531 research outputs found

    On the Complexity of Conditional DAG Scheduling in Multiprocessor Systems

    Get PDF
    As parallel processing became ubiquitous in modern computing systems, parallel task models have been proposed to describe the structure of parallel applications. The workflow scheduling problem has been studied extensively over past years, focusing on multiprocessor systems and distributed environments (e.g. grids, clusters). In workflow scheduling, applications are modeled as directed acyclic graphs (DAGs). DAGs have also been introduced in the real-time scheduling community to model the execution of multi-threaded programs on a multi-core architecture. The DAG model assumes, in most cases, a fixed DAG structure capturing only straight-line code. Only recently, more general models have been proposed. In particular, the conditional DAG model allows the presence of control structures such as conditional (if-then-else) constructs. While first algorithmic results have been presented for the conditional DAG model, the complexity of schedulability analysis remains wide open. We perform a thorough analysis on the worst-case makespan (latest completion time) of a conditional DAG task under list scheduling (a.k.a. fixed-priority scheduling). We show several hardness results concerning the complexity of the optimization problem on multiple processors, even if the conditional DAG has a well-nested structure. For general conditional DAG tasks, the problem is intractable even on a single processor. Complementing these negative results, we show that certain practice-relevant DAG structures are very well tractable

    On the Complexity of Conditional DAG Scheduling in Multiprocessor Systems

    Get PDF
    As parallel processing became ubiquitous in modern computing systems, parallel task models have been proposed to describe the structure of parallel applications. The workflow scheduling problem has been studied extensively over past years, focusing on multiprocessor systems and distributed environments (e.g. grids, clusters). In workflow scheduling, applications are modeled as directed acyclic graphs (DAGs). DAGs have also been introduced in the real-time scheduling community to model the execution of multi-threaded programs on a multi-core architecture. The DAG model assumes, in most cases, a fixed DAG structure capturing only straight-line code. Only recently, more general models have been proposed. In particular, the conditional DAG model allows the presence of control structures such as conditional (if-then-else) constructs. While first algorithmic results have been presented for the conditional DAG model, the complexity of schedulability analysis remains wide open. We perform a thorough analysis on the worst-case makespan (latest completion time) of a conditional DAG task under list scheduling (a.k.a. fixed-priority scheduling). We show several hardness results concerning the complexity of the optimization problem on multiple processors, even if the conditional DAG has a well-nested structure. For general conditional DAG tasks, the problem is intractable even on a single processor. Complementing these negative results, we show that certain practice-relevant DAG structures are very well tractable

    k2U: A General Framework from k-Point Effective Schedulability Analysis to Utilization-Based Tests

    Full text link
    To deal with a large variety of workloads in different application domains in real-time embedded systems, a number of expressive task models have been developed. For each individual task model, researchers tend to develop different types of techniques for deriving schedulability tests with different computation complexity and performance. In this paper, we present a general schedulability analysis framework, namely the k2U framework, that can be potentially applied to analyze a large set of real-time task models under any fixed-priority scheduling algorithm, on both uniprocessor and multiprocessor scheduling. The key to k2U is a k-point effective schedulability test, which can be viewed as a "blackbox" interface. For any task model, if a corresponding k-point effective schedulability test can be constructed, then a sufficient utilization-based test can be automatically derived. We show the generality of k2U by applying it to different task models, which results in new and improved tests compared to the state-of-the-art. Analogously, a similar concept by testing only k points with a different formulation has been studied by us in another framework, called k2Q, which provides quadratic bounds or utilization bounds based on a different formulation of schedulability test. With the quadratic and hyperbolic forms, k2Q and k2U frameworks can be used to provide many quantitive features to be measured, like the total utilization bounds, speed-up factors, etc., not only for uniprocessor scheduling but also for multiprocessor scheduling. These frameworks can be viewed as a "blackbox" interface for schedulability tests and response-time analysis

    A C-DAG task model for scheduling complex real-time tasks on heterogeneous platforms: preemption matters

    Full text link
    Recent commercial hardware platforms for embedded real-time systems feature heterogeneous processing units and computing accelerators on the same System-on-Chip. When designing complex real-time application for such architectures, the designer needs to make a number of difficult choices: on which processor should a certain task be implemented? Should a component be implemented in parallel or sequentially? These choices may have a great impact on feasibility, as the difference in the processor internal architectures impact on the tasks' execution time and preemption cost. To help the designer explore the wide space of design choices and tune the scheduling parameters, in this paper we propose a novel real-time application model, called C-DAG, specifically conceived for heterogeneous platforms. A C-DAG allows to specify alternative implementations of the same component of an application for different processing engines to be selected off-line, as well as conditional branches to model if-then-else statements to be selected at run-time. We also propose a schedulability analysis for the C-DAG model and a heuristic allocation algorithm so that all deadlines are respected. Our analysis takes into account the cost of preempting a task, which can be non-negligible on certain processors. We demonstrate the effectiveness of our approach on a large set of synthetic experiments by comparing with state of the art algorithms in the literature

    Feasibility Analysis of Conditional DAG Tasks

    Get PDF
    Feasibility analysis for Conditional DAG tasks (C-DAGs) upon multiprocessor platforms is shown to be complete for the complexity class pspace. It is shown that as a consequence integer linear programming solvers (ILP solvers) are likely to prove inadequate for such analysis. A demarcation is identified between the feasibility-analysis problems on C-DAGs that are efficiently solvable using ILP solvers and those that are not, by characterizing a restricted class of C-DAGs for which feasibility analysis is shown to be efficiently solvable using ILP solvers

    Reservation-Based Federated Scheduling for Parallel Real-Time Tasks

    Full text link
    This paper considers the scheduling of parallel real-time tasks with arbitrary-deadlines. Each job of a parallel task is described as a directed acyclic graph (DAG). In contrast to prior work in this area, where decomposition-based scheduling algorithms are proposed based on the DAG-structure and inter-task interference is analyzed as self-suspending behavior, this paper generalizes the federated scheduling approach. We propose a reservation-based algorithm, called reservation-based federated scheduling, that dominates federated scheduling. We provide general constraints for the design of such systems and prove that reservation-based federated scheduling has a constant speedup factor with respect to any optimal DAG task scheduler. Furthermore, the presented algorithm can be used in conjunction with any scheduler and scheduling analysis suitable for ordinary arbitrary-deadline sporadic task sets, i.e., without parallelism

    A Measurement-Based Model for Parallel Real-Time Tasks

    Get PDF
    Under the federated paradigm of multiprocessor scheduling, a set of processors is reserved for the exclusive use of each real-time task. If tasks are characterized very conservatively (as is typical in safety-critical systems), it is likely that most invocations of the task will have computational demand far below the worst-case characterization, and could have been scheduled correctly upon far fewer processors than were assigned to it assuming the worst-case characterization of its run-time behavior. Provided we could safely determine during run-time when all the processors are going to be needed, for the rest of the time the unneeded processors could be idled in low-energy "sleep" mode, or used for executing non-real time work in the background. In this paper we propose a model for representing parallelizable real-time tasks in a manner that permits us to do so. Our model does not require us to have fine-grained knowledge of the internal structure of the code represented by the task; rather, it characterizes each task by a few parameters that are obtained by repeatedly executing the code under different conditions and measuring the run-times
    • …
    corecore