies on a conjecture regarding
the sparsity of powers of h. We first present the algorithm and prove its correctness. Then we give our
modest conjecture and use it to prove the algorithm’s efficiency.

Our algorithm is essentially a Newton iteration, with special care taken to preserve sparsity.
We start with the image of h modulo x, using the fact that f (0) = h(0)r , and at Step i =
1, 2, . . . , ⌈log2(deg h+ 1)⌉, we compute the image of hmodulo xi.

Here, and for the remainder of this section, we will assume that f , h ∈ F[x] with degrees n and
s respectively such that f = hr for r ∈ N at least 2, and that the characteristic of F is either zero or
greater than n. As usual, we define t = τ(f).

Algorithm ComputeRootNewton
Input: f ∈ F[x], r ∈ N such that f is a perfect rth power
Output: h ∈ F[x] such that f = hr

1: u← highest power of x dividing f
2: fu ← coefficient of xu in f
3: g ← f /(fuxu)
4: h← 1, k← 1
5: while kr ≤ deg g do
6: ℓ← min{k, (deg g)/r + 1− k}

7: a←
(hg − hr+1) rem xk+ℓ

rxk
8: h← h+ (a/g mod xℓ) · xk
9: k← k+ ℓ

10: b← any rth root of fu in F
11: return bhxu/r

Theorem 3.2. If f ∈ F[x] is a perfect rth power, then ComputeRootNewton returns an h ∈ F[x] such
that hr

= f .

M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259 1255

Proof. Let u, fu, g be as defined in Steps 1–3. Thus f = fugxu. Now let ĥ be some rth root of f , which
we assume exists. If we similarly write ĥ = ĥv ĝxv , with ĥv ∈ F and ĝ ∈ F[x] such that ĝ(0) = 1, then
ĥr
= ĥ r

v ĝ rxvr . Therefore fu must be a perfect rth power in F, r|u, and g is a perfect rth power in F[x]
of some polynomial with constant coefficient equal to 1.

Denote by hi the value of h at the beginning of the ith iteration of the while loop. So h1 = 1. We
claim that at each iteration through Step 6, hr

i ≡ g mod xk. From the discussion above, this holds for
i = 1. Assuming the claim holds for all i = 1, 2, . . . , j, we prove it also holds for i = j+ 1.

From Step 8, hj+1 = hj + (a/g mod xl)xk, where a is as defined on the jth iteration of Step 7. We
observe that

hjhr
j ≡ hr+1

j + rhr
j (a/g mod xl)xk mod xk+ℓ.

From our assumption, hr
j ≡ f mod xk, and l ≤ k, so we have

hjhr
j+1 ≡ hr+1

j + raxk ≡ hr+1
j + hjf − hr+1

j ≡ hjf mod xk+ℓ.

Therefore hr
j+1 ≡ f mod xk+ℓ, and so by induction the claim holds at each step. Since the algorithm

terminates when kr > deg g , we can see that the final value of h is an rth root of g . Finally,
bhxu/r

r
= fugxu = f , so the theorem holds. �

Algorithm ComputeRootNewton will only be efficient if the low-order terms of the polynomial
power hr−1 can be efficiently computed on Step 7. Since we know that h and the low-order terms of
hr−1 are sparse, we need only a guarantee that the intermediate powers will be sparse as well. This is
stated in the following modest conjecture.

Conjecture 3.3. For r, s ∈ N, if the characteristic of F is zero or greater than rs, and h ∈ F[x] with
deg h = s, then

τ(hi mod x2s) < τ(hr mod x2s)+ r, i = 1, 2, . . . , r − 1.

This corresponds to intuition and experience, as the system is still overly constrained with only s
degrees of freedom. Computationally, the conjecture has also been confirmed for all of the numerous
examples we have tested, although a more thorough investigation of its truth would be interesting. A
weaker inequalitywould suffice to prove polynomial time, butwe use the stated bounds aswe believe
these give more accurate complexity measures.

The application of Conjecture 3.3 to ComputeRootNewton is given by the following simple
lemma, which essentially tells us that the ‘‘error’’ introduced by examining higher-order terms of
hr
1 is not too dense.

Lemma 3.4.3 Let k, ℓ ∈ N such that ℓ ≤ k and k+ ℓ ≤ s, and suppose h1 ∈ F[x] is the unique polynomial
with degree less than k satisfying hr

1 ≡ f mod xk. Then

τ(hr+1
l mod xk+ℓ) ≤ 2t(t + r).

Proof. Let h2 ∈ F[x] be the unique polynomial of degree less than ℓ satisfying h1+h2xk ≡ h mod xk+ℓ.
Since hr

= f ,

f ≡ hr
1 + rhr−1

1 h2xk mod xk+ℓ.

Multiplying by h1 and rearranging gives

hr+1
1 ≡ h1f − rfh2xk mod xk+ℓ.

Because h1 mod xk and h2 mod xℓ each have at most τ(h) terms, which by Conjecture 3.3 is less than
t − r , the total number of terms in hr−1

1 mod xk+ℓ is less than 2t(t − r). �

We are now ready to prove the efficiency of the algorithm, assuming the conjecture.

3 Subject to the validity of Conjecture 3.3.

1256 M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259

Theorem 3.5.3 If f ∈ F[x] has degree n and t nonzero terms, then ComputeRootNewton uses
O

(t + r)4 log r log n

operations in F and an additional O

(t + r)4 log r log2 n

bit operations, not

counting the cost of root-finding in the base field F on Step 10.

Proof. First consider the cost of computing hr+1 in Step 7. This will be accomplished by repeatedly
squaring and multiplying by h, for a total of at most 2⌊log2(r + 1)⌋ multiplications. As well, each
intermediate productwill have atmost τ(f)+r < (t+r)2 terms, byConjecture 3.3. Thenumber of field
operations required, at each iteration, is O

(t + r)4 log r

, for a total cost of O

(t + r)4 log r log n

.

Furthermore, since k+ ℓ ≤ 2i at the ith step, for 1 ≤ i < log2 n, the total cost in bit operations is
less than−

1≤i<log2 n

(t + r)4 log2 ri ∈ O

(t + r)4 log r log2 n

.

In fact, this is themost costly step. The initialization in Steps 1–3 uses only O(t) operations in F and
on integers at most n. And the cost of computing the quotient on Step 8 is proportional to the cost of
multiplying the quotient and dividend, which is at most O(t(t + r)). �

When F = Q, we must account for coefficient growth. We use the normal notion of the size
of a rational number: for α ∈ Q, write α = a/b for a, b relatively prime integers. Then define
H(α) = max{|a|, |b|}. And for f ∈ Q[x]with coefficients c1, . . . , ct ∈ Q, write H(f) = maxH(ci).

Thus, the size of the lacunary representation of f ∈ Q[x] is proportional to τ(f), deg f , and logH(f).
Now we prove the bit complexity of our algorithm is polynomial in these values, when F = Q.

Theorem 3.6.3 Suppose f ∈ Q[x] has degree n and t nonzero terms, and is a perfect rth power.
ComputeRootNewton computes an rth root of f using O˜

t(t + r)4 · log n · logH(f)

bit operations.

Proof. Let h ∈ Q[x] such that hr
= f , and let c ∈ Z>0 be minimal such that ch ∈ Z[x]. Gauß’s Lemma

tells us that cr must be the least positive integer such that cr f ∈ Z[x] aswell. Then, using Theorem 2.9,
we have

H(h) ≤ ‖ch‖∞ ≤ ‖ch‖2 ≤ (t‖cr f ‖∞)1/r ≤ t1/rH(f)(t+1)/r .

(The last inequality comes from the fact that the lcm of the denominators of f is at most H(f)t .)
Hence logH(h) ∈ O ((t logH(f))/r). Clearly the most costly step in the algorithm will still be the

computation of hr+1
i at each iteration through Step 7. For simplicity in our analysis, we can just treat

hi (the value of h at the ith iteration of the while loop in our algorithm) as equal to h (the actual root
of f), since we know τ(hi) ≤ τ(h) and H(hi) ≤ H(h).

Lemma 3.4 and Conjecture 3.3 tell us that τ(hi) ≤ 2(t+r)2 for i = 1, 2, . . . , r . To compute hr+1, we
will actually compute (ch)r+1 ∈ Z[x] by repeatedly squaring and multiplying by ch, and then divide
out cr+1. This requires at most ⌊log2 r + 1⌋ squares and products.

Note that ‖(ch)2i‖∞ ≤ (t + r)2‖(ch)i‖2
∞

and ‖(ch)i+1‖∞ ≤ (t + r)2‖(ch)i‖∞‖ch‖∞. Therefore

‖(ch)i‖∞ ≤ (t + r)2r‖ch‖r
∞

, i = 1, 2, . . . , r,

and thus log ‖(ch)i‖∞ ∈ O (r(t + r)+ t logH(f)), for each intermediate power (ch)i.
Thus each of theO

(t + r)4 log r

field operations at each iteration costsO(M(t logH(f)+log r(t+

r))) bit operations, which then gives the stated result. �

The method used for Step 10 depends on the field F. For F = Q, we just need to find two
integer perfect roots, which can be done in ‘‘nearly linear’’ time by the algorithm of Bernstein (1998).
Otherwise, we can use any of the well-known fast root-finding methods over F[x] to compute a root
of xr − fu.

3.3. Computing multivariate roots

For the problem of computing perfect polynomial roots of multivariate polynomials, we again
reduce the problem to a univariate one, this time employing the well-known Kronecker substitution
method.

M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259 1257

Suppose f , h ∈ F[x1, . . . , xℓ] and r ∈ N such that f = hr . It is easily seen that eachpartial degree of f
is exactly r times the correspondingpartial degree inh, that is, degxi f = r degxi h, for all r ∈ {1, . . . , ℓ}.

Now suppose f and r are given andwewish to compute h. First use the relations above to compute
di = degxi h+ 1 for each i ∈ {1, . . . , ℓ}. (If any degxi fi is not a multiple of r , then f must not be an rth
power.)

Now use the Kronecker substitution and define

f̂ = f

y, yd1 , yd1d2 , . . . , yd1···dℓ−1

and ĥ = h

y, yd1 , yd1d2 , . . . , yd1···dℓ−1

,

where y is a new variable. Clearly f̂ = ĥr , and since each di > degxi h, h is easily recovered from
the lacunary representation of ĥ in the standard way: for each non-zero term cye in ĥ, compute the
digits of e in the mixed radix representation corresponding to the sequence d1, d2, . . . , dℓ−1. That is,
decompose e (uniquely) as e = e1 + e2d1 + e3d1d2 + · · · + eℓd1 · · · dℓ−1 with each ei ∈ N such that
ei < di. Then the corresponding term in h is c xe11 · · · x

eℓ
ℓ .

Therefore we simply use either algorithm above to compute ĥ as the rth root of f̂ over F[y], then
invert the Kronecker map to obtain h ∈ F[x1, . . . , xℓ]. The conversion steps are clearly polynomial-
time, and notice that log deg f̂ is at most ℓ times larger than log deg f . Therefore the lacunary sizes
of f̂ and ĥ are polynomial in the lacunary sizes of f and h, and the algorithms in this section yield
polynomial-time algorithms to compute perfect rth roots of multivariate lacunary polynomials.

4. Implementation

To investigate the practicality of our algorithms, we implemented IsPerfectPowerZ using
Victor Shoup’s NTL. This is a high-performance C++ for fast dense univariate polynomial computations
over Z[x] or Fq[x].

NTL does not natively support a lacunary polynomial representation, so we wrote our own using
vectors of coefficients and of exponents. In fact, since IsPerfectPowerZ is a black-box algorithm,
the only sparse polynomial arithmetic we needed to implement was for evaluation at a given point.

The only significant diversion between our implementation and the algorithm specified in
Section 2 is our choice of the ground field. Rather than working in a degree-(r − 1) extension of Fp,
we simply find a random p in the same range such that (r − 1) | p. It is more difficult to prove that
we can find such a p quickly (using e.g. the best known bounds on Linnik’s Constant), but in practice
this approach is very fast because it avoids computing in field extensions.

As a point of comparison, we also implemented the Newton iteration approach to computing
perfect polynomial roots, which appears to be the fastest known method for dense polynomials. This
is not too dissimilar from the techniques from the previous section on computing a lacunary rth root,
but without paying special attention to sparsity. We work modulo a randomly chosen prime p to
compute an rth perfect root h, and then use random evaluations of h and the original input polynomial
f to certify correctness. This yields aMonte Carlo algorithmwith the same success probability as ours,
and so provides a suitable and fair comparison.

We ran two sets of tests comparing these algorithms. The first set, depicted in Fig. 1, does not take
advantage of sparsity at all; that is, the polynomials are dense and have close to the maximal number
of terms. It appears that the worst-case running time of our algorithm is actually a bit better than
the Newton iteration method on dense input, but on the average they perform roughly the same. The
lower triangular shape comes from the fact that both algorithms can (and often do) terminate early.
The visual gap in the timings for the sparse algorithm comes from the fact that exactly half of the
input polynomials were perfect powers. It appears our algorithm terminates more quickly when the
polynomial is not a perfect power, but usually takes close to the full amount of time otherwise.

The second set of tests, depicted in Fig. 2, held the number of terms of the perfect power, τ(f),
roughly fixed, letting the degree n grow linearly. Here we can see that, for sufficiently sparse f , our
algorithm performs significantly and consistently better than the Newton iteration. In fact, we can
see that, with some notable but rare exceptions, it appears that the running time of our algorithm
is largely independent of the degree when the number of terms remains fixed. The outliers we see

1258 M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259

250

200

150

100

Time

50

0
0 2,000 4,000 6,000 8,000 10,000

Degree

250

200

150

100

Time

50

0
0 2,000 4,000 6,000 8,000 10,000

Degree

Fig. 1. Comparison of Newton iteration (left) vs. our IsPerfectPowerZ (right). Inputs are dense.

Time

600

500

400

300

200

100

0
0 10,000 20,000 30,000

Degree

Time

600

500

400

300

200

100

0
0 10,000 20,000 30,000

Degree

Fig. 2. Comparison of Newton iteration (left) vs. our IsPerfectPowerZ (right). Inputs are sparse, with sparsity fixed around
500.

probably come from inputs that were unluckily dense (it is not trivial to produce examples of hr with
a given fixed number of nonzero terms, so the sparsity did vary to some extent).

Perhaps most surprisingly, although the choices of parameters for these two algorithms only
guaranteed a probability of success of at least 1/2, in fact over literally millions of tests performed
with both algorithms and a wide range of input polynomials, not a single failure was recorded. This
is of course due to the loose bounds employed in our analysis, indicating a lack of understanding at
some level, but it also hints at the possibility of a deterministic algorithm, or at least one which is
probabilistic of the Las Vegas type.

Both implementations are available as C++ code downloadable from the second author’s website.

Acknowledgements

The authors would like to thank Éric Schost and Pascal Koiran for pointing out that the logarithmic
derivative could be used for a certificate of correctness in Algorithm ComputeRootAlgebraic. The
authors would also like to thank Erich Kaltofen and Igor Shparlinski for their helpful comments.

References

Abbott, J., 2002. Sparse squares of polynomials. Math. Comp. 71 (237), 407–413 (electronic).
Bach, E., Sorenson, J., 1993. Sieve algorithms for perfect power testing. Algorithmica 9 (4), 313–328.
Ben-Or, M., Tiwari, P., 1988. A deterministic algorithm for sparse multivariate polynomial interpolation. In: Proc. STOC 1988.

ACM Press, New York, NY, pp. 301–309.
Bernstein, D.J., 1998. Detecting perfect powers in essentially linear time. Math. Comp. 67 (223), 1253–1283.
Cantor, D., Kaltofen, E., 1991. Fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28, 693–701.
Coppersmith, D., Davenport, J., 1991. Polynomials whose powers are sparse. Acta Arith. 58 (1), 79–87.
Cucker, F., Koiran, P., Smale, S., 1999. A polynomial time algorithm for Diophantine equations in one variable. J. Symbolic

Comput. 27 (1), 21–29.

M. Giesbrecht, D.S. Roche / Journal of Symbolic Computation 46 (2011) 1242–1259 1259

Erdös, P., 1949. On the number of terms of the square of a polynomial. Nieuw Arch. Wiskunde (2) 23, 63–65.
Garg, S., Schost, E., Interpolation of polynomials given by straight-line programs. Preprint, 2008.
von zur Gathen, J., Gerhard, J., 2003. Modern Computer Algebra. Cambridge University Press, Cambridge, New York, Melbourne.
von zur Gathen, J., Karpinski, M., Shparlinski, I., Counting curves and their projections. In: ACM Symposium on Theory of

Computing, 1993, pp. 805–812.
Giesbrecht, M., Roche, D.S., 2008. On lacunary polynomial perfect powers. In: ISSAC’08: Proc. International Symposium on

Symbolic and Algebraic Computation. ACM, pp. 103–110.
Grigoriev, D., Karpinski, M., The matching problem for bipartite graphs with polynomially bounded permanents is in NC. In:

Foundations of Computer Science, FOCS, 1987, pp. 166–172.
Kaltofen, E., 1987. Single-factor hensel lifting and its application to the straight-line complexity of certain polynomials. In: STOC

’87: Proceedings of theNineteenth Annual ACMConference on Theory of Computing. ACM,NewYork, NY, USA, pp. 443–452.
Kaltofen, E., Koiran, P., 2006. Finding small degree factors of multivariate supersparse (lacunary) polynomials over algebraic

number fields. In: ISSAC ’06: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation.
ACM Press, New York, NY, USA, pp. 162–168.

Kaltofen, E., Lee, W-s., 2003. Early termination in sparse interpolation algorithms. J. Symbolic Comput. 36 (3–4), 365–400.
International Symposium on Symbolic and Algebraic Computation (ISSAC’2002) (Lille).

Karpinski, M., Shparlinski, I., 1999. On the computational hardness of testing square-freeness of sparse polynomials. Electronic
Colloquium on Computational Complexity (ECCC) 6 (027).

Landau, S., 1985. Factoring polynomials over algebraic number fields. SIAM J. Comput. 14, 184–195.
Lenstra Jr., H.W., 1999. Finding small degree factors of lacunary polynomials. In: Number Theory in Progress, Vol. 1 (Zakopane-

Kościelisko, 1997). de Gruyter, Berlin, pp. 267–276.
Lidl, R., Niederreiter, H., 1983. Finite Fields. In: Encyclopedia of Mathematics and its Applications, vol. 20. Addison-Wesley,

Reading MA.
Mignotte, M., 1974. An inequality about factors of polynomials. Math. Comp. 28, 1153–1157.
Plaisted, D.A., 1977. Sparse complex polynomials and polynomial reducibility. J. Comp. Syst. Sci. 14, 210–221.
Plaisted, D.A., 1984. New NP-hard and NP-complete polynomial and integer divisibility problems. Theoret. Comput. Sci. 31,

125–138.
Quick, A., Some gcd and divisibility problems for sparse polynomials. Technical Report 191/86, University of Toronto, 1986.
Rosser, J.B., Schoenfeld, L., 1962. Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94.
Schinzel, A., 1987. On the number of terms of a power of a polynomial. Acta Arith. 49 (1), 55–70.
Schwartz, J.T., 1980. Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27, 701–717.
Shoup, V., 1994. Fast construction of irreducible polynomials over finite fields. J. Symbolic Comput. 17 (5), 371–391.
Shparlinski, I., 2000. Computing Jacobi symbols modulo sparse integers and polynomials and some applications. J. Algorithms

36 (2), 241–252.
Weil, A., 1948. On some exponential sums. Proc Natl. Acad. Sci. USA 34, 204–207.
Yun, D.Y.Y., 1976. On square-free decomposition algorithms. In: SYMSAC’76: Proceedings of the Third ACM Symposium on

Symbolic and Algebraic Computation. ACM, New York, NY, USA, pp. 26–35.
Zannier, U., 2007. On the number of terms of a composite polynomial. Acta Arith. 127 (2), 157–167.
Zippel, R., Probabilistic algorithms for sparse polynomials. In: Proc. EUROSAM 79, Marseille, 1979, pp. 216–226.

	Detecting lacunary perfect powers and computing their roots
	Introduction
	Related work and methods
	Our contributions

	Testing for perfect powers
	Detecting given rth powers
	Certifying specified powers over Fq[x]
	Certifying specified powers over Z[x]
	An upper bound on r
	Perfect power detection algorithm
	Detecting multivariate perfect powers

	Computing perfect roots
	Computing rth roots in polynomial-time (without conditions)
	Faster root computation subject to conjecture
	Computing multivariate roots

	Implementation
	Acknowledgements
	References

