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Abstract
Under the federated paradigm of multiprocessor scheduling, a set of processors is reserved for the
exclusive use of each real-time task. If tasks are characterized very conservatively (as is typical
in safety-critical systems), it is likely that most invocations of the task will have computational
demand far below the worst-case characterization, and could have been scheduled correctly upon
far fewer processors than were assigned to it assuming the worst-case characterization of its run-
time behavior. Provided we could safely determine during run-time when all the processors are
going to be needed, for the rest of the time the unneeded processors could be idled in low-energy
“sleep” mode, or used for executing non-real time work in the background. In this paper we
propose a model for representing parallelizable real-time tasks in a manner that permits us to
do so. Our model does not require us to have fine-grained knowledge of the internal structure
of the code represented by the task; rather, it characterizes each task by a few parameters that
are obtained by repeatedly executing the code under different conditions and measuring the
run-times.
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1 Introduction

Scheduling theory is concerned with the analysis of real-time systems. As multiprocessor and
multicore implementations of real-time systems become prevalent, it is desirable that the
models used in scheduling theory for representing real-time workloads be capable of exposing
the parallelism that may exist within these workloads. This need has given rise to formal
task models such as the fork-join model [1, 2], the sporadic DAG tasks model [3] (see [4,
Chapter 21] for a text-book description), the multi-DAG model [5], the conditional DAG

1 Supported in part by NSF grants CCF-1337218 and CCF-173387
2 Supported in part by NSF Grants CNS 1409175, CPS 1446631, and CNS 1563845

© Kunal Agrawal and Sanjoy Baruah;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 5; pp. 5:1–5:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kunal@wustl.edu
https://orcid.org/0000-0001-5882-6647
mailto:baruah@wustl.edu
https://orcid.org/0000-0002-4541-3445
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


5:2 A Measurement-Based Model for Parallel Real-Time Tasks

tasks model [6, 7] etc. Each of these models represents the internal structure of the piece of
code being modeled at a relatively fine level of granularity, with the parallelism in the code
typically modeled as a directed acyclic graph (DAG). Each vertex in such a DAG represents
a segment of sequential code, and edges represent precedence constraints between such code
segments: the segment of sequential code represented by the vertex at the tail of an edge
much complete execution before the segment of sequential code represented by the vertex at
the head of the edge may begin to execute.

Such DAG-based models for representing parallel real-time code have proved popular in
the real-time scheduling theory community, and much important and interesting research has
been accomplished that is based upon representing systems using these models. This body of
research has indeed provided us with a deeper insight into the issues that arise in exploiting
parallelism in multiprocessor real-time systems; however due to a variety of reasons (some of
which are enumerated and discussed in some detail in Section 2) there are some classes of
real-time applications for which such DAG-based representations may not be appropriate
for the purposes of schedulability analysis; alternative representations are needed. In this
paper we propose one such possible alternative representation that may be suitable under
certain circumstances. In this model we do not attempt to explicitly represent the internal
parallel structure of the code. Instead, we seek to identify a few important parameters of
parallalizable code that are most useful for scheduling algorithms that seek to schedule such
code upon multiprocessor platforms, and propose that the code be looked upon as a “black
box” that is characterized by just these parameters. Furthermore, we do not require that
the internal structure of the code be examined in order to obtain these parameter values.
Rather, we propose that values for these parameters be estimated via extensive simulation
experiments: repeatedly executing the code in a controlled laboratory environment in order
to be able to compute bounds on the parameter values. (Such an approach is inspired by the
large and growing body of current research [8] on probabilistic worst-case execution time –
pWCET – analysis.) Since measurement-based approaches are typically not able to provide
parameter values that are guaranteed correct with absolute certainty, we incorporate, from
the mixed-criticality scheduling literature [9], Vestal’s idea [10] of characterizing a single
task with two sets of parameters: one set very conservative and hence trusted to a very high
level of assurance and the other, far less conservative but more representative of “typical”
behavior.

Organization. The remainder of this paper is organized as follows. In Section 2 we motivate
the new model by identifying relevant characteristics of parallelizable real-time code that
current models are not well-suited to represent, and formally define the workload and system
model that we are proposing. In Section 3 we briefly discuss some prior research that
provides the foundations upon which our proposed model is built. In Section 4 we derive, and
prove the correctness and other relevant properties of, an algorithm for scheduling systems
represented using the proposed model. Our overall objective is to be able to obtain more
resource-efficient implementations of systems, while ensuring correctness; in Section 5 we
explore some possible means of further enhancing the efficiency of the algorithm presented in
Section 4. We conclude in Section 6 with a discussion on the relevance, significance, and
limitations of our proposed model, and an enumeration of possible directions for continued
research.
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2 System model: Motivation and Definition

In this section we flesh out the details of the model we are proposing for representing
parallelizable real-time code that is not conveniently represented using previously-proposed
DAG-based task models. We will first motivate the model informally, and seek to explain
aspects of the model via illustrative examples. A formal definition of the model is then
provided in Section 2.1; our proposed algorithm for scheduling tasks represented using this
model is described in Section 2.2.

Why a new model? As stated in Section 1 above, several excellent DAG-based models for
representing parallel real-time code have been developed in the real-time scheduling theory
community; however there are some classes of real-time applications for which such models
have proved unsuitable. This may be for one or more of the following reasons:
1. The internal structure of the parallel code may be very complex, with multiple conditional

dependencies (as may be represented in e.g., the conditional DAG tasks model [6, 7]) and
(bounded) loops. Explicit enumeration of all possible paths through such code in order
to identify worst-case behavior may be computationally infeasible.3

2. If some parts of the code are procured from outside the application-developers’ organiza-
tion, the provider of this code may seek to protect their intellectual property (IP) by not
revealing the internal structure of the code and instead only providing executables – this
may be the case if, e.g., commercial vision algorithms are used in a real-time application.
(Although reverse-engineering of the executable code in order to determine its internal
structure may be possible in principle, such reverse engineering tends to be tedious and
error-prone.)

3. Algorithms for the analysis of systems represented using DAG-based models tend to
have run-time pseudo-polynomial or exponential in the size of the DAG. Such run-times
have traditionally been considered acceptably small enough to allow the algorithms to be
practical in practice; however, this state of affairs may not continue in the future. For
many cyber-physical real-time systems, constraints such as deadlines are typically dictated
by physical factors. As the processors upon which we implement such cyber-physical real-
time systems become increasingly more powerful, it becomes possible to incorporate far
more complex processing that would be represented as larger DAGs than was previously
the case. As this trend towards more complex processing and the consequent larger DAGs
continues, run-times pseudo-polynomial in the size of these larger DAGs may become too
large be used in practice during system design and analysis.

4. Further exacerbating the situation, explicitly representing the internal structure of some
pieces of parallel code in DAG form results in DAGs that may be of size exponential
in the size of the code. Consider, for example, the following code snippet written in
OpenMP (http://www.openmp.org/), an application programming interface (API) that
supports multi-platform shared memory multiprocessing programming:

#pragma omp parallel
#pragma omp for
for (i=0; i<10; i++) {

//do_something
}

3 We point out that techniques for approximating the worst-case behavior of complex conditional par-
allelizable code have been proposed with regards to specific scheduling algorithms such as global
fixed-priority [6], global EDF [7] or federated [11].
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This code snippet would translate to a DAG with (1 + 10 + 1 =) 12 nodes. If we were to
replace the “10” in the upper bound of the for loop with a “100”, however, the resulting
DAG would have 102 nodes; replacing it with “1000” would yield 1002 nodes, etc. –
increasing the size of the program by one ASCII character results in an almost ten-fold
increase in the size of the DAG.

5. Particularly for conditional code, it may be the case that the true worst-case behavior
of the code is very infrequently expressed during run-time.4. Traditional models based
on conditional DAGs may not be suitable for representing such code (although mixed-
criticality [10, 12, 13, 14] extensions of such conditional DAG models are a possibility –
to our knowledge, such models have not yet been proposed, let alone studied).

For pieces of parallel real-time code possessing one or more of the characteristics discussed
above, DAG-based representations may not be appropriate for the purposes of schedulability
analysis; alternative representations are needed. Let us now discuss what such a representation
should provide.

Identifying relevant characteristics of parallelizable real-time code. In modeling paral-
lelizable real-time code that is to be executed upon a multiprocessor platform, a prime
objective is to enable the exploitation of the parallelism that may be present in the code by
scheduling algorithms, in order to enhance the likelihood that we will be able to meet timing
constraints. We are interested here in developing predictable real-time systems – systems that
can have their timing (and other) correctness verified prior to run-time. For the purposes of
enabling a priori timing verification, decades of research in the parallel computing community
suggests the following two timing parameters of a piece of parallelizable code are particularly
significant:
1. The work parameter denotes the cumulative worst-case execution time of all the parallel

branches that are executed across all processors. Note that for non-conditional paralleliz-
able code this is equal to the worst case execution time of the code on a single processor
(ignoring communication overhead from synchronizing processors).

2. The span parameter denotes the maximum cumulative worst-case execution time of any
sequence of precedence-constrained pieces of code. It represents a lower bound on the
duration of time the code would take to execute, regardless of the number of processors
available.
The span of a computation is also called the critical path length of the computation, and
a sequence of precedence-constrained pieces of code with cumulative worst-case execution
time equal to the span, a critical path through the computation.

The relevance of these two parameters arises from well-known results in scheduling theory
concerning the multiprocessor scheduling of precedence-constrained jobs (i.e., DAGs) to
minimize makespan – this is the widely-studied P| prec| Smax problem in the classic 3-
field α | β | γ notation that is commonly used in scheduling theory [15]. This problem
has long been known to be NP-hard in the strong sense [16]; i.e., computationally highly
intractable. However, Graham’s list scheduling algorithm [17], which constructs a work-
conserving schedule by executing at each instant in time an available job, if any are present,
upon any available processor, performs fairly well in practice. It was shown [17] that list

4 Consider, for example, a real-time application that periodically monitors a sensor for anomalous input.
Most of the time the sought-for anomolous input is not detected, and not much computation needs to
be performed. But on the rare occasions when anomalous input is detected, considerable additional
processing of such input is necessary.
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scheduling makes the following guarantee: if Smax denotes the minimum makespan with which
a particular DAG can be scheduled upon m processors, then the schedule generated by list
scheduling this DAG upon m processors will have a makespan no greater than (2− 1

m )×Smax.
This result, in conjunction with a hardness result in [18] showing that determining a schedule
for this DAG of makespan ≤ 4

3Smax remains NP-hard in the strong sense5, suggests that list
scheduling is a reasonable algorithm to use in practice, and in fact most run-time scheduling
algorithms that are used for scheduling DAGs upon multiprocessors use some variant or the
other of list scheduling. We will do so in this paper as well.

An upper bound on the makespan of a schedule generated by list scheduling is easily
stated. Letting work and span denote the work and span parameters of the DAG being
scheduled, it has been proved in [17] that the makespan of the schedule for a given DAG is
guaranteed to be no larger than

work− span
m

+ span (1)

Thus a good upper bound on the makespan of the list-scheduling generated schedule for
a DAG may be stated in terms of only its work and span parameters. Equivalently if the
DAG represents a real-time piece of code characterized by a relative deadline parameter
D, (work−span

m + span) ≤ D is a sufficient test for determining whether the code will
complete by its deadline upon an m-processor platform. We therefore identify the work and
span parameters of a piece of parallel real-time code as being particularly relevant from the
perspective of schedulability analysis.

A measurement-based approach to parameter estimation. The work and span parameters
of tasks that are represented using DAG-based models are quite straightforward to compute
in time linear in the representation of the DAGs (algorithms for doing so are described
in [3, 7]). As we have discussed above, however, our interest is in characterizing parallel code
that is typically not conveniently represented using DAG-based models. We propose that
for the purposes of representing pieces of such code for schedulability analysis, we ignore
their internal structure and instead seek to characterize them solely via their work and span
parameters. And since we cannot in general determine the precise values of the work and
span parameters of a piece of code without knowing its internal structure, we advocate here
that measurement-based approaches be used to estimate these parameters. Measurement-
based approaches have been developed for estimating probabilistic worst-case execution
time (pWCET) [20, 21, 22] distributions of individual pieces of code, and implemented in
pWCET tools such as RapiTime (https://www.rapitasystems.com/products/rapitime)
from Rapita Systems. We now briefly discuss how measurement-based approaches may be
adapted to estimate the work and span parameters of parallel code. Ignoring overhead
associated with implementing global scheduling, observe that the work parameter of a piece
of code is equal to the time needed to complete its execution upon a single processor, while
its span parameter is equal to the time needed to complete its execution upon an unbounded
number of processors. Hence one can estimate the probability distribution of the work
parameter of a piece of code by using pWCET techniques to estimate its WCET distribution
upon a single processor. One can similarly estimate the probability distribution of the span
parameter by

5 In fact, assuming a reasonable complexity-theoretic conjecture that is somewhat stronger than P 6=
NP, a result of Svensson [19] implies that a polynomial-time algorithm for determining a schedule of
makespan ≤ 2Smax for all m is ruled out.
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1. first adapting the measurement-based techniques underpinning pWCET-estimation to
determine the makespan probability distribution upon a given number of processors
(rather than the completion-time upon a single processor); and then

2. estimating the makespan distribution of the parallel code upon platforms in which the
number of processors is repeatedly increased, until further increases do not result in
significant changes to the estimated distribution.

The proposed model: multiple work and span estimates. As discussed above, it is possible,
by suitable adaptation and application of pWCET techniques, to estimate probability
distributions for the work and span parameters of pieces of parallel real-time code. It is
understood in the pWCET community that pWCET-based techniques cannot in general
determine bounds that are guaranteed to be correct with absolute certainty; rather, they
provide bounds that are guaranteed correct to specified probabilistic degrees of confidence/
levels of assurance (Davis et al. [8] provide a thoughtful and considered discussion as to how
the concept of probabilities should be interpreted when used in such a manner). In the model
we propose for representing parallel real-time code, we suggest that each such piece of code
be characterized by two pairs of (work, span) parameter values, each pair corresponding to
a different probability threshold in the work and span distributions and therefore valid at
different levels of assurance. Specifically, one pair of values should be very conservative and
therefore trusted to a very high level of assurance and the other, while still relatively safe,
should be more representative of “typical” behavior, not attempting to cover scenarios that
are highly unlikely to occur. We illustrate via an example.

I Example 1. Suppose that we were able to determine for a piece of code that
Its work parameter is > 120 with some small probability p, but > 900 with a far smaller
probability p′ � p.
Its span parameter is > 40 with probability p; however the probability that it is > 600 is
p′.

We could characterize this piece of code with two ordered pairs of (work,span) values –
a (1 − p) probability of being ≤ (120, 40), and a far greater (1 − p′) probability of being
≤ (900, 600).

We require that correctness criteria hold under the more conservative estimate. Suppose
for instance that it were specified that this code should execute within a relative deadline of
D; we require that the makespan by ≤ D provided work ≤ 900 and span ≤ 600. J

The proposed run-time scheduling approach. Since correctness is defined with respect to
the more conservative estimates for work and span, in order to satisfy correctness requirements
we must provision computing resources to a task assuming these more conservative estimates.
However, it is our expectation that the task’s run-time behavior is very likely to be bounded
by the less conservative parameter estimates, and hence statically provisioning adequate
resources for it under the more conservative assumptions is likely to result in significant
wastage of computing resources during run-time. One manner of ameliorating such wastage is
by keeping some of the provisioned resource in “reserve”, perhaps by placing some processors
in sleep mode or having them execute background (non real-time) work, with the option
of switching them to work upon executing the task if we determine, during run-time, that
the task’s run-time behavior is in fact not likely to be bounded by the less conservative
parameter estimates. The following example illustrates.
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I Example 2. Suppose the code in Example 1 to be scheduled with a relative deadline
equal to 690, upon a 10-processor platform. According to Expression 1, the makespan of the
schedule upon 10 processors is no more than

900− 600
10 + 600 = (30 + 600) = 630

assuming the more conservative work and span estimates hold. Hence, correctness is
guaranteed.

In fact, ten processors are not necessary for correctness: if we were executing this piece of
code upon just four processors, the corresponding makespan bound according to Expression 1
would be ( 900−600

4 ) + 600 = 675. Our run-time algorithm could therefore realize some energy
savings by simply switching off six of the ten provided processors, and executing the task on
the remaining four.

Could we switch off seven processors? The reader may verify that with three processors
Expression 1would yield a makespan bound of ( 900−600

3 ) + 600 = 700. Since 700 exceeds
the specified relative deadline of 690, we conclude that we may miss the deadline if we were
to switch off seven processors and the system behaved worse than anticipated by its less
conservative parameters (although not its more conservative parameters). We therefore
conclude that we need at least 4 processors to not be in sleep mode, in order to ensure
correctness.

The run-time algorithm we will derive in this paper is designed for systems in which the
less conservative parameters are very likely to hold “most of the time”; i.e., the value of p is
itself very small. Provided such is the case for this example

our run-time scheduling algorithm starts out scheduling the system on just three processors,
leaving the remaining seven processors in sleep mode.
If execution has not completed by some time-instant (whose value is precomputed), it
wakes up the sleeping processors and makes all ten processors available for this task to
execute upon.

We will prove later that with this algorithm, the task completes by the specified deadline of
690 provided the more conservative task parameters hold; correctness is thus established.
Additionally, there is a ≤ p probability that it will not complete by the pre-computed
time-instant and hence need to awaken the remaining seven processors.

To evaluate the efficiency, suppose, for this example, that p = 0.05, indicating that the
less conservative parameters hold with 95% probability. There is therefore a ≤ 5% probability
that the task will not complete by the specified time-instant,6 and the expected number of
processors that would be needed is no larger than(

0.95× 3 + 0.05× 10
)

=
(
2.85 + 0.5

)
= 3.35

in contrast to the four that would be needed if our run-time scheduling algorithm were to
not be used. J

Examples 1 and 2 above have illustrated the task model, and the associated run-time
strategy for scheduling tasks that are so modeled, that we are proposing in this paper. We
now formally define the task model in Section 2.1, and the run-time scheduler in Section 2.2,
below.

6 In fact, since the work and span parameters will not in general be perfectly correlated, the expected
probability of this happening is likely to be far less than 5%. (This issue is revisited in Section 5.)
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2.1 System Model

We now provide a formal definition of our model, by describing in detail the workload model
we assume. The workload we seek to model comprises a single piece of parallelizable real-time
code that is characterized by the following list of parameters:〈

workO, spanO,workN , spanN , D
〉
,

with the following interpretation:
1. (workO, spanO). These represent very conservative estimates of the true “worst-case”

values of the work and span parameters; as discussed above, we expect that these estimates
will be obtained using the kinds of measurement-based techniques that have been developed
for estimating probabilistic worst-case execution time (pWCET) distributions.

2. D denotes the relative deadline parameter: for correct execution it is required that the
job be scheduled with makespan no greater than D.
We highlight here that timing correctness is specified assuming that the (workO, spanO)
parameter estimates are correct: the code is required to complete execution within the
specified relative deadline D provided its work and span parameters are no larger than
workO and spanO respectively.

3. (workN , spanN ). These are less conservative estimates on the values of the work and
span parameters: it is expected that the actual values of the work and span parameters
are very likely to be no larger than workN and spanN respectively. (The subscript “N”
in workN and spanN stand for “nominal” [23].)
These parameter estimates play no role in defining correctness; rather (as we have seen in
Examples 1 and 2), their values may be used for the purposes of devising more resource-
efficient scheduling strategies. It is hence not as critical that their values be assigned
correctly as it is for the workO and spanO parameters: while incorrectly estimated values
for workO and spanO may compromise timing correctness in the sense that we may end
up missing deadlines, incorrectly estimated values for workN and spanN simply result in
less efficient implementations.
We assume that workN ≤ workO and spanN ≤ spanO. (Although our results are readily
extended to situations where these assumptions do not hold, we do not see a rationale
for relaxing these assumptions, since by very definition the (workN , spanN ) parameters
represent less conservative estimates than the (workO, spanO) parameters.)

In this paper, we consider the scheduling of a single such task upon a dedicated bank of
identical processors. We point out that our results are directly applicable to the scheduling
of recurrent – periodic or sporadic – real-time DAGs under the federated paradigm [24] of
multiprocessor scheduling, provided each periodic/ sporadic task satisfies the additional
constraint that its relative deadline parameter is no larger than its period parameter (i.e.,
they are constrained-deadline tasks). We believe our approach is particularly appropriate for
scheduling systems of recurrent tasks: for such tasks, we anticipate that the (workN , spanN )
parameters will bound the behavior of most invocations (“dag-jobs” [3]) of the task, with
an occasional rare dag-job exceeding these bounds. Hence many of the allocated processors
will remain in sleep mode most of the time, with the occasional dag-job requiring that the
sleeping processors be awakened until that dag-job completes execution, after which they
can be returned to sleep mode.
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2.2 The Scheduling Algorithm
Given a task as specified above:〈

workO, spanO,workN , spanN , D
〉
,

that is to be executed upon a platform comprising m identical processors, we first perform
some pre-run-time schedulability analysis that determines whether we are able to schedule
the task upon the m processors in a manner that ensures correctness. Recall that correctness
is specified as requiring that the task meet its deadline provided its work parameter is
≤ workO and its span parameter is ≤ spanO: by Expression 1, this is guaranteed provided(workO − spanO

m
+ spanO

)
≤ D; (2)

If Condition 2 does not hold, our scheduling algorithm declares failure: it is unable to schedule
this instance in a manner that guarantees timing correctness. Otherwise, it computes a pair
of values mN and SN – the manner in which these values are computed will be derived in
Section 4.2. These computed parameters have the following intended interpretation: provided
the less conservative work and span parameter estimates are correct (i.e., work is ≤ workN

and span is ≤ spanN for the task), list scheduling can schedule the task upon mN processors
to have a makespan no greater then SN .

Run-time scheduling. Suppose that the piece of parallelizable real-time code represented
by this task is activated at some time-instant to during run-time.
1. The scheduler sets a timer to go off at time-instant (to + SN ), and begins executing

the task upon mN processors using the list-scheduling algorithm [17]. The remaining
(m−mN ) processors assigned to this task are placed/ remain in sleep mode.

2. If the task has not completed execution by time-instant (to + SN ), then the scheduler
awakens the (m − mN ) sleeping processors, and uses list-scheduling to execute the
remainder of the task upon the entire bank of m processors.

3. As mentioned in Section 2.1 above, in the case of recurrent tasks these awakened processors
are returned to sleep mode upon completion of execution of the current dag-job of the
task.

In Section 4 we will derive the manner in which the values of mN and SN are to be
computed in order to guarantee correctness: the algorithm completes execution of the task
within D time units of its arrival, provided its work parameter is ≤ workO and its span
parameter is ≤ spanO.

We close this section with an example illustrating the operation of our run-time scheduler.

I Example 3. Consider once again the instance discussed in Examples 1 and 2. In the
notation of Section 2, this task is represented by the following parameters:〈

workO, spanO,workN , spanN , D
〉

=
〈

900, 600, 120, 40, 690
〉
.

It is to be scheduled upon m = 10 processors. In Example 4 we will show that the algorithm
of Section 4 assigns the parameter mN the value 3, and the parameter SN , a value 66 2

3 .
Hence our run-time scheduler starts out scheduling this task on 3 processors. If the task

ECRTS 2018
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behaves as specified by its workN , spanN parameters, then by Expression 1 the makespan is
no more than

120− 40
3 + 40 = 262

3 + 40 = 662
3

and hence the additional seven processors are not needed. If it does not complete by time-
instant 66 2

3 , all ten processors become available for this task to execute upon, and results
in Section 4 allow us to conclude that the task does execute correctly, completing by the
specified deadline at time-instant 690. J

3 Related Work

The approach to the modeling and run-time scheduling of parallelizable tasks that we are
proposing here draws inspiration from research in the areas of parallel computing, mixed-
criticality scheduling, and probabilistic WCET. As stated in Section 2 above, the problem of
scheduling DAGs to minimize makespan (the P| prec| Smax problem in 3-field notation [15]) has
been very widely studied in “traditional” scheduling theory. Given the inherent intractability
of this problem [16] and the existence of a good approximation (as represented by List
Scheduling [17] with its associated makespan bound – Inequality 1), the parallel computing
community soon began to focus upon the work and span parameters as reasonable proxies for
parallelizable computational workloads; this is one of the fundamental ideas that underpins
our proposed approach.

The concept of specifying multiple values, which are considered trustworthy to different
levels of assurance, to a task’s parameters was proposed by Vestal [10] and forms the basis of
mixed-criticality scheduling theory. There is a large body of research exploring the Vestal
model – see [14] for a survey. In studying the scheduling of mixed-criticality parallel tasks,
Li et al. [23] first proposed a model in which each task is characterized by different work and
span parameters at low and high criticality levels – it is this model that we are studying in
depth here. (The overall context of the research in [23] is quite different from ours: while we
are, in the terminology of [23], considering the scheduling of a single parallelizable real-time
task with the objective of minimizing the number of processors used in the nominal case while
concurrently guaranteeing to meet deadlines in the overloaded case, [23] was concerned with
devising mixed-criticality scheduling algorithms with good capacity augmentation bounds.)

Our approach also draws upon ideas from the considerable body of prior research
(e.g., [20, 21, 22]) on measurement-based techniques for estimating probabilistic worst-
case execution time distributions (pWCET). The correctness of our scheduling framework
very strongly depends upon the validity and accuracy of pWCET-estimation techniques,
since we are in effect guaranteeing correct timing behavior (meeting deadlines) under the
assumption that the more conservative estimations – workO and spanO – are correct upper
bounds. In contrast, incorrect estimations of workN and spanN do not compromise correct-
ness, although they could have an adverse impact on efficiency. Rather than being considered
as estimations of worst-case parameter values, these parameters are perhaps closer in spirit
to what Chisholm et al [25] have called provisioned parameter values and Li et al. [23],
nominal parameter values – values that represent typical or common-case behavior and may
be obtained by, e.g., somewhat inflating average-case parameter values.
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Figure 1 The parallel task begins execution at time-instant 0 with a deadline at time-instant D.
It executes upon mN processors over the interval [0,SN ), and upon m processors over the interval
[SN , D). (The x-axis thus denotes time, and the y-axis, the processors.)

4 Scheduling Algorithm Derivation and Analysis

Given a task characterized, as described in Section 2.1, by the parameters〈
workO, spanO,workN , spanN , D

〉
and m processors upon which to execute it, we discuss in this section how we should compute
values of mN and SN in order to ensure that the run-time scheduling algorithm described in
Section 2.2 above completes execution of the task within D time units of its arrival. We will
start out in Section 4.1 assuming that values for mN and SN are already known, and derive
sufficient conditions for ensuring timing correctness given these values of mN and SN . We
will then describe, in Sections 4.2, how values may be assigned to mN and SN in a manner
that ensures that these sufficient conditions are satisfied.

4.1 Sufficient Schedulability Conditions
Suppose that we are given values of mN and SN (with 0 < mN ≤ m and 0 ≤ SN ≤ D), and
the run-time algorithm schedules the task on mN processors using list scheduling. If the
task completes execution within SN time units, correctness is preserved since SN ≤ D. It
remains to determine sufficient conditions for correctness when the task does not complete
by time-instant SN ; this we do in the remainder of this section.

Figure 1 depicts the processors that are available for this task if it does not complete
execution within SN time units, thereby resulting in the run-time scheduler awakening
the (m −mN ) processors that had been in sleep mode over [0,SN ). We will now derive
conditions for ensuring that the task completes execution by its deadline at time-instant D
when executing upon these available processors, given that its work parameter may be as
large as workO and its span parameter, spanO.

Let work′ and span′ denote the work and span parameters of the amount of computation
of the parallel task that remains at time-instant SN (these are > 0, since the task is assumed
to not have completed execution by time-instant SN ). This remaining computation executes
upon m processors; By Expression 1 the overall makespan is therefore bounded from above
by

SN +
(work′ − span′

m
+ span′

)
(3)
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Since the remaining span at time-instant SN is span′, an amount (spanO − span′) of the
critical path of the task has executed during [0,SN ]. At each instant when the critical path
is not executing, it must be the case that all mN processors are busy executing tasks not on
the critical path. Hence the total amount of execution occurring over [0,SN ) is at least(

SN − (spanO − span′)
)
×mN + (spanO − span′),

from which it follows that

work′ ≤ workO − SN ×mN + (spanO − span′)×mN − (spanO − span′)
= workO − SN ×mN + (spanO − span′)× (mN − 1)
= workO − SN ×mN + spanO × (mN − 1)− span′ × (mN − 1) (4)

Substituting Inequality 4 into the Expression 3, we obtain the following upper bound on the
overall makespan:

SN +
(workO − SN ×mN + spanO × (mN − 1)− span′ × (mN − 1)− span′

m
+ span′

)
= SN +

(workO − SN ×mN + spanO × (mN − 1)− span′ ×mN

m
+ span′

)
= SN +

(workO − SN ×mN + spanO × (mN − 1)
m

− span′ × mN

m
+ span′

)
= SN +

(workO − SN ×mN + spanO × (mN − 1)
m

+ span′ ×
(
1− mN

m

))
(5)

SincemN ≤ m, Expression 5 is maximized when span′ is large as possible; i.e., span′ = spanO

(the physical interpretation is that the worst case occurs when no job on the critical path
is executed prior to time-instant SN : instead the entire critical path executes after SN ).
Substituting span′ ← spanO into Expression 5, we get the following upper bound on the
overall makespan:

SN +
(workO − SN ×mN + spanO × (mN − 1)

m
+ spanO ×

(
1− mN

m

))
= SN +

(workO − SN ×mN − spanO

m
+ spanO

)
Correctness is guaranteed by having this upper bound on the makespan be ≤ D:(

SN +
(workO − SN ×mN − spanO

m
+ spanO

))
≤ D

⇔
(
SN −

SN ×mN

m

)
≤
(
D − workO − spanO

m
− spanO

)
⇔ SN

(
1− mN

m

)
≤
(
D − workO − spanO

m
− spanO

)
(6)

Expression 6 above is thus the sufficient schedulability condition we seek: values of mN and
SN satisfying Expression 6 guarantee timing correctness.

4.2 Computing mN and SN

We saw in Section 4.1 above that in order to ensure correctness, our scheduling algorithm
should choose the parameters mN and SN such that Condition 6 above is satisfied. Recall
that an additional goal is efficiency: the smaller the value of mN , the better, since the
remaining (m −mN ) processors can be placed in sleep mode. In this section we describe
how our algorithm computes such a value.



K. Agrawal and S. Baruah 5:13

One reasonable approach for assigning a value to the mN parameter is by using the task’s
nominal work and span parameters workN and spanN . Assuming that these parameters
bound the work and span values of a “typical” invocation of the task, it is guaranteed by
Inequality 1 that upon mN processors a typical invocation will have a makespan no greater
than

(
(workN − spanN )/mN + spanN

)
. We may hence assign SN a value as follows:

SN ←
(workN − spanN

mN
+ spanN

)
(7)

Substituting this value for SN into Expression 6, we get(workN − spanN

mN
+ spanN

)
×
(

1− mN

m

)
≤
(
D − workO − spanO

m
− spanO

)
(8)

as a sufficient schedulability condition. Since every term other than mN is a constant in
this expression, the expression can be algebraically simplified to a form that is a quadratic
expression in mN ; solving this quadratic expression, and taking the ceiling (since the number
of processors mN must be integral) yields the desired value. Once mN is so computed, the
value of SN may be obtained from Expression 7. We illustrate via an example; the algorithm
for computing mN and SN is provided in pseudo-code form after the example.

I Example 4. Consider once again the instance discussed in Examples 1 and 2:〈
workO, spanO,workN , spanN , D

〉
=

〈
900, 600, 120, 40, 690

〉
to be scheduled upon m = 10 processors.

Substituting these values into Expression 8, we get(workN − spanN

mN
+ spanN

)
×
(

1− mN

m

)
≤
(
D − workO − spanO

m
− spanO

)
≡

(120− 40
mN

+ 40
)
×
(

1− mN

10

)
≤
(

690− 900− 600
10 − 600

)
≡

( 80
mN

+ 40
)
×
(

1− mN

10

)
≤ 60

≡ 40 ·
( 2
mN

+ 1
)
×
(

1− mN

10

)
≤ 60

≡ 2 ·
(2 +mN

mN

)
×
(10−mN

10

)
≤ 3

≡ (2 +mN )× (10−mN ) ≤ 15mN

≡ 20 + 8mN −m2
N ≤ 15mN

≡ m2
N + 7mN − 20 ≥ 0

from which we obtain

mN ≥
−7 +

√
129

2 ≈ 2.18

Since the number of processors must be integral, we conclude that mN ← 3. The correspond-
ing value for SN is equal to(workN − spanN

mN
+ spanN

)
=
(120− 40

3 + 40
)

= 262
3 + 40 = 662

3
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Algorithm 1: Computing values for mN ,SN .

Input:
(〈

workO, spanO,workN , spanN , D
〉
,m
)

Output: failure, or values for mN , SN

1 begin
2 if

(
m < d(workO − spanO)/(D − spanO)e

)
then

3 return (failure) /* The test of Inequality 1 cannot guarantee that
the deadline will be met on m processors */

4 end
5 A← spanN

6 B ← m× (D − (spanO + spanN ))− (workO − spanO) + (workN − spanN )
7 C ← (−1)×m× (workN − spanN )
8 mN ←

⌈
(−1×B +

(√
B2 − 4×A× C)/(2×A)

)⌉
9 SN ← spanN + (workN − spanN )/mN

10 return(mN ,SN )
11 end

Pseudo-code representation. It may be verified that Expression 8 can be rewritten to be
of the form

A×m2
N +B ×mN + C ≥ 0

with A,B, and C assigned the following values:

A ← spanN

B ←
(
m
(
D − (spanO + spanN )

)
− (workO − spanO) + (workN − spanN )

)
C ← −1×m× (workN − spanN )

The pseudo-code in Algorithm listing 1 finds the positive root of this quadratic inequality;
the ceiling of which denotes the number mN of processors needed – this computation occurs
in Line 8. In Line 9 the value computed for mN is used to determine the value to be assigned
to SN .

Run-time complexity. Algorithm 1 comprises straight-line code with no loops or recursive
calls. Hence given as input the parameters specifying a task, it is evident that Algorithm 1
has constant – Θ(1) – run-time.

5 Achieving Greater Efficiency: A More Aggressive Approach

In an attempt to achieve efficiency (reducing the number of processors used in the “common
case”) while maintaining correctness (guaranteeing to meet deadlines provided task behavior
does not exceed the worst-case bounds of workO and spanO), the approach derived in
Section 4.2 above uses the nominal parameter values workN and spanN to assign values to
mN and SN . In this section, we propose a more aggressive approach to achieving perhaps
greater efficiency without compromising correctness in any manner. This more aggressive
approach is based upon exploiting insights regarding(i) the probabilistic characterization of
the run-time behavior of the system; and (ii) the typical behavior of List Scheduling.
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The probabilistic characterization of run-time behavior. As discussed in Section 2 (and
illustrated in Examples 1 and 2), we may have a probability associated with the likelihood
that the workN and spanN parameter values are correct. We may, for example be able to
assert that there is a ≤ 0.05 probability that the actual work will exceed workN , and a
≤ 0.05 probability that the actual span will exceed spanN . Now this threshold probability
of 0.05 may have been selected because we desire that the probability that the (m−mN )
sleeping processors will need to be awakened be ≤ 0.05. If so, the method for computing SN

and mN described in Section 4.2 above may be overly conservative since the work and span
distributions may not be perfectly correlated – if they are not, the probability that both
the work would exceed workN and the span exceed spanN , during a particular execution
of the task is smaller than 0.05. (In the extreme if the two distributions are more or less
independent, the probability is closer to 0.052 which equals .0025, a value that is is far smaller
than the sought-for threshold probability of 0.05.)

Some observations on List Scheduling. Assuming that the actual work and span parame-
ters of the computation do not exceed workN and spanN respectively, in Section 4.2 we used
Expression 1 to assign values to mN and SN in a manner guaranteeing that the computation
will complete execution within an interval of duration SN upon mN processors. Note that
Expression 1 is an upper bound on the makespan of a List Scheduling generated schedule
of a DAG; this upper bound is tight only for DAGs possessing a very specific structural
form and/ or List Scheduling making a particular sequence of scheduling decisions (and then
only if each node of the DAG executes for its entire WCET). Simulation experiments using
randomly-generated graphs seem to indicate that these structures and scheduling decisions
are relatively rare; for randomly-generated graphs, the makespans of actual list-scheduling
generated schedules tend to cluster closer towards the lower end of the interval between the
upper bound of Expression 1 and the obvious lower bound of

max
(work

m
, span

)
, (9)

even if each node of the DAG does actually execute for its entire WCET. To illustrate this, we
randomly generated 1000-node DAGs with varying numbers of edges in the manner described
in Section 5.1 below; for each, we computed the lower bound of Expression 9, the actual
makespan using a list scheduling implementation, and the upper bound of Expression 1, for
scheduling the DAG upon a 10-processor platform. The results are listed in Table 1. The
right-most column – the one titled “Ratio” – denotes the fraction of the interval between the
lower bound and the upper bound upon which the actual makespan encroaches.

More aggressive computation of mN and SN . We highlight the fact that being too
optimistic in assigning values to SN and mN does not compromise correctness: the sole
effect is upon efficiency in terms of the number of processors we are able to maintain in sleep
mode, and the likelihood that these processors will need to be switched on during some run
of the system. Hence one possible –more aggressive– approach towards achieving greater
resource efficiency during run-time would be to assign SN a value between the lower and
upper bounds of Expressions 9 and 1 as follows (rather than according to Expression 7):

SN ← max
(workN

mN
, spanN

)
+α·

[(workN − spanN

m
+spanN

)
−max

(workN

mN
, spanN

)]
(10)

with α, 0 ≤ α ≤ 1 a “tuning” parameter: the smaller the value of α, the more aggressive
the choice of SN . (An intuitive interpretation of the tradeoff here is that the smaller the
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Table 1 Actual makespan, and lower and upper bounds, of randomly-generated DAGs upon a
10-processor platform. Each graph has 1000 vertices; each row corresponds to 1000-vertex DAGs
with the number of edges specified in the first column. The last column denotes the ratio (actual
makespan - lower bound) ÷ (upper bound - lower bound) – small values denote that the actual
makespan is close to the lower bound.
(The experiments used to generate this table are detailed in Section 5.1.)

M A K E S P A N
# edges Lower (Exp. 9) Actual Upper (Exp. 1) Ratio
977 2627 2667 2818 0.208
2017 2539 2587 2889 0.137
4921 2567 2603 3222 0.055
9935 2554 2709 3725 0.132
20094 2599 2977 4774 0.174
39935 4056 4113 6154 0.027
50036 4454 4480 6491 0.013
60212 5674 5674 7658 0.000

value of α, the greater the number of processors we can switch off, but the greater the
likelihood that they will need to be awakened during some execution of the task.) For the
randomly-generated DAGs of Table 1, a value of α ≥ 0.208 would have been safe: during
run-time the sleeping processors are not awakened as long as the task’s run-time behavior
does not violate its nominal parameters workN and spanN .

If SN is assigned a value according to Expression 10 rather than Expression 7, it is no
longer the case that solving Expression 8 yields the desired value of mN . We have not
attempted to derive a closed-form solution for mN when Expression 10 is used in place
of Expression 7; rather, we iterate through candidate values for mN over the range [1,m),
stopping at the first such value for which this value for mN , and the resulting value for
SN computed according to Expression 10, causes Condition 6 to evaluate to true. This
more aggressive approach to computing mN and SN therefore has run-time complexity Θ(m)
where m denotes the number of processors available; a straightforward application of the
idea of binary search reduces this to Θ(logm).

5.1 The Experiments Reported in Table 1

We now briefly describe the experimental procedure used to generate the data populating
Table 1. Graphs were synthesized using a DAG-generating variant of the well-known Erdös-
Rényi method [26] for generating random graphs. The Erdös-Rényi method, given parameters
(n, p), yields a graph on n vertices in which each edge has an independent probability p
of existence. We modified this method to generated directed acyclic graphs with a target
number of edges. Specifically,

The number of vertices in the DAG, n, the maximum WCET parameter for a vertex
w, and the desired number of edges e, are specified. The number of processors m upon
which the DAG is to be scheduled is also specified.

Each vertex is assigned a WCET parameter that is a randomly and uniformly drawn
integer over the range (1, w).
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The parameter p, denoting the probability of existence of each edge, is computed as
follows:

p← 2e
n× (n− 1) .

The idea is that since a DAG with n vertices has a maximum of n/× (n− 1)/2 edges, if
we were to create each such edge independently with probability p, on average the desired
number e of edges would be created.
All edges are assumed to be directed from the lower-indexed vertex to the higher-indexed
vertex (hence a topological sorting of the DAG could yield the vertices in order of
increasing index). Each such edge is created with probability p, as follows:

for i := 1 to n
for j := (i+1) to n

create edge (i,j) with probability p

The work and span parameter of the generated DAG are computed, assuming that each
vertex executes for exactly its WCET parameter value (i.e., WCET parameters are taken
to represent the actual execution duration, rather than an upper bound on the execution
duration). Using these values, a lower bound on makespan as given by Expression 9, and
an upper bound as given by Expression 1, for the DAG upon the specified number m of
processors are computed.
A schedule of the DAG upon m processors using a standard implementation of list
scheduling is generated (once again assuming that each vertex executes for exactly its
WCET parameter value). The makespan of the resulting schedule is recorded.
Each data-point reported in Table 1 was obtained by generating one hundred such graphs,
computing the reported parameters upon each, and taking their averages.

6 Summary and Conclusions

Although DAG-based models for representing parallelizable real-time code have proved very
popular in the real-time scheduling theory community, they suffer from several shortcomings
that restrict their usefulness in representing some kinds of real-time code. In this paper, we
have explored an alternative model, one that is based upon characterizing a task by just two
parameters – work and span – with two estimates on upper bounds on the value of each
parameter – one that may be very large but is trust-worthy to a very high level of assurance,
and a second that is smaller and is more reflective of typical or nominal behavior. We have
developed an algorithm for scheduling tasks that are so modeled upon a dedicated cluster
of processors in a manner guaranteeing correctness – deadlines are always met provided
run-time behavior does not violate the high-assurance bounds – while striving for efficiency
– many processors can remain in sleep mode much of the time, only being switched on in rare
circumstances when run-time behavior exceeds the normal bounds.

The model for representing parallelizable code that is being proposed in this paper, and
the associated run-time scheduling algorithm, is particularly suitable for a certain kind of
real-time application: one that repeatedly (i.e., periodically or sporadically) monitors the
external environment seeking to detect some particular kind of anomalous sensory input.
Most of the time the sought-for input is not detected, and not much computation needs to
be performed. But on the rare occasions when the anomalous input is detected, considerable
additional processing of such input is necessary; furthermore, such processing is highly
parallel in nature. Example applications of this kind include real-time intrusion detection,
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vision-based monitoring systems, etc. For such systems, we would expect that the nominal
workload, as represented by the workN and spanN parameters, is quite small and may not
exhibit much parallelism; however the workload upon “overload” (i.e., when the monitored-for
condition occurs) is quite intensive (workO is large) but exhibits considerable parallelism
(i.e., spanO is relatively small compared to workO: equivalently, the ratio workO/spanO is
large). If the system is hard-real-time, resource allocation for guaranteeing correctness must
be made under worst-case assumptions – the workO and spanO parameters. However, much
of these allocated resources will remain unused much of the time during run-time; by being
able to determine in a timely manner precisely when these unused resources will be needed
during run-time. our approach allows us to place these resources in sleep mode until needed.

We believe our main contribution here is the model for parallel tasks – the run-time
scheduler is presented as proof-of-concept evidence of the potential benefits, in terms of
resource-efficiency, of adopting this model. As future work we plan to demonstrate the
model’s applicability in a wider range of settings: under different scheduling paradigms (such
as global EDF and global Fixed-Priority). We are also working on further extending the task
model if additional profiling data of the task’s run-time behavior is available (and known to
be reliable). For example, straight-forward generalizations allow us to specify multiple sets
of parameter values at different probability thresholds (rather than just two sets of values) –
are we able to develop scheduling strategies that can meaningfully exploit such additional
information?
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