15 research outputs found

    B-Spline based uncertainty quantification for stochastic analysis

    Get PDF
    The consideration of uncertainties has become inevitable in state-of-the-art science and technology. Research in the field of uncertainty quantification has gained much importance in the last decades. The main focus of scientists is the identification of uncertain sources, the determination and hierarchization of uncertainties, and the investigation of their influences on system responses. Polynomial chaos expansion, among others, is suitable for this purpose, and has asserted itself as a versatile and powerful tool in various applications. In the last years, its combination with any kind of dimension reduction methods has been intensively pursued, providing support for the processing of high-dimensional input variables up to now. Indeed, this is also referred to as the curse of dimensionality and its abolishment would be considered as a milestone in uncertainty quantification. At this point, the present thesis starts and investigates spline spaces, as a natural extension of polynomials, in the field of uncertainty quantification. The newly developed method 'spline chaos', aims to employ the more complex, but thereby more flexible, structure of splines to counter harder real-world applications where polynomial chaos fails. Ordinarily, the bases of polynomial chaos expansions are orthogonal polynomials, which are replaced by B-spline basis functions in this work. Convergence of the new method is proved and emphasized by numerical examples, which are extended to an accuracy analysis with multi-dimensional input. Moreover, by solving several stochastic differential equations, it is shown that the spline chaos is a generalization of multi-element Legendre chaos and superior to it. Finally, the spline chaos accounts for solving partial differential equations and results in a stochastic Galerkin isogeometric analysis that contributes to the efficient uncertainty quantification of elliptic partial differential equations. A general framework in combination with an a priori error estimation of the expected solution is provided

    Spectral Density Functions and Their Applications

    Get PDF
    The Bernstein-SzegƑ measure moment problem asks when a given finite list of complex numbers form the Fourier coefficients of the spectral density function of a stable polynomial in the one-variable case. SzegƑ proved that it is possible if and only if the Toeplitz matrix form by these numbers is positive definite. Bernstein later proved a real line analog of the problem. The question remained open in two variables until Geronimo and Woerdeman stated and proved the necessary and sufficient conditions. Unlike the solution in one variable, it does not suffice to write down a single matrix and check whether it is positive definite. A positive definite completion condition is also required. In this thesis, we further pursue the moment problem in two variables and beyond. We first enhance the two-variable results by identifying the eigenstructure of matrices that arise from the theory. We then create a method that allows us to compute the Fourier coefficients in a given infinite region by using a finite portion of the coefficients. Use is made of determinantal representations of stable polynomials. In addition, we compute the asymptotics for the Fourier coefficients and later generalize the result to higher dimensions. In the final chapter, we draw a connection between offset words and a particular type of spectral density functions and compute the asymptotics of the number of offset words as different parameter changes.Ph.D., Mathematics -- Drexel University, 201

    Polynomials

    Get PDF
    Polynomial and its applications are well known for their proven properties and excellent applicability in interdisciplinary fields of science. Until now, research on polynomial and its applications has been done in mathematics, applied mathematics, and sciences. This book is based on recent results in all areas related to polynomial and its applications. This book provides an overview of the current research in the field of polynomials and its applications. The following papers have been published in this volume: ‘A Parametric Kind of the Degenerate Fubini Numbers and Polynomials’; ‘On 2-Variables Konhauser Matrix Polynomials and Their Fractional Integrals’; ‘Fractional Supersymmetric Hermite Polynomials’; ‘Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation’; ‘Iterating the Sum of Möbius Divisor Function and Euler Totient Function’; ‘Differential Equations Arising from the Generating Function of the (r, ÎČ)-Bell Polynomials and Distribution of Zeros of Equations’; ‘Truncated Fubini Polynomials’; ‘On Positive Quadratic Hyponormality of a Unilateral Weighted Shift with Recursively Generated by Five Weights’; ‘Ground State Solutions for Fractional Choquard Equations with Potential Vanishing at Infinity’; ‘Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials’; ‘Some Identities Involving Hermite KampĂ© de FĂ©riet Polynomials Arising from Differential Equations and Location of Their Zeros.

    Nonparametric Distribution Function Estimation = Nichtparametrische SchÀtzung von Verteilungsfunktionen

    Get PDF

    Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra

    Full text link
    We define cylindric generalisations of skew Macdonald functions when one of their parameters is set to zero. We define these functions as weighted sums over cylindric skew tableaux: fixing two integers n>2 and k>0 we shift an ordinary skew diagram of two partitions, viewed as a subset of the two-dimensional integer lattice, by the period vector (n,-k). Imposing a periodicity condition one defines cylindric skew tableaux as a map from the periodically continued skew diagram into the integers. The resulting cylindric Macdonald functions appear in the coproduct of a commutative Frobenius algebra, which is a particular quotient of the spherical Hecke algebra. We realise this Frobenius algebra as a commutative subalgebra in the endomorphisms over a Kirillov-Reshetikhin module of the quantum affine sl(n) algebra. Acting with special elements of this subalgebra, which are noncommutative analogues of Macdonald polynomials, on a highest weight vector, one obtains Lusztig's canonical basis. In the limit q=0, one recovers the sl(n) Verlinde algebra, i.e. the structure constants of the Frobenius algebra become the WZNW fusion coefficients which are known to be dimensions of moduli spaces of generalized theta-functions and multiplicities of tilting modules of quantum groups at roots of unity. Further motivation comes from exactly solvable lattice models in statistical mechanics: the cylindric Macdonald functions arise as partition functions of so-called vertex models obtained from solutions to the quantum Yang-Baxter equation. We show this by stating explicit bijections between cylindric tableaux and lattice configurations of non-intersecting paths. Using the algebraic Bethe ansatz the idempotents of the Frobenius algebra are computed.Comment: 77 pages, 12 figures; v3: some minor typos corrected and title slightly changed. Version to appear in Comm. Math. Phy

    Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    Get PDF
    This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions

    Beyond the noise : high fidelity MR signal processing

    Get PDF
    This thesis describes a variety of methods developed to increase the sensitivity and resolution of liquid state nuclear magnetic resonance (NMR) experiments. NMR is known as one of the most versatile non-invasive analytical techniques yet often suffers from low sensitivity. The main contribution to this low sensitivity issue is a presence of noise and level of noise in the spectrum is expressed numerically as “signal-to-noise ratio”. NMR signal processing involves sensitivity and resolution enhancement achieved by noise reduction using mathematical algorithms. A singular value decomposition based reduced rank matrix method, composite property mapping, in particular is studied extensively in this thesis to present its advantages, limitations, and applications. In theory, when the sum of k noiseless sinusoidal decays is formatted into a specific matrix form (i.e., Toeplitz), the matrix is known to possess k linearly independent columns. This information becomes apparent only after a singular value decomposition of the matrix. Singular value decomposition factorises the large matrix into three smaller submatrices: right and left singular vector matrices, and one diagonal matrix containing singular values. Were k noiseless sinusoidal decays involved, there would be only k nonzero singular values appearing in the diagonal matrix in descending order providing the information of the amplitude of each sinusoidal decay. The number of non-zero singular values or the number of linearly independent columns is known as the rank of the matrix. With real NMR data none of the singular values equals zero and the matrix has full rank. The reduction of the rank of the matrix and thus the noise in the reconstructed NMR data can be achieved by replacing all the singular values except the first k values with zeroes. This noise reduction process becomes difficult when biomolecular NMR data is to be processed due to the number of resonances being unknown and the presence of a large solvent peak

    Central Limit Theorems for Geometric Functionals of Gaussian Excursion Sets

    Get PDF

    Functional Peaks-Over-Threshold Analysis for Complex Extreme Events

    Get PDF
    Most current risk assessment for complex extreme events relies on catalogues of similar events, either historical or generated artificially. In the latter, no existing methods produce completely new events with mathematically justified extrapolation above observed level of severity. This thesis contributes to the development of stochastic generators of events based on extreme value theory, with a special focus on natural hazards. The sources of historical meteorological records are multiple but climate model output is attractive for its spatial completeness and homogeneity. From a statistical perspective, these are massive gridded data sets, which can be exploited for accurate estimation of extreme events. The first contribution of this thesis describes methods of statistical inference for extremal processes that are computationally tractable for large data sets. We also relate the extremal behaviour of aggregated data to point observations, a result that we use to downscale gridded data to local tail distributions. These contributions are illustrated by applications to rainfall and heatwaves. Building stochastic generators of extreme events requires the extension of classical peaks-over-threshold analysis to continuous stochastic processes. We develop a framework in which characterization of complex extremes can be motivated by field-specific expertise. The contribution includes the description of the theoretical limiting distribution of functional exceedances, called the generalized r-Pareto process, the functional equivalent of the generalized Pareto distribution, for which we describe statistical inference procedures, simulation algorithms and goodness-of-fit diagnostics. We apply these results to build a stochastic weather generator of extreme wind storms over Europe
    corecore