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Abstract 

This thesis describes a variety of methods developed to increase the sensitivity and 

resolution of liquid state nuclear magnetic resonance (NMR) experiments. NMR is 

known as one of the most versatile non-invasive analytical techniques yet often suffers 

from low sensitivity. The main contribution to this low sensitivity issue is a presence 

of noise and level of noise in the spectrum is expressed numerically as “signal-to-noise 

ratio”.  

NMR signal processing involves sensitivity and resolution enhancement 

achieved by noise reduction using mathematical algorithms. A singular value 

decomposition based reduced rank matrix method, composite property mapping, in 

particular is studied extensively in this thesis to present its advantages, limitations, and 

applications. In theory, when the sum of k noiseless sinusoidal decays is formatted 

into a specific matrix form (i.e., Toeplitz), the matrix is known to possess k linearly 

independent columns. This information becomes apparent only after a singular value 

decomposition of the matrix. Singular value decomposition factorises the large matrix 

into three smaller submatrices: right and left singular vector matrices, and one diagonal 

matrix containing singular values. Were k noiseless sinusoidal decays involved, there 

would be only k nonzero singular values appearing in the diagonal matrix in 

descending order providing the information of the amplitude of each sinusoidal decay. 

The number of non-zero singular values or the number of linearly independent 

columns is known as the rank of the matrix. With real NMR data none of the singular 

values equals zero and the matrix has full rank. The reduction of the rank of the matrix 

and thus the noise in the reconstructed NMR data can be achieved by replacing all the 

singular values except the first k values with zeroes. This noise reduction process 

becomes difficult when biomolecular NMR data is to be processed due to the number 

of resonances being unknown and the presence of a large solvent peak.  

There are seven chapters in this thesis. The first three chapters are dedicated to 

the introduction to scientific problems addressed in this PhD research, the NMR theory 

relevant to this study, and the introduction to NMR signal processing including 

detailed discussion on the types and origin of noise commonly encountered in NMR 

experiments; different signal processing strategies to shorten experimental time and 

enhance signal to noise ratio are presented in Chapters 4 to 7. 
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Chapter 4 focuses on reinvigorating the conventional method by implementing 

normalisation to the diffusion NMR study. Conventionally, arrayed NMR experiments, 

such as diffusion and relaxation, are performed with the same number of scans at each 

iteration despite the signal-to-noise ratio being more than sufficient for many of the 

iterations. Here, we propose a simple yet effective approach that significantly shortens 

experimental times by varying number of scans through the arrayed experiments while 

keeping the signal-to-noise ratio essentially the same and retaining experimental 

accuracy. This normalisation approach was tested with 23Na NMR diffusion and 

relaxation studies; accurate diffusion and relaxation measurements were achieved with 

less than one third of the conventional experimental time being consumed for both. 

Chapter 5 focuses on the noise reduction in quadrupolar diffusion NMR using 

composite property mapping algorithm. The composite property mapping algorithm 

was applied to a set of 23Na NMR diffusion data. 23Na nuclei being observed as a single 

resonance in liquid state NMR simplified the determination of the pre-specified rank 

dramatically due to the prior knowledge of the rank of the noiseless data matrix 

(corresponding to the 23Na data) being equal to one. In spite of knowing the pre-

specified matrix rank, the composite property mapping algorithm has a limitation due 

to the residual noise property hidden within the noise reduced data. With array 

experiment such as diffusion NMR, the acquired data sees a range of SNR values due 

to signal attenuation. To obtain accurate and precise results, the minimum SNR 

required for each array signal was determined through simulation study. Successful 

noise reduction lead to accurate and precise diffusion measurements in spite of using 

only 3% of the total experimental time required by the reference experiment array.  

Chapter 6 focuses on the application of composite mapping algorithm to the 

noise reduction in the diffusion NMR experiments on a ligand-protein system. In this 

study, the signal of interest was well-resolved from the remainder of the spectrum and 

therefore the remaining spectrum was replaced by the baseline extracted from the 

original full spectrum so as to eliminate the process of determining the pre-specified 

rank corresponding to the original full spectrum. The extracted spectrum containing 

only the resonance of interest was inverse Fourier transformed and then processed in 

the same way as the 23Na data was. Significant improvement on the accuracy and 

precision of the diffusion measurement was achieved without complicated iterative 

processes of finding the pre-specified ranks corresponding to the original full spectra 

obtained with different gradient amplitudes.  
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Chapter 7 focuses on the development of a method for the determination of the 

minimum rank needed for the noise reduction in biomolecular NMR using composite 

property mapping algorithm. In biomolecular NMR, it is often impossible to 

completely resolve a 1H spectrum into its constituting resonances and thus to know the 

exact number of sinusoidal decays within the free induction decay, which makes it 

extremely difficult to determine the pre-specified rank corresponding to the full 

spectrum. Traditionally, the pre-specified rank is determined by observing the 

difference between each pair of consecutive singular values to find the cut-off singular 

value supposedly existing right before a sharp drop. This method can provide 

misleading rank determination when a typical biomolecular 1H NMR spectrum is 

processed because of the existence of multiple steep descending regions observed 

when plotting the singular values in a descending order. Instead of directly examining 

the singular values, the first/largest singular value was divided by itself and all the 

other singular values, respectively, to generate the singular value ratios which were 

used to determine the initial minimum matrix rank to be fed into the iteration process 

for further rank reduction. This new method was applied to a 1H 400 MHz NMR 

spectrum containing a partially suppressed water peak obtained on an aqueous 

lysozyme solution using the WATERGATE pulse sequence. After the determination 

of the initial minimum matrix rank, the final minimum matrix rank was found with 

only 15 iterations. A distinct feature of the new method is that it avoids 

underdetermining the matrix rank and thus avoids eliminating the signals of interest 

in the noise reduction process. Moreover, all the spectral features were well preserved 

after the noise reduction. As a comparison, a commercially available signal processing 

method based on wavelet transform was also tested on the same data. Efficient noise 

reduction was achieved by the use of the wavelet based method, however, signal 

amplitude distortion and line broadening were observed in the noise reduced spectrum. 
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CHAPTER 1. 0BINTRODUCTION 
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Nuclear magnetic resonance (NMR) in its various guises including magnetic 

resonance imaging (MRI) provides a suite of techniques, which can be used to provide 

a wealth of information across many of the sciences  and clinical medicine [1-3]. NMR 

spectroscopy can be applied to a broad range of systems ranging from solid matter [4, 

5] to biological tissue, from small molecules at low concentration to polymers [6], 

from frozen materials [7] to inorganic compounds at high temperature [8], and 

anywhere between [9]. The technology is capable of providing information 

unobtainable by other means and it can do so non-invasively. A major weakness of 

magnetic resonance compared to other techniques is that it suffers from an inherently 

low signal-to-noise ratio (SNR). In this thesis, some new and improved methods of 

enhancing SNR by using mathematical signal processing or alternatively shortening 

the overall NMR experimental time are presented. These new approaches are 

illustrated with applications to quadrupolar nuclei (i.e. nuclei with spin quantum 

number I > 1/2), non-quadrupolar nuclei (i.e. nuclei with spin quantum number I = 1/2), 

and NMR diffusion measurements. This chapter provides the context and a roadmap 

to the content of this thesis. In particular, it provides a brief introduction to NMR, the 

reasons for its inherently low SNR including the origins of the noise and the 

experimental and practical means to acquire NMR data more efficiently to obviate the 

noise limitations. It also includes a succinct introduction to the types of experiment 

used to demonstrate the new approaches developed in this thesis. The concepts will be 

elaborated on in subsequent chapters. 

1.1 10BNMR SIGNAL 

The major reason for the low sensitivity of NMR is the source of the NMR signal and 

how it is acquired. The signal originates from quantum properties of atomic nuclei. In 

particular, NMR is concerned with the magnetic properties of atomic nuclei, 

sometimes referred to as ‘spins’. Not all elements (or isotopes) have NMR sensitive 

nuclei, but of those that do (i.e., those with I > 0) the spins behave like microscopic 

bar magnets. In the simple case of a spin-1/2 nucleus (i.e., I = 1/2) such as 1H there are 

two possible spin states: up or down. In the absence of an external magnetic field, 

these spin states are degenerate. However, in the presence of an external static 

magnetic field, B0, these spin states become non-degenerate with the energy difference 
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between the two states proportional to B0 – hence the need for a magnet when 

conducting NMR experiments. The population of spins in each state is governed by 

the Boltzmann distribution. The population difference between the two states is 

extremely small but increases with B0. The vector sum of all of the nuclear 

magnetisation is termed the net magnetisation, M. The magnitude of the thermal 

equilibrium value of M is denoted by M0 which prior to any perturbation is initially 

oriented parallel to B0. In addition to non-degeneracy, the magnetic field also causes 

the spins (and thus M) to precess around B0 at a frequency termed the Larmor 

frequency. This Larmor (or resonance) frequency is isotope-dependent (i.e., it depends 

on the gyromagnetic ratio, γ, specific to each isotope) and proportional to B0 and is 

normally in the MHz range (i.e., a radio frequency; RF). The actual value of the 

magnetic field sensed by the nucleus is modulated by the local environment of the 

nucleus. Specifically, the electron shells of the atom shield the nucleus from B0. Thus, 

the same nucleus but in a different chemical environment has a very slightly different 

resonance frequency (i.e. experiencing a ‘chemical shift’). These chemical shifts are 

very small and are consequently normally expressed in terms of parts per million 

(ppm) from the base Larmor frequency of bare nuclei. 

A short burst (‘pulse’) of electromagnetic radiation at the Larmor frequency 

(often referred to as an RF pulse) oriented perpendicular to B0 has the effect of nutating 

M away from B0 into the transverse plane. The duration and amplitude of the RF pulse 

determine the angle that M is nutated away from B0. The magnetisation then precesses 

as described above. Ultimately it is this precessing nuclear magnetisation that is the 

source of the detected NMR signal. A coil located perpendicular to B0 detects the 

transverse component of this precessing magnetisation as an oscillating voltage. Spin 

magnetisation which is not at thermal equilibrium returns to thermal equilibrium via a 

process known as spin relaxation. Spin relaxation can be separated into two concurrent 

processes: (i) Longitudinal (or spin-lattice) relaxation in which energy absorbed by 

the spins is lost to the surroundings (i.e., the lattice) and (ii) transverse (or spin-spin) 

relaxation in which involves the loss of phase coherence of the spins. Consequently, 

the detected oscillating voltage decays and thus the detected signal is often referred to 

as a free induction decay (FID). Since the relaxation process is normally governed by 

an exponential time constant the FID appears as an exponentially decaying sinusoid 

as shown in Figure 1. In reality, and as depicted in Figure 1, the NMR signal inherently 
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contains noise. The spectral linewidth is related to the transverse relaxation rate, with 

rapidly relaxing spin systems having broad resonances. 

 As shown in Figure 1, the Fourier Transform (FT) is the most common signal 

processing technique in NMR and has traditionally been used to transform the (time 

domain) FID into a spectrum (i.e., the frequency domain). However, the noise in the 

FID is also transferred into the frequency domain resulting in a noisy spectrum. This 

noise distorts the baseline but also degrades the resonance lineshape and its amplitude.  

 NMR experiments generally involve a sequence of RF pulses interspersed by 

delays and sometimes magnetic gradient pulses (i.e., a pulse sequence). As an analogy, 

the pulse sequence to an NMR spectrometer is like a music score to an orchestra. The 

choice of pulse sequence determines what information can be obtained in the 

experiment. 

 

 

Figure 1. Flowchart of NMR signal acquisition and signal processing. The chemical 

and physical information possessed by the sample is first collected as a time domain 

free induction decay (FID), which is then transformed into the frequency domain via 
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Fourier transformation (FT). The frequency of the resonance is normally given in 

terms of parts per million (ppm) of the centre frequency. All experimentally acquired 

FIDs inherently contain noise. By applying appropriate signal processing it is possible 

to reduce this noise. 

 

1.2 11BNUCLEI AND SENSITIVITY 

Most elements in the periodic table contain at least one NMR sensitive isotope. The 

sensitivity of an isotope varies according to its natural abundance and its specific value 

of γ. The Larmor frequency and the sense of spin precession are determined by γ and 

B0. A higher γ and thus Larmor frequency leads to greater sensitivity. 

Of all NMR active nuclei, the proton (i.e., 1H) is the most commonly probed 

nucleus in NMR studies. 1H is the second to the most NMR sensitive nuclei with a 

very high natural abundance of 99.98% (i.e., 3H has the highest sensitivity yet its 

natural abundance is 10-18 of 1H [10, 11]). Molecules, especially biomolecules, 

containing protons are ubiquitous. Many other nuclei such as 13C, 23Na, 43Ca are also 

commonly used. After 1H, the next commonly probed nucleus is 13C. Most carbon 

exists as the NMR inert isotope 12C (i.e., I = 0) with the only NMR sensitive carbon 

isotope being 13C (i.e., I = 1/2)  and having a natural abundance of only 1.1 %. Further, 

the γ of 13C is only quarter that of 1H. The low γ and low natural abundance result in 

13C having only 10-4 the sensitivity of 1H. 

Despite this lower sensitivity, 13C has its own advantages [12]. 13C NMR can 

provide structural information of carbon atoms that are not bonded to hydrogen. This 

feature is ideally suited for studying the structure of organic molecules. Another 

advantage is having a larger chemical shift range than protons. This wider chemical 

shift range provides a more sensitive probe of structural changes. Finally, 13C nuclei 

typically have longer relaxation times than 1H nuclei which influences the line widths 

[13]. Longer relaxation times result in narrower linewidths. The combination of a 

larger chemical shift range and narrower line widths reduces the likelihood of spectral 

overlap.  

More than 70% of active nuclei have the spin property of I > 1/2. Such nuclei 

are specifically called “Quadrupolar nuclei”. Many biologically important nuclei are 

quadrupolar including 7Li, 23Na, 43Ca, 39K [14-16].  
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1.3 12BSOME NMR STUDIES LIMITED BY NOISE 

Due to SNR limitations, many experiments that are in theory possible are in practice 

not practicable since they would take too long or, even worse, the signal would be too 

low to be detectable. Further, speeding up NMR experiments expands the horizons of 

NMR experiments, for example, to time-sensitive samples including the measurement 

of reaction kinetics. Below we give a brief introduction to the problems facing the 

measurement of quadrupolar nuclei and of molecular diffusion. 

1.3.1 52BQuadrupolar nuclei 

In general, quadrupolar nuclei possess much faster spin relaxation times compared to 

I = 1/2 nuclei [17]. Rapidly relaxing nuclei complicate NMR measurements in two 

ways: broader lines and low sensitivity. Faster transverse magnetisation decay leads 

to broader spectral peaks and, consequently, lower spectral resolution. The other issue 

is the signal loss during the period when the electromagnetic radiation is removed and 

the signal detection starts. This period of time is called “dead time” which is often 

measured in μs (e.g. 10 μs). Since the electromagnetic radiation emits from the same 

coils where the signal is detected, complete cut off of the voltage before the signal 

detection is mandatory. This duration does not cause a crucial signal loss to the nuclei 

with long relaxation time. However, with fast relaxation, the quadrupolar nuclei such 

as 23Na (an important indicator of human cellular membrane function, especially 

sodium and potassium exchange [1]). Other nuclei such as: 39K, 35Cl, 33S, and 17O can 

lose sensitivity due to this delay [18]. 

Some quadrupolar nuclei are known to have very long relaxation time. 7Li and 

6Li, for example, take up to few minutes to fully relax [19]. Signal averaging and 

detection in another one or two dimensions (e.g., 2D and 3D NMR experiments) for 

these nuclei can lengthen the experimental time enormously. 

One of the major differences between non-quadrupolar and quadrupolar nuclei 

in a liquid state is the number of resonance. The number of resonance in the 

quadrupolar nuclei NMR measurements is always one. Knowing the number of 

resonance is such a significant prior knowledge in signal processing. One resonance 

frequency means the measured FID only contains one exponentially decayed 
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oscillating sinusoid function with the addition of noise. Further details of the 

quadrupolar nucleus is found in Section 2.7. 

1.3.2 53BDiffusion and Multidimensional NMR Experiments 

Reducing the required number of scans is extremely important in advanced NMR 

applications such as NMR diffusion study and multidimensional NMR experiments. 

NMR diffusion measurements can provide detailed information on molecular 

organisation [20, 21], pore structure of porous media [22, 23], molecular aggregation 

[24] and more [25, 26]. 

Diffusion NMR measurements of translational motion are performed using the 

pulse gradient spin-echo (PGSE) sequence as an arrayed experiment in which an 

experimental parameter (e.g., the applied gradient strength) is altered with each 

increment [27, 28]. Thus, the echo signal attenuates with each arrayed experiment (i.e., 

with increasing applied gradient strength).  

In theory, the diffusion coefficient could be obtained from experiments 

conducted at only two different gradient strengths. However, in practice the majority 

of measurements are conducted as an array of eight to sixteen experiments. The 

gradient strength is usually increased linearly to a maximum strength which results in 

an attenuation of the echo signal to 10 to 20 % of its original intensity [27]. As the 

signal attenuates, the SNR decreases. Thus, with the conventional method, numerous 

signal averaging is performed consecutively at each gradient strength to ensure the 

sufficient spectral sensitivity throughout the experimental measurements. 

Not only to consider the number of scans required for the most attenuated signal 

but also each scan requires at least five times the spin-lattice relaxation time to ensure 

the nuclear spins fully relax back to its equilibrium state before the next pulse sequence 

cycle begins. The majority of pulse sequences have a specific number of scans per one 

phase cycle. The PGSE sequence used in this thesis has a phase cycle of 8 scans. 

Considering the matters listed above and additional matters such as measuring a mixed 

sample containing macromolecules where a wide range of SNR values are found 

within the spectrum, a nucleus with long relaxation time, and/or simply samples with 

low concentrations, very long experimental time is often encountered.  

There are many other complex NMR experiments which are known to require 

long machine time. For example, while using the 3D gradient enhanced HCCH-
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TOCSY sequence to study protein amino acid side chain [29], the total acquisition 

time was up to 65 hours per spectrum. Adding one more dimension to the HCCH-

TOCSY experiment, a 4D-HCCH-TOCSY experiment by Olejniczak took up to 6.4 

days [30]. 

1.3.3 Incredible Natural Abundance Double Quantum 

Transfer Experiment (INADEQUATE) NMR Sequence 

Most organic molecules contain a large number of protons and carbons. A 

measurement of the coupling constants in both 1H-1H and 13C-13C can provide a lot of 

information about the molecular structure using 1H and 13C NMR respectively [31]. 

The main difference between 1H and 13C NMR is sensitivity. In order to measure the 

coupling constant of two 13C nuclei, the satellite signals with very small intensity (i.e., 

0.5% of the main signal each) must be well-separated from the main peak, otherwise 

it is almost impossible to measure them. For 1H NMR on the other hand, 13C-1H 

couplings are much larger that the satellite signals and can be measured easily 

compared to 13C NMR [32]. In order to measure the 13C-13C coupling constant as easily 

as 13C-1H coupling in 1H NMR, the 1D-INADEQUATE sequence was introduced 

which eliminates the main-carbon signal so the satellite signals can be observed[33]. 

Development of the INADEQUATE NMR sequence enables the study of very 

weak 13C-13C spin-spin couplings for structural elucidation in organic molecules [33-

35]. Apart from the obvious sensitivity issues, identification of these carbon satellites 

(i.e., 13C-13C spin-spin coupling) is particularly difficult due to the presence of 

incomplete proton decoupling, weak spinning sideband lines (from the rate of spin of 

an NMR tube) and unavoidable signals due to impurities [36]. The INADEQUATE 

sequence can be applied to both 1D and 2D NMR experiments, although, in practice, 

the 2D version is more commonly used to obviate the problems of spectral crowding 

in the 1D experiment [35-37].  

            It is very time-consuming to acquire high-quality spectral data. Thus, 

numerical signal processing is strongly beneficial not only to reduce the experimental 

time but also for signal enhancement purpose. As an example, Lambert proposed a 

numerical post signal processing method [38]. In his method prior knowledge about 

the -CH multiplicities was required. In fact, many NMR signal processing techniques 
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strongly benefit from prior knowledge of the NMR data to be processed (e.g., number 

of peaks, size of coupling constant. However, in the general case no such prior 

knowledge is available. Indeed, in the ideal case to facilitate general applicability such 

processing techniques would not require such information. 

 

1.4 13BOVERCOMING SOME SIGNAL-TO-NOISE 

LIMITATIONS 

There are numerous ways to overcome SNR limitations: (i) using higher B0 and/or 

making the hardware more sensitive [39-44], (ii) improved implementation of pulse 

sequences to more efficiently use the available experimental time [45-48] and (iii) 

signal processing approaches which extract information from the acquired NMR 

signal more efficiently [49-64]. 

Numerous hardware and signal processing (i.e., software) approaches have 

been developed to reduce noise and improve NMR sensitivity. Signal processing 

approaches cannot truly remove all noise and come with caveats (e.g., requiring ‘prior’ 

knowledge on the content of the spectrum or increase the SNR at the expense of 

spectral resolution). However, under specific conditions sophisticated signal 

processing algorithms can dramatically reduce the noise components of NMR signals. 

Some of the major signal processing algorithms are summarised in Section 3.4. 

104BSignal processing 

Signal processing, more specifically, post signal processing is a signal enhancement 

method which does not interfere with NMR signal acquisition process nor equipment 

itself. The signal processing utilises mathematical theory applied directly to 

experimentally measured FID data, manipulated in such a way as to enhance resonance 

sensitivity. The signal processing not only enhances the sensitivity of experimentally 

measured data but also lowers the required signal sensitivity before signal processing, 

leading to reducing the total experimental time from excessive signal averaging [60, 

65]. 
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There are a number of signal processing software packages included in modern 

standard NMR spectrometer software environments. Additional signal processing 

techniques can be performed externally using a standard programming language. 

Many of the signal processing methods are considered to be optimisation processes 

which often require iteration to generate optimised FIDs with reduced noise. For every 

optimisation method, some form of information about the raw data is required to set 

the initial parameter values [52, 64, 66-68]. Information such as the number of 

summed exponentially decaying sinusoids within the FID is crucial for successful post 

signal processing. Other methods  include the Harmonic Inversion method (HI) [65, 

69-73] (Section 3.7.2), the wavelet shrinkage method [74] (Section 3.4.4), the 

maximum entropy reconstruction method [75], and composite property mapping based 

methods [52] which are described in Section 3.4. Other non-iterative/ non-optimisation 

procedures such as the Linear Prediction Singular Value Decomposition (LPSVD) [76, 

77] (Section 3.6.1), the Hankel Singular Value Decomposition (HSVD) [78, 79] 

(Section 3.6.2), the Matrix Pencil (MP) [80-82] (Section 3.6.3), and the Filter 

Diagonalisation Method (FDM) [73] (Section 3.6.4) are also briefly described in 

Chapter 3. 

1.5 14BAIMS AND OVERVIEW OF THE THESIS 

This thesis focuses its discussion on an NMR signal normalisation approach developed 

to accelerate NMR relaxation and diffusion measurements and a signal processing 

method based on composite property mapping developed to achieve efficient noise 

reduction in a variety of NMR experiments. The development of both the experimental 

approach and the signal processing method was aimed at obtaining superior signal 

sensitivity and/or accuracy and/or shortening overall experimental time compared to 

the conventional/existing methods. The basic NMR theory and signal acquisition 

procedure are explained in Chapter 2. Information on the basic NMR signal, noise, 

and signal enhancement techniques are given in the following Chapter 3. The contents 

of the signal enhancement techniques in Chapter 3 include both hardware 

developments and numerical signal processing methods. The composite property 

mapping algorithm which is the foundation of the signal processing method developed 

in this thesis will be found in Section 3.7. The rest of this thesis from Chapter 4 onward 



11 | P a g e  

 

 

presents the simulation and experimental results obtained in the development and 

application of the NMR signal normalisation approach and the noise reduction method 

based on composite property mapping. 

1.5.1 54BShortening NMR experimental times with 

Normalisation 

As previously discussed, most of the array experiments suffer from the extensive 

experimental time due to having a same number of scans for each array experiment. 

The number of scans is set in such a way that the most attenuated signal has sufficient 

SNR. The number of scans required for acquiring the most attenuated signal is 

excessive for acquiring the least attenuated signal. With a rough estimate of the signal 

attenuation rate against the attenuation factor used in the experiment, the number of 

scans required for each array experiment can be estimated. The overall experimental 

time can be reduced enormously by tailoring the number of scans for each arrayed 

signal. Each collected array signal is normalised by its corresponding number of scans 

and then fed into the relaxation/diffusion data analysis. This approach was applied to 

23Na T1 and PGSE NMR study which theory and results can be found in Chapter 4. 

1.5.2 55BNoise reduction in quadrupolar nuclei diffusion NMR 

using composite property mapping algorithm 

The application of signal processing, especially the methods based on composite 

property mapping algorithm, can dramatically reduce total NMR scanning time of 

array experiments such as diffusion and relaxation studies. To demonstrate the effect 

of composite property mapping signal processing, the diffusion measurement of 10 

mM NaCl was first performed using the conventional method with a large number of 

scans. The same experiment with considerably fewer scans (lower SNR) was also 

performed and then the acquired NMR data was processed using the composite 

property mapping algorithm. Since 23Na is a quadrupolar nucleus which exhibits a 

single resonance in liquid state NMR experiments. This prior knowledge becomes a 

great advantage when using composite property mapping algorithm because the pre-

specified matrix rank is already known as one. In Chapter 5, the limitations faced by 

the composite property mapping based noise reduction method is also presented. 
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1.5.3 56BFrequency selective signal processing 

A simple spectrum containing only one resonance as observed for quadrupolar nuclei 

is rarely seen in biomolecular NMR where numerous resonances with various 

intensities and line shapes can be found in one spectrum. In protein structure analysis, 

for example, the one-dimensional spectrum of a protein sample is often containing 

clusters of overlapped resonances that create broad baseline-like features. If one 

resonance out of many was the signal of interest it would be wise to only select and 

process the region of interest. This idea was applied to 1H PGSTE NMR diffusion 

experiments on a diluted solution containing 5 mM 2-nitroimidazole and 38 mM 

bovine serum albumin (BSA) dissolved in D2O. A single resonance at around 8.4 ppm 

was selected and then the rest of the spectrum was replaced with baseline values so 

that the modified spectrum shared the single resonance feature with the liquid state 

quadrupolar nuclei dataset. This approach can eliminate the minimum matrix rank 

determination and iteration process altogether which is very difficult when a 

biomolecular NMR spectrum is processed. The development and application of the 

frequency selective signal processing method are presented in Chapter 6. 

1.5.4 57BSingular value ratio method for noise reduction in 

biomolecular NMR 

When applying composite property mapping based noise reduction to biomolecular 

NMR spectra, the noise reduction method requires so-called threshold matrix rank 

determination before matrix rank reduction. This threshold matrix rank is used to 

estimate the pre-specified matrix rank which is associated with the number of 

sinusoids representing the signals. With heavily overlapping resonances, it is 

tremendously difficult to determine the minimum matrix rank that separate signals 

from the noise. To make the matter worse, biomolecular solutions often contain a far 

larger amount of water molecules than their solutes, which result in a deleteriously 

strong water peak in the 1H NMR spectra. The intense water sinusoid in the FID can 

mislead the threshold matrix rank determination process due to the significant 

magnitude difference between the singular values corresponding to the water 

resonance and the ones corresponding to the solute resonances. 
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With incorrect threshold matrix rank determination, the processed data may 

have some important solute signals missing or some ghost signals originating from 

imperfect noise reduction. A new method (i.e. singular value ratio method) for more 

accurately determining the threshold matrix rank was proposed in Chapter 7. The 

proposed method was applied to the one-dimensional lysozyme 1H NMR spectrum 

with the water signal partially suppressed by using WATERGATE. With the proposed 

method, efficient matrix rank determination was achieved in spite of the problems 

caused by strong residual water resonance, heavily overlapping lysozyme resonances, 

and non-Lorentzian line shape.  
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CHAPTER 2. 1BNMR THEORY  
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2.1 15BNUCLEAR SPIN 

Each atomic nucleus contains a specific number of protons and neutrons which are 

known comprised of quarks and gluons [83]. As an example, a deuterium nucleus 

which has one neutron (purple dash circle) and one proton (red dash circle) are 

depicted in Figure 2. In fact, 2H is one of only four (i.e., 2H, 6Li, 10B, and 14N) stable 

bosons (i.e., nuclei having integer spin). 

 

 

Figure 2. A deuterium atomic nucleus (black solid circle). Each neutron (purple dash 

circle) or proton (red dash circle) contains quarks (green and blue circles) with positive 

or negative charge and the quark spin is depicted with an arrow.  

 

Each neutron or proton consists of three quarks that are connected to each other 

by gluons. There are six known flavours of quarks available in nature, a quark has an 

electric charge of either + 2e/3 or - e/3. The quarks that determine the spin quantum 

number of the nuclei are specifically called valence quarks. Valence quarks have spin-

1/2 and exist either as “up” or “down” quarks as indicated by the arrows in Figure 2. 

The neutron has one + 2e/3 charged quark and two – e/3 charged quarks, which 

gives an overall charge of zero. Since each quark has spin-1/2 and the sum of two up-

quarks and one down-quark results in a neutron spin quantum number, In, of 1/2. The 

proton has two + 2e/3 charged quarks and one – e/3 charged quark, which gives an 

overall charge of one. In a proton, there is one up-quark and two down-quarks, which 
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gives the total proton spin quantum number, Ip, of 1/2. The nuclear spin quantum 

number, I,is determined as follows [83]: 

 

 
1

n p

n p

n p

I I

I I
I

I I

 −

 − +

= 



+

 , (1) 

 

I can be zero, a positive integer (i.e., boson), or a half-integer (i.e., fermion). Following 

Eq. (1), 2H with one neutron and one proton both having spin-1/2 (i.e., In = Ip = 1/2), I 

will have a two possible values of 0 and 1, corresponding to the proton and neutron 

spins being the antiparallel and parallel position, respectively. I determine the number 

of spin quantum states experienced by each nucleus and these spin quantum states are 

associated with the quantum number m calculated by  

 

 , 1,...,m I I I= − − + +  . (2) 

 

Following Eq. (2), each value of I will be associated with a total of 2I +1 degenerate 

spin quantum states in the absence of B0. For deuterium, only the spin state with I = 1, 

which is the lowest energy state, is directly observable in NMR and it is associated 

with three spin quantum states (m = -1, 0, +1).  

Table 1 summarises the relationship between the number of nucleons and the spin 

quantum number [84]. 

 

Table 1. Using the number of protons and the number of neutrons to predict the spin 

quantum number of an atomic nucleus. 

152BNumber of 

protons 

153BNumber of 

neutrons 

154BSpin quantum 

number (I) 

155BExamples 

156BEven 157BEven 158BZero 159B

12C, 16O, 32S 

160BOdd/Even 161BEven/Odd 162BHalf Integer 163B

1H, 13C, 31P, 35Cl 

164BOdd 165BOdd 166BInteger 167B

2H, 14N 
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Protons, the most commonly observed nuclei, have a spin of 1/2. Each 1H 

nucleus can experience one of or a weighted sum of the two spin quantum states (i.e., 

eigenstates) associated with m = +1/2 and -1/2 respectively. Any nucleus with a non-

zero I possess a spin angular momentum (I) and thus a magnetic moment (μ) which 

can be calculated by  

 

 =μ I   (3) 

 

where γ is the gyromagnetic ratio. In the presence of B0, the energy (E) associated with 

a particular spin quantum state can be calculated by [83]: 

 

 
0

0

E

mB

= − 

= −

μ B
  (4) 

 

where ћ is the Planck’s constant divided by 2π. According to the Eq. (4), spins with 

different m values will stay at different energy levels on the application of B0, which 

is so-called Zeeman effect illustrated in Figure 3.   

 

 

Figure 3. The Zeeman effect on I = 1/2 nuclei creating an energy difference (ΔE). 

 

As shown in Figure 3, there are two energy levels associated with the two eigenstates, 

a higher energy level for the β or m = -1/2 eigenstate and a lower energy level for the 
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α or m = +1/2 eigenstate. The ratio of nuclei at each eigenstate can be described by the 

Boltzmann distribution [85, 86]: 

 

 
 

 

E

kT
N

e
N







=   (5) 

 

where N is the population of the spins/nuclei at particular eigenstate, k is the 

Boltzmann's constant (1.3805 × 10-23 J K-1) and T is the temperature in Kelvin (K). At 

room temperature, the spins in the α state outnumber slightly the spins in the β state. 

The population difference between the spin states is calculated by: 

 

 
( ) ( )
( ) ( )

0
exp / exp /
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a

a

E kT E kTN N B

N N kTE kT E kT

 
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= 

+ − + −
 . (6) 

 

From Eqs. (4) and (6), a stronger B0 will result in a higher ΔE, a higher population 

differences, and thus a higher NMR sensitivity. The NMR sensitivity of a particular 

isotopic species can also be affected by the gyromagnetic ratio and the natural 

abundance of the isotope as shown in Table 2 [83]. 

 

Table 2. NMR sensitivity of commonly observed nuclei. 

168BNucleus 169BSpin 

Quantum 

Number 

(I) 

170BGyromagnetic 

Ratio (107 rad 

T-1 s-1) 

171BNatural 

Abundance (%) 

172BSensitivity 

compared to 1H (%) 

173B

1H 174B1/2 175B26.7520 176B99.984 177B100.00 

178B

2H 179B1 180B4.1067 181B0.0156 182B0.965 

183B

7Li 184B3/2 185B10.3962 186B92.58 187B0.29 

188B

13C 189B1/2 190B6.7265 191B1.108 192B1.59 

193B

15N 194B1/2 195B-2.7108 196B0.365 197B0.104 

198B

23Na 199B3/2 200B7.0761 201B100.00 202B0.093 

203B

43Ca 204B7/2 205B-1.8025 206B0.135 207B8.68 × 10-4 
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2.2 16BLARMOR FREQUENCY 

The magnetic moment associated with each spin precesses around the applied external 

field at the Larmor frequency ω0 (rad s-1) determined by [87]: 

 

 0 0B = −   (7) 

 

or expressing the frequency in Hz is given by 

 

 
0 0

1

2
v B



−
=  . (8) 

 

Each isotopic species has a unique gyromagnetic ratio and thus a unique Larmor 

frequency for a given B0. If the gyromagnetic ratio has a positive value (e.g., for 1H), 

the precession occurs in the clockwise direction while anti-clockwise precession is 

observed for a negative gyromagnetic ratio (e.g., for 15N) [83, 84]. As an example, a 

Larmor frequency of a proton (γ = 267.513×106 rad s-1T-1) in an external magnetic field 

of 9.4 T, is 25.13×108 rad s-1 (400 MHz).  

2.3 17BMAGNETISATION 

The sum of the individual magnetic moments exposed to the applied magnetic field 

would form a net magnetisation vector M as shown in Figure 4. This vector is 

associated with the population differences of the spins occupying different eigenstates. 

Thus, the net magnetisation vector at the thermal equilibrium state (i.e., M0), will be 

pointing along the direction of the applied field (i.e., +z direction). 
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Figure 4. a) The individual magnetic moments precessing around the z-axis, 

illustrating the slight excess of magnetic moments aligned with the applied field (B0) 

which is aligned along z. b) The net magnetisation (M) is the sum of all the magnetic 

moment vectors exposed to the applied field [88]. 

 

At the thermal equilibrium state, no NMR signal can be obtained since the spin 

ensemble is fully relaxed. In order to detect the precessing spins, the system has to be 

perturbed by the application of radiofrequency radiation.  

2.4 18BRADIO FREQUENCY PULSE 

It does seem impossible to pull the magnetisation vector away from its equilibrium 

states at first, since the external magnetic field (B0) is so strong. However, with this 

applied external magnetic field, the Larmor frequency of any active nuclei falls in the 

range of the radiofrequency. When there is an application of a very small magnetic 

field (B1) oscillating at the Larmor frequency along the x-axis, this small magnetic 

field can pull the net magnetisation away from the equilibrium state [88]. 

 This oscillating magnetic field, B1, is applied as an RF pulse and its duration 

and the amplitude can manipulate the nuclear polarization between +z –axis to the –z-

axis. Typical RF pulses have durations of the order of 10 μs. This transition can be 

illustrated in two different frames of reference: laboratory/stationary and rotating 

frame as shown in Figure 5.  
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Figure 5. During the application of an RF pulse along the x-axis, the net magnetisation 

(M) experiences a combination of the rotations around the x- and z-axes in the 

laboratory frame a) or an apparent rotation around the x-axis in the rotating frame b). 

Immediately after the application of the RF pulse, the transverse component of the net 

magnetisation (M’) precesses around the z-axis c). 

 

Using the rotating frame of reference, the vector length of the net magnetisation with 

duration of the RF pulse at each axis can be calculated by: 

 

 

( ) ( ) ( )

( ) ( ) ( )
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0 0

0 0

0

sin cos

sin sin
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x
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z
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M t M t
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=

= −

=

 . (9) 

 

Once the M reaches the y-axis, the voltage recorded from a coil at the x-axis would 

measure a maximum voltage. A pulse that causes M to tilt orthogonal to B0 is called a 

90º (π/2) pulse. The B1 field also creates coherence within the spins, meaning the 

phases of the spins are partially correlated. When the spins are correlated, the 

transverse vector becomes measurable. 

2.5 19BPULSE ACQUIRE EXPERIMENT 

The most basic NMR experiment is called a pulse and collect or pulse-acquire 

experiment [88], illustrated in Figure 6. The first two periods have been mentioned in 

the previous two sections. At the end of the period (2) in Figure 6, as the RF pulse is 
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switched off, the spins are coherently precessing in the transverse xy-plane at the 

Larmor frequency.  

The third period is known as the 'dead time' and lasts for approximately 10 μs. 

This delay time is important due to the coil geometry having the RF pulse emission 

and the signal detector located on the same axis. If any residual voltage from the RF 

pulse remained within the circuitry during the signal detection, the signal would be 

destroyed and the detection circuitry might be damaged.  

 

 

Figure 6. The pulse-acquire experiment. (1) This delay, which is typically of the order 

of seconds, allows the nuclear spins to reach the thermal equilibrium state. (2) A π/2 

RF pulse is applied to the magnetisation. (3) The dead time delay between the end of 

the RF pulse and the opening of the receiver. (4) The signal detection/acquisition 

period, typically of the order of a second, in which the FID is collected. 

 

When the RF pulse has switched off, the net magnetisation is free from external RF 

radiation, it starts to precess back to its thermal equilibrium state. This process is called 

“spin relaxation”. The precession induces an oscillating electric current by Faraday 

induction. The current is detected by the receiver on the same axis along which the RF 

pulse was applied. The collected voltage is then amplified and digitised through an 

analogue-to-digital converter (ADC) forming the FID.  

2.6 20BRELAXATION 

There are two types of relaxation processes observed after the RF pulse has removed. 

One involves the restoration of the spin population back to its thermal equilibrium 
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state (i.e., Boltzmann distribution). The second is the process in which the coherence 

of the transverse magnetisation decays back to zero. Those two relaxation processes 

are often denoted as T1 and T2 relaxation, respectively [89]. 

T1 (Longitudinal) relaxation: Longitudinal relaxation refers to the return of the 

longitudinal component of the magnetisation (i.e., M) back to its thermal equilibrium 

state after it has been excited (e.g., by the application of a π/2 RF pulse as in Figure 5. 

During this process, the spin states and the corresponding energy states will be flipping 

up and down changing their energy levels different to its surrounding (the “lattice”). 

The maximum energy difference occurs when the bulk magnetization is on the xy-

plane. The minimum energy difference will be obtained once the bulk magnetization 

returns to its thermal equilibrium state along the z-axis. The return of thermal 

equilibrium generally follows an exponential time course characterised by a time 

constant T1 also known as spin-lattice relaxation time. 

T2 (Transverse or spin-spin) relaxation: T2 relaxation represents the loss of 

phase coherence due to the energy exchange between the spin states. Specifically it 

reflects the loss of the net transverse magnetisation (i.e., in the xy-plane) as it returns 

to its thermal equilibrium state of zero transverse magnetisation. Similar to 

longitudinal relaxation, this process is also described by any exponential time course, 

but in this case it is characterised by a time constant T2. The transverse magnetization 

at time t after an RF pulse is defined by [90-93]: 

 

 
0

2

( ) expxy xy

t
M t M

T

 −
=  

 
 . (10) 

 

T2 is always shorter or equal to T1. Although for a single resonance the spectral line 

width at half maximum intensity is given by 1/πT2, accurate measurements of T2 are 

normally performed with a spin echo sequence (π/2 - τ - π - τ – acquisition) [94]. 

The majority of NMR experimental time is occupied by the recovery delay 

time (e.g., period (1) in Figure 6) where spin relaxation (mainly the longitudinal 

relaxation) takes its place. For some nuclei such as 29Si and 13C NMR which are known 

for their long relaxation times this can greatly affect total experimental time [95, 96].  
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105BInversion recovery 

The inversion recovery experiment is used to determine T1 relaxation time. The 

standard inversion recovery experiment [92, 93, 97, 98] illustrated in Figure 7. 

 

 

Figure 7. The inversion recovery experiment. The signal intensity changes when  is 

varied.  

 

In this sequence the π RF pulse pushes the net magnetisation vector to the –z-axis. If 

the following π/2 RF pulse is applied immediately after, then the net magnetisation 

vector will then be oriented along the –y-axis giving a maximum negative intensity. 

By acquiring a series of spectra with different , a plot of signal intensity versus  will 

reveal an exponential profile as shown in Figure 8.  
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Figure 8. A plot of exponential recovery of Mz versus  in the inversion recovery 

sequence. 

 

The signal intensity in the inversion recovery sequence is described  

 

 ( ) ( )( )0 1τ 1 2exp τM M T= − −   (11) 

 

After one T1, the net magnetisation relaxes back to 63% of its thermal equilibrium 

value. For the net magnetisation to relax back to 99% of its thermal equilibrium value, 

a delay equal to five times T1 is required [88]. Thus, knowledge of T1 values is 

important for conducting many NMR experiments where quantitative results are 

required. 

 The τ value when the signal intensity reaches zero (i.e., the "null point"), 

termed "τnull" is the point at which the longitudinal relaxation has relaxed back to the 

point Mz = 0. Thus, a rough estimate of T1 can be obtained from experimentally 

determining τnull and noting from Eq. (11) that: 

 1 ln(2)nullT =   . (12) 

 

More generally, accurate estimates of T1 require a series of measurements with a range 

of τ delays as depicted in Figure 8, Eq. (11) is then regressed on to the data to provide 

the T1 estimate. 
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2.7 21BQUADRUPOLAR NUCLEI 

Quadrupolar nuclei (I >1/2) have a non-spherical distribution of electric charge, 

characterised by a constant called the quadrupole moment, Q [99]. The higher the 

quadrupole moment is, the more asymmetrical (e.g. ellipsoidal) the charge distribution 

is. 

The spectral line width of a particular quadrupolar nucleus is heavily 

dependent on the magnitude of its quadrupole moment. For example, 2H nuclei with a 

relatively low Q = 0.0028 give a reasonably sharp spectral line. In contrast, 125I- nuclei 

with a relatively high Q = 0.6 give a broad spectral line (i.e., 125I-, half height spectral 

width ≈ 1800 Hz) [100]. In solid-state NMR, quadrupolar nuclei are well known for 

showing multiplets with broad line shape [101]. This is due to the fact that quadrupolar 

interactions are usually stronger than chemical shift effects and/or dipole-dipole 

couplings [4]. In liquid-state NMR, on the other hand, quadrupolar nuclei are observed 

as single resonances [102].  

The difficulty in measuring quadrupolar nuclei is that some of the quadrupolar 

nuclei (e.g., 23Na, Q = 0.1) have very short T1 and T2 relaxation times [17] by virtue of 

the efficiency of the quadrupolar relaxation mechanism – especially when subject to a 

large electric field gradient as, for example, when a quadrupolar ion is bound to a 

protein binding site [103-105]. As opposed to 23Na nuclei, 7Li (Q = -4×10-2) and 6Li (Q 

= -8×10-4) have relatively slow relaxation [106-108]. In addition, many quadrupolar 

nuclei have an inherently low receptivity which is sometimes exacerbated by low 

natural abundance (e.g., 43Ca has a natural abundance of 0.145%, and an absolute 

sensitivity of ∼ 9.27×10-6 compared to 1H) [105]. Observation of such nuclei often 

suffers from low sensitivity. Generally, the quadrupolar NMR line shape is distorted 

due to the first, second and above orders quadrupolar couplings corresponding to I =1, 

I = 3/2 and above respectively [109, 110]. 

2.8 22BDIFFUSION NMR 

The random thermal motion of a molecule, also known as Brownian motion [111-113], 

is one of the most fundamental forms of molecular transport. Brownian motion is the 

underlying mechanism behind all chemical reactions and binding and aggregation 
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processes [111, 114, 115]. Self-diffusion, also known as translational diffusion, 

characterised by a diffusion coefficient D (m2 s-1), is the measure of Brownian motion 

in a solution at thermal equilibrium. The diffusion coefficient of a species depends on 

many factors such as concentration, temperature, and viscosity. As such, diffusion 

coefficient can provide information on the molecular size [116] and shape [117], 

reaction kinetics [118], aggregation processes [119], and even the surrounding boundary 

structures such as cell walls [120].  

Diffusion coefficient can be experimentally measured using a range of 

techniques [121], including pressure decay method [122], capillary methods [123] and 

fluorescence spectroscopy [124]. However, most of the methods have a very limited 

sensitivity range. NMR, on the other hand, can measure diffusion coefficients in the 

range of 10-6 to 10-15 m2 s-1 [121]. In NMR, there are two methods of measuring diffusion 

based: relaxation-based [125-129] and PGSE NMR [130]. The two methods are 

discussed briefly below.  

106BRelaxation-based method 

The self-diffusion of a molecule in solution state can be characterised by a specific 

time constant called rotational correlation time (τc). The rotational correlation time is 

the average time that a molecule requires to rotate by one radian (typically in the range 

of picoseconds to nanoseconds [91, 128]). The rotational correlation time is determined 

from T1 relaxation measurements [27, 34, 126, 131-134]. Once the rotational correlation 

time is known, the viscosity η of the solution can then be calculated using the Debye 

equation [135] 
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where rs is the Stokes radius of the spherical particle. This viscosity parameter can 

then be used to estimate the friction coefficient f, which in turn provide the diffusion 

coefficient using the Stokes-Einstein-Sutherland equation [136-138]  
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Combining Eqns. (13) and Eq. (14) gives 
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Note however, that in the above equations, the observed molecules are 

assumed to be spherical. Prior knowledge (estimate) of the Stokes radius is also 

required. In reality, very few molecules, especially macromolecules are even close to 

spherical in structure. Thus, estimation of the diffusion coefficient using the relaxation 

method will have limitations, leading to the prevalence of the PGSE method, discussed 

below.  

107BPulse gradient spin-echo 

The PGSE NMR technique measures the diffusion coefficient from the spin-echo 

signal attenuation process [28, 139, 140]. A typical PGSE experiment, illustrated in 

Figure 9, starts with the application of a π/2 RF pulse, reorientating the magnetisation 

into the transverse plane. A pulsed magnetic field gradient of amplitude g and duration 

δ is applied to spatially encode the spins, thereby forming a magnetisation helix. At 

the end of the first τ period a π RF pulse is then applied to change the chirality of the 

helix.  
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Figure 9. The Hahn-spin echo based PGSE sequence. The black rectangles are RF 

pulses. The blue rectangles are the (identical) applied magnetic gradient pulses of 

duration δ and amplitude g. The echo maximum occurs at 2τ and the second half of 

the echo (denoted by the solid line) is collected as the FID. 

 

During the second τ period second gradient pulse (of the same magnitude and 

duration) is applied to unwind the helix and decode the spins. This second gradient 

pulse occurs after a delay Δ after the first gradient pulse. Δ defines the timescale 

of the diffusion measurement. If there is no diffusion of spins along the direction 

of the gradient pulses during Δ, complete decoding of the helix will be observed 

leading to a maximum of the spin-echo signal. However, in reality, self-diffusion 

results in degraded decoding and consequently an attenuated NMR signal. In a 

typical diffusion experiment, the PGSE sequence is repeated numerous times 

with different gradient strengths, and a profile of echo attenuation is obtained. 

Provided all other parameters are the same, the diffusion coefficient can be 

estimated by regressing the Stejkal and Tanner equation [28], 
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onto the diffusion data. In the second line of the Eq. (16), all the experimental 

parameters are combined into the so-called diffusion weighting factor b (also simply 

known as the b value). Note that in diffusion experiments, as the signal attenuates, so 
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does the NMR sensitivity. Therefore, a large number of scans are often required to 

obtain accurate results. A commonly used variant of the PGSE sequence is the pulsed 

gradient stimulated echo sequence (PGSTE) [141]. It is particularly useful for 

measuring the diffusion of larger molecules. The important aspects of how it measures 

diffusion and the analysis of the resulting data are essentially the same as the PGSE. 

2.9 23BSOLVENT SIGNAL SUPPRESSION 

With a biological sample, it is common to have a significantly high proportion of H2O 

as solvent compared to the solute. For example, in protein structure analysis using 1H 

NMR, a protonated solvent is required to observe exchangeable protons within 

proteins [142, 143]. Thus, a buffer containing 90% H2O and 10% D2O (v/v) is 

commonly used to dissolve biomolecules [144]. In 1H NMR, the resonance of H2O 

appears at ~4.8 ppm and often overlaps with solute resonances of interest. A large 

solvent signal requires a relatively low RG to avoid receiver saturation [145]. This 

often leaves the sensitivity enhancement entirely to signal averaging [146]. Other 

complications such as radiation damping, the demagnetizing field effect, and baseline 

distortion are commonly observed in the presence of a large solvent peak [147, 148]. 

The suppression of solvent resonance can be achieved by using pulse sequence 

based methods (e.g., PURGE [149], WET [150], WATERGATE [151, 152]) and post-

processing methods (e.g., [153-156]). As an example, the WATERGATE pulse 

sequence is discussed in the next subsection. One example of post-processing-based 

solvent suppression is discussed in Section 3.7.1. 

108BWATERGATE 

The WATERGATE pulse sequence [151] (Figure 10) is one of the most robust solvent 

suppression techniques and it can be combined with PGSE NMR diffusion 

experiments [157, 158]. Within the WATERGATE sequence, the first π/2 RF pulse 

bring the magnetisation to the y-axis on the xy-plane which is then de-phased by the 

application of a shaped magnetic gradient pulse with strength g, then a selective π 

pulse inverts all except the solvent magnetisation, and finally the last gradient pulse 

de-phases the solvent magnetisation further due to the accumulation of the dephasing 

effect, leaving only the solute magnetisations detectable. 
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Figure 10. A standard WATERGATE sequence: a selective binomial π pulse 

(represented by a bar grouping) sandwiched by two identical shaped gradients (g). The 

coherence transfer pathways of the solvent and solute resonances are also shown 

underneath the pulse sequence by solid black lines. Illustration adapted from [158]. 

 

A standard pulse sequence parameter settings for a WATERGATE experiments are: g 

= 0.1 T m-1 for a duration of 1 ms, and  = 2 ms [158]. Water suppression for PGSE 

(PGSE-WATERGATE) was also developed (see Price [157]). The application of  

WATERGATE or the like allows observation of the resonances of dilute solutes and 

exchangeable protons.  
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CHAPTER 3. 2BNMR SIGNAL 

ACQUISITION AND PROCESSING  
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3.1 24BNMR SIGNAL 

During the signal acquisition, the oscillating voltage which decays exponentially over 

time is then amplified and demodulated to baseband. Which then digitized through an 

ADC converter to store the FID numerically. With signal averaging the digitised FIDs 

are added coherently before visually presented as the FID and later as the spectrum 

via time to frequency domain transform (e.g., Fourier transform). 

3.1.1 58BSignal amplification and digitisation 

As shown in Figure 11, the weak NMR signal is amplified and demodulated by a 

receiver system containing a preamplifier, an intermediate frequency (IF) amplifier, 

mixers, and two low pass filters [159]. Without folding of signals, the process signals 

guarantees “clean” spectra and removal of noise signal folding can improve SNR [160]. 

The total gain in such a system is typically between 60 – 100 dB. 

 

 

Figure 11. Flow diagram of a quadrature detection receiver system. 

 

If the receiver gain is low, the SNR is often poor; on the other hand, artefacts can be 

observed when high receiver gain is used in the presence of strong resonances. For 

example, if there is a strong solvent or solute signal present, a low receiver gain is 
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usually required to avoid FID being clipped (Figure 12). The spectrum obtained from 

a clipped FID suffers from both intense baseline and lineshape distortions [161, 162].  

There is a very short delay between the last RF pulse application and the 

beginning of the signal acquisition. This delay called the group delay or dead time is 

used to allow the diplexer, which separates the receiver and transmitter, to prevent the 

current generated by the preamplifier from flowing to the (sensitive) receiver. 

 

 

Figure 12. An FID is clipped when a high receiver gain is applied. The dotted line is 

used to indicate the clipped part of the FID. The height of the box represents the 

dynamic range of the digitiser and the length of the box represents the effective 

acquisition time. 

The duration of the group delay takes about 60 to 80 data points before the observable 

FID starts. Meaning the first 60 to 80 data points of the FID signal will be eliminated 

and so the acquired FID does not start at time = 0 s. Without proper treatment, Fourier 

transformation of such an FID results in severe spectral artefacts including baseline 

artefacts especially at the outer region of the spectrum. Commercially available 

software such as Topspin, MestReNova, Chenomx and other open source such as 

PepsNMR [163] have algorithms that attempt to remove such artefacts. The lost data 

during this group delay can also be estimated by backward Linear Prediction method 

[164-166]. 

 

As shown in Figure 13, the relationship between receiver gain (RG) and SNR 

was studied experimentally. A 23Na 105.8 MHz NMR spectrum of 100 mM NaCl in 

D2O was obtained in a pulse acquire experiment. Each measurement was made with 

one scan and with various receiver gain values (i.e., RG = 2k, where k = 0, 1, 2… 14). 
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As shown in Figure 13a and b, the spectral amplitude increases linearly with RG while 

the SNR experiences a sharp rise when RG ≤ 32 and then levels off. Therefore, the 

RG level is not necessarily required to be set to its maximum value to yield high SNR. 

More details of the receiver gain function are studied diligently by Hoult [159, 167] 

and Mo [145, 168, 169]. 

 

 

Figure 13. a) The stacked 23Na spectra of 100 mM NaCl in D2O with various RG values. 

b) The SNR values calculated for the spectra shown in a).  

 

3.1.2 59BFree induction decay 

Without the spin relaxation process, the free evolution of the transverse components 

of the magnetisation is given by, 
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where M is the magnitude of the magnetisation, ϕ denotes the initial phase and ω0 is 

the Larmor frequency (see Chapter 2). The acquired signal is then given by, 
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where, without loss of generality ϕ = 0, and Sx(t) being defined by the first term on 

line two of Eq. (18) and Sy(t) by the second. S0 is simply proportional to M, its actual 

magnitude being unimportant. Adding the effects of transverse relaxation T2 (see 

Section 2.6) to Eq. (18) gives, 
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Both Eqs. (18) and (19) assume that signal at t = 0, the Sx (t) components have its 

maximum magnitude and Sy (t) has zero magnitudes (i.e. ϕ = 0 as above). With 

experimentally collected data, this is often not the case and the phase ϕ may be 

unknown. The phase shift parameter ϕ can be included in the complex signal as 

followings, 
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  (20) 

 

As discussed before, every experimentally measured signal (i.e., FID) contains noise. 

Since the noise comes from multiple sources, its distribution cannot be expressed by 

a simple formula. Here it is simply defined as wt and added to the Eq. (20) 
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Eq. (21) represents the mathematical formula for the signal obtained from liquid state 

spin-1/2 nuclei. Most samples are composed of many nuclei in different chemical 

environments and thus possessing different Larmor frequencies. The signals from such 

samples are thus summations over the signals from all the individual nuclei. The nuclei 

can be divided into classes with each class being composed of nuclei in the same 

chemical environment. Nuclei in different chemical environments will have different 
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Larmor frequencies and relaxation times, giving a signal that is a summation over 

these different classes, 
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where the superscript k’s denote variables that now depend on the class of nuclei. As 

an example water has one class of hydrogen nuclei (all the protons are in the same 

chemical environment) giving one peak but ethanol has multiple classes (CH3 

hydrogens, CH2 hydrogens and OH hydrogens) giving more than one peak. When the 

acquired signal is digitised – S(t) becomes xn with xn = S(nΔt), i.e. the signal is sampled 

at time intervals of Δt. Taking account of multi-resonance and digitisation, the FID 

signal S(t) is rewritten as xn, the sum of K exponential decay sinusoids plus the noise 

wn as, 
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The acquired signal can be thought of as a vector, each component (n = 0, 1,.., N-1) 

being given by Eq. (23). The nth component of the vector is the signal at time n∆t. The 

relaxation parameter (t/T2) is replaced by damping factor d. Other parameters Ak, ϕk, 

and fk represents the signal amplitude, the phase and the frequency of the kth 

exponentials (i.e. there are K classes of nuclei). 

3.1.3 60BFourier transform 

With the introduction of Fourier transform NMR, the Fourier transform became the 

fundamental method of choice for domain transformation between time and frequency 

[170]. Let x(t) to denote a time domain function (i.e., xn in Eq. (23)), Fourier 

Transformation of x(t) [170, 171] is given by: 
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where X(f) represent the frequency-domain data and its inverse Fourier 

Transformation (IFT) is given by: 

 

  ( ) ( ) ( )exp 2x t X f ift df


−
=  .   (25) 

 

Eq.(24) is also known as continuous time Fourier transform (CTFT). However, since 

the FID starts at time t = 0, integration in Eq. (24) goes from 0 < t < ∞ when converting 

FID from the time to the frequency domain. Since the signal has been digitised to 

transform from the time to the frequency domain requires the “Discrete Fourier 

Transform” to be applied instead.  

109BDiscrete Fourier transform 

The discrete Fourier transform (DFT) is slightly different from CTFT, the formula is 

given by [171]: 
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and its inverse is 
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for n = 0, 1, …, N-1 and k = 0, 1, …, N-1. Explaining a little further on Eq. (26), if  
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then, Eq. (26) can be simplified into  
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 ( ) ( ) ( )0 0 1 1 1 1exp exp expn N NX x b i x b i x b i− −= − + − + + −   ,  (28) 

 

where the exponential part of this equation can be expanded into sine and cosine 

function following Euler’s formula [172] 
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which leads to the sum of  real and imaginary parts,  

 

 ( )Re Imn j jX i= + .  (30) 

  

Just like the time-domain data, the spectral domain is also complex valued.  

3.1.4 61BOther spectral properties 

110BNyquist theorem 

It is important for the FID to be collected at a Nyquist sampling rate in order to 

represent the resonances at the accurate frequency after FT. This basically states that 

if the highest frequency present is f then the sampling period must be 1/(2f ). That is, 

two data points must be collected per one sinusoidal period [173]. The time interval of 

this sampling rate in the time domain is called dwell time (DW). The range of 

frequencies is called the spectral width (SW). The relationships between the SW and 

DW at Nyquist theorem is represented as: 
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Nyquist sampling method only applies to the FID measured at the constant DW which 

then transferred to the frequency domain by FT.  

111BUniform and non-uniform sampling 

Traditionally, all FIDs are collected with uniformly spaced consecutive time 

increments (i.e., uniform sampling US). If the sample rate satisfyies the Nyquist 

theorem, the resonance frequency can be obtained accurately after Fourier 

transformation. This simplicity and accuracy have made US followed by FT the 

standard signal processing procedure in NMR [174]. However, concerns over the 

trade-off between NMR resolution and sensitivity versus the length of the acquisition 

time lead to the development of the non-uniform sampling (NUS) approach [175]. In 

NUS the FID is sampled at unequal periods. NUS schemes are often designed to 

collect more data at the beginning of the signal decay with shorter time intervals than 

in the US approach, and the time interval increase as the acquisition time prolong [176]. 

In practice, the US FID is normally collected with an acquisition time~3T2 in order to 

avoid FID truncation - which would result in baseline distortion and loss of spectral 

resolution. However, after 1.26 times T2 the SNR decreases with increase in total 

acquisition time [175, 177-179]. 

NUS has now been widely adopted in multidimensional NMR experiments 

[175, 176, 180-183] and imaging [184]. In multidimensional NMR experiments, long 

experimental time is one of the concerns along with sensitivity and resolution [185]. 

Application of NUS can allow for dramatically shortened experimental times without 

loss of either sensitivity or resolution [175]. The conventional FT (including DFT and 

FFT) of an NUS dataset often yields non-lorentzian distorted resonances unless the 

NUS data is carefully supplemented with zeroes [186]. NUS is performed using either 

an on- or off-grid scheme where "on-grid" is simply a subset of the normal Nyquist 

US scheme [187] whilst an off-grid scheme (i.e., radical sampling) does not follow a 

Cartesian grid [187, 188]. A radical sampling method is often applied to nD NMR with 

narrow peak width [189]. To successfully reconstruct frequency domain from UNS 

FID data without major artefacts, a modified FT based algorithm such as nonuniform 

discrete Fourier transform (NDFT), Maximum-Entropy [190], and Iterative Soft 

Threshold (IST) [191, 192] reconstruction methods can be applied. 
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112BSpectral line shape  

The real and imaginary part (when ϕ = 0) of the frequency data is depicted as the 

absorption spectrum (Figure 14 a) and the dispersion spectrum (Figure 14 b) 

respectively. 

 

 

Figure 14. The frequency domain a) real spectra (absorption) and b) imaginary spectra 

(dispersion). 

 

If the magnetisation at the time of acquisition was not initially aligned along x then 

the spectrum will need to be phased by multiplying it by a phase factor; this is a 

relatively minor processing step described in more detail in the next section. As Figure 

14 shows, not only the spectral shape but also the spectral width and amplitude are 

significantly different between the absorption and dispersion spectrum. Only the real 

part of the frequency data illustrated in the absorption spectrum is used for the NMR 

analysis. The noiseless absorption spectral line shape is called the Lorentzian function. 

Figure 15 is presented to clarify the differences between Lorentzian and Gaussian, 

which is another major function often used for spectral line fitting.  
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Figure 15. Lorentzian (black line) and Gaussian (red line) spectral line shape and its 

difference.  

 

The obvious difference between a Lorentzian and Gaussian line shape is the rate of 

the transition from the baseline to the peak maximum amplitude. The Gaussian and 

Lorentzian line shape are given mathematically [193] by 
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Theoretically, all real resonances would have a Lorentzian line shape. However, 

spectral line shape deviation may be observed as a result of the presence of eddy 

currents, magnetic inhomogeneity and other deviations from the ideal situation 

described in the foregoing. There are many line shape correction methods available 

that are both general and specific to the origin of lineshape distortion [194-196].  
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113BPhase correction 

The phase parameter ϕ is often ignored, and it is assumed that the signal at time zero 

has maximum amplitude along the x-axis (and zero along the y-axis). With 

experimentally collected data the phase of the signal is most likely shifted such that 

the Fourier transformed spectrum has somewhere between the absorption and 

dispersion line shapes along both the real and imaginary axes. The majority of the 

NMR processing software has its own automatic and manual phase correction modules 

embedded. However, when the measured signal goes through signal processing, the 

phase parameter often requires readjustment. The basic phase correction formula has 

two orders of phase correction (i.e., zeroth and first order). Zeroth order phase 

correction is performed by the multiplication of the FID in Eq. (23) by exp(iϕcorr): 
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The zero order phase correction parameters are often found by a trial and error process 

until the spectrum obtains the absorption line shape (this is often done dynamically 

and visually). Another major phase error is known as a frequency dependent phase 

shift [88]. In most cases, the phase correction required is proportional to the resonance 

offset and the parameter used to correct it is known as first-order phase correction. 

This is essentially a multiplication of the spectrum by a factor exp(iϕ1ω). A 

combination of both first and the second phase correction is often required and is an 

iterative process, although there are some automated methods are available from 

various references [197-202]. 

 There are a few spectral distortions that cannot be corrected by phase 

correction. The origin of these spectral distortions are different from those that cause 

phase errors. An example is the Fourier ripples that appear on either side of the peak 

in Figure 16b inset. These are due to extensive FID truncation (Figure 16a). Essentially, 

there is a convolution of the Lorentzian and Sinc functions.  
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Figure 16. The effect of FID truncation in spectral sensitivity and resolution. a) 

overlapped comparison of full FID (red) and heavily truncated FID (black). b) Spectra 

of FT full FID (red) and FT of truncated FID (black) 

 

Figure 16 shows the Fourier ripples due to the heavy FID truncation. Since the lost part 

of the decaying sinusoid signal also possess the resonance property (e.g., amplitude, 

phase, frequency, and damping factors). A window function (See Section 3.4.2) can 

be applied to remove such artifacts. 

Another common spectral line shape distortion may be observed due to poor 

shimming [203]. Shimming is a part of the signal acquisition preparation process. 

Even with the high field superconductor magnet, inhomogeneity of the magnetic field 

is inevitable [203]. Inhomogeneity issue of the B0 field arises from multiple sources 

such as the magnet, probe or even the sample itself [204]. Figure 17 shows the example 

of the FID and its spectra of the good shim and bad shim (off z shim). Bad shimming 

can lead to incorrect, broad, and asymmetrical spectral line shape, wrong spectral and 

FID intensities are observed. Such measurements are often not able to be used for 

analysis. 
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Figure 17. Example of good shimming and bad shimming – how the FID and spectrum 

appear. a) FID of the good shim FID. b) The spectrum of good shim FID. c) FID 

collected where z-direction of the static magnetic field is not homogeneous. d) The 

spectrum of the badly shimmed FID. 

 

A set of shim coils that are wrapped very close to the sample are the key to 

minimise the overall static magnetic field inhomogeneity by the generation of 

compensating magnetic fields. On some occasions, the shimming process can be a 

time-consuming task due to the fact that the current going through each of the shim 

coils are changing the B0 field individually such that constant readjustment is required. 

To shorten the shimming process, automatic gradient shimming algorithms [205] were 

developed. Poorly shimmed spectra not only lose their Lorentzian line shapes but also 

lose their spectral sensitivity. These two sources of spectral line distortion (along with 

other sources) introduce distortions that cannot be solved by phase correction. Much 

attention is required during the pre-acquisition preparation period to ensure such 

distortions are at acceptable levels. 

Baseline distortion artefacts can also often be found due to instrumental field 

drift or presence of macromolecule signals or large solvent signals [206, 207]. The 

three steps baseline correction algorithm by Pearson [208] for an example, can correct 

for these effects. Those three steps are: the spectral baseline is first corrected starting 

from a determination of signal and baseline noise within the frequency domain; this is 
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followed by smooth baseline modelling using a function such as cubic spline which is 

completed by subtracting the baseline model from the original signal.  

114BWavelet transform 

Wavelet transform (WT) is another mathematical function which translates between 

the time and the frequency domain by using a function called mother wavelet ψ. 

Similar to FT, WT also has continuous wavelet transform (CWT) and discrete wavelet 

transform (DWT). While the FT has one formula for domain transform, there is an 

infinite number of mother wavelet functions that can be applied [209]. Each mother 

wavelet function has a specific boundary called compact support. Within the compact 

support region, the sum of the area underneath every wavelet function must be equal 

to zero [210]. Chosen mother  wavelet function is then two parameters dilation (s) and 

translation (u) used to fit the FID data x(t) as follows: 
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The function ψ(u,s)(t) is called daughter wavelet and the ψ itself is the original function 

which known as the mother wavelet. The factor (1 / √𝑠) in Eq. (36) is a weighting 

function and the whole translation process is done by computing the inner product of 

x(t) and ψu,s. Translation parameter determines the location of the wavelet function 

along the x-axis, and the dilation parameter defines the size of the wavelet function 

thus the parameter must be positive (s > 0). When the dilation parameter increases, the 

wavelet function stretches having wider compact support region. The stretched 

wavelet will be beneficial in analysing coarse features and gain superior frequency 

precision.  
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3.2 25BNOISE 

3.2.1 62BIntroduction  

The presence of noise in the measured signal is an inevitable problem in NMR studies. 

The noise sources can be varied: the currents that run through the spectrometer, within 

the sample itself, and also influenced by other external factors [167, 211-218]. From the 

similarity of the numerical signal presentation between acoustic and NMR 

measurements, many NMR signal processing theories and algorithms are adapted 

from acoustic signal processing methods [219]. 

3.2.2 63BTypes of noise 

Majority of the noise behaves randomly within the constant amplitude range. When 

the noise is independent of the frequency and possesses a constant spectral power 

density, such noise form is called white noise. When the noise is frequency dependent 

and has a specific noise power pattern then it is called non-white noise [220].  

 

White Gaussian noise 

In simulation studies, especially to test signal processing methods, white Gaussian 

noise is often added to a noiseless FID [221]. As the name suggested, white Gaussian 

noise follows the Gaussian probability density and being frequency independent: 
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  (37) 

 

where  -∞ < x < ∞, μ is the mean and σ2 is the variance (σ is the standard deviation). 

The term “white” signifies that the noise distribution is independent of frequency. 

Alternatively, it can be characterised as noise such that all sample points are drawn 

from the same distribution independently. Figure 18 The distribution pattern and the 

spectral presentation of three major noise types: uniform, white Gaussian and flicker 

noise are presented in Figure 18 as examples.  
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In Figure 18, both the white Gaussian noise and flicker noise histograms show 

a Gaussian distribution whereas the uniform noise histogram is clearly non-Gaussian. 

While the flicker noise has a Gaussian distribution it is not white noise as the 

probability distribution for each data point is influenced by its immediate predecessor. 

Flicker noise is often referred to as pink noise. In NMR thermal noise and shot noise 

(which are both described later in this section) both follow this white Gaussian noise 

pattern. Gaussian white noise theory in NMR spectroscopy in details can be found in 

[222]. 
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Figure 18. Comparison of three different simulated noise patterns and their 

distributions: a) uniform noise spectrum of amplitude range between -0.5 to 0.5; b) 

histogram of the uniform noise amplitude; c) white Gaussian noise spectrum; d) 

histogram of white Gaussian noise amplitude distribution; e) flicker noise spectrum; 

f) histogram of flicker noise amplitude distribution. 

 

115BNon-white noise 

Flicker noise as shown in Figure 18 c) and d) is a good example of non-white noise. 

The flicker noise spectrum and the distribution plot shows randomness. With sampling 
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and filter frequency not following the symmetrical spectral density and/or band-width 

being less than its cut-off frequency, the real and imaginary noise sinusoids will not 

have a π/2 phase difference and the signal exhibit correlations in noise signal [223]. 

The collected noise signal such as environmental, flicker noise is then considered to 

be non-white noise. 

3.2.3 64BOrigin of noise in NMR 

116BThermal noise 

Majority of the noise collected during the signal acquisition is thermal noise. Thermal 

noise is also known as Johnson noise [224], Nyquist noise [225], and white Gaussian 

noise [223]. The power spectral density of thermal noise is near constant throughout 

both time and frequency domains. As a result, the amplitude of thermal noise in the 

frequency domain follows a Gaussian distribution and being frequency independent 

means the thermal noise is a white noise. Thermal noise is the mean-squared value of 

the electromagnetic force found in the circuit due to the thermal fluctuation of the 

electromagnetic modes coupled to the charged carriers [223-225]. Thermal noise is 

depending on the resistance and temperature of the detection coil, sample, and the 

temperature of the amplifier within the circuit. As Figure 19 shows, there is no external 

voltage input, yet thermal agitations arise due to a stochastic motion of electrons in 

the conductor [225]. The root mean squared voltage of this thermal agitation in a 

narrow frequency band is given by 

 

 4N BV k TR f=  ,  (38) 

 

where R is a resistance in ohms, Δf is the frequency bandwidth. As Eq. (38) suggested, 

the thermal noise reduction is highly dependent on the temperature within the circuit 

and also the frequency bandwidth. The temperature change leads to experimental 

condition changes that may not be suitable for the study. Also shortening the spectral 

bandwidth would lead to much longer acquisition time. For further information, the 

derivation of the thermal noise equation is presented in the following context. 
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117BDerivation of thermal noise 

Let us assume there are two resistors with the equal resistance R located within the 

circuit at L distance apart from each other in the loop as shown in Figure 19. Both of 

the resistors are at the equal temperature T which generates the thermal fluctuation 

voltage (V). This voltage travel down the circuit to the other resistor, leading to a 

current (I) and measured as a power (P) in a relation of P = IV = I2R. 

 

 

Figure 19. Circuit diagram for thermal noise. Two equal resistors R are placed in the 

loop with L distance apart from its both edges. 

 

The thermal fluctuation voltage involves transferring of electromagnetic energy which 

can be viewed as the light wave travelling L distance at the velocity of c' and the 

angular frequency of ω [223-225]. The voltage of the wave function travelling to the 

right (positive) direction VR is given by 

 

 ( )0 expR RV V i x t = − ,  (39) 

 

and the voltage of the wave function travelling to the left direction VL  

 

 ( )0 expL LV V i x t = − −   (40) 

 

where VR0 and VL0 are the original amplitude of the voltage travelling to the right and 

left direction respectively, the κ = ω/c' is the wavenumber, the x is the distance 
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(0 ≤ 𝑥 ≤ 𝐿)  and t as the time that wave travelling. If the direction of the wave is 

omitted from the Eq. (39) and Eq. (40), the standing waves V(x, t), or the normal 

modes can be calculated by assuming the VR0 = VL0 = V0: 
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This standing wave function is true only if the following condition is satisfied 
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Where m is simply an integer and the λ is a wavelength. The interval between the 

standing waves in terms of the wavenumber κ is equal to π / L. The number of standing 

wave (modes) from κ to κ+dκ denoted as Nκdκ is 

 

 
L
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

=  . (43) 

 

The Eq. (43) is true only if the distance L is greater than the wavelength λ. Since the 

frequency f is equal to the velocity divided by the wavelength, it leads to 𝑓 = 𝑐′𝜅 2𝜋⁄ . 

Thus the frequency interval 𝑑𝑓 = 𝑐′𝑑𝜅 2𝜋⁄   and the Eq. (43) can be rewritten in 

frequency range from f to f + df, with the same number of standing wave Nf df  
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The density of standing wave per unit length per unit frequency interval (ρf) is then 

defined by dividing the Eq. (44) by unit length and frequency interval (Ldf): 
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'

f

f

N df

Ldf c
 = =   (45) 

 

If there are voltage and movement through thermal fluctuation, there will be energy 

involved. The simplest form of explaining the thermal fluctuations travelling through 

the circuit is as the energy in the form of photons travelling in wave function from one 

resistor to another. If N number of photons is found in each standing wave, then the 

energy state (EN) will be 

 

 NE Nhf= ,  (46) 

 

where h is Planck’s constant. If the EN follows Boltzmann distribution at the constant 

temperature T, then the energy state at thermal equilibrium state, p(EN), is proportional 

to: 

 

 ( ) ( )expN N Bp E E k T −   (47) 

 

If the number of photons is infinite (0 < N < ∞), the probability distribution of the 

photon p(N) is 

 

 ( ) ( ) ( )1 exp expB Bp N hf k T Nhf k T= − − −   .  (48) 

 

Then the average number of photons in the standing wave 𝑁̅ is given by 
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which can simplify to 
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 (50) 

 

Now combining Eq. (45) and Eq. (46) using the average number of protons in the 

standing wave obtained from the Eq. (50) which will give the average energy per unit 

length and bandwidth 𝐸̅𝑙𝑓: 
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Recalling that there are two identical resistors that each resistor carries half of the 

energy per unit length, bandwidth, times the velocity c'. The averaged power per 

bandwidth 𝑃̅𝑓 is given by 
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and multiplying the bandwidth Δf to the 𝑃̅𝑓 to estimate the total averaged power 𝑃̅  
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Now recalling the basic Ohm’s law 

 

 

2P V R

V IR

=

=
.  (54) 

 

Reformatting the Eq. (54) by replacing the R by 2R0 since the current run through both 

resistors, and similar changes to V with V0, I with I0, and P with P0. The current I0 with 

the amplitude of V0 is  

 

 0 0 02I V R= .  (55) 

 

Remembering from the Eq. (52) and Eq. (53) that the power P0 is thus 
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  (56) 

 

and knowing there is no outsourced applied voltage in the circuit, the averaged 

outsourced voltage is 𝑉̅ = 0. The mean squared voltage at each resistor 𝑉2̅̅̅̅  is 
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Therefore, the mean squared voltage difference (∆𝑉)2̅̅ ̅̅ ̅̅ ̅̅  is 
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Since the hf << kBT, the exponential in the Eq. (58) is then 
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applying the Eq. (59) to the Eq. (50) simplify 𝑁̅ to 
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and applying the Eq. (60) to the Eq. (53) will lead to the averaged power per standard 

wave measured at each resistor 

 

 BP k T f=  .  (61) 

 

Finally, combining Eq. (58) and Eq. (60) to simplify the thermal fluctuation voltage 

mean square 𝑉𝑁
2 and its root mean squares 𝑉𝑁 becomes 
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■ 

118BShot noise 

Shot noise may also know as photon noise, contact junction noise and Schottky noise. 

Shot noise first discovered its origin from the vacuum tube circuits in 1918 [226]. 

Unlike thermal noise, shot noise is independent of temperature which measures the 
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current running through at the certain point of the circuit [227]. However, the electron 

which carries the current colliding at the random point of the circuit thus the collected 

shot noise follows the white Gaussian distribution. Since the electrons activities are 

completely random on the circuit, the averaged value of the current 𝑁̅  is collected 

many times over the time intervals at length Δt with consideration of a finite electron 

charge q = -1.60×10-19 coulombs: 

 

 I t
N

q


=   (63) 

 

To increase the accuracy on the probability that N electrons are observed at the certain 

point A in Figure 20 during the time interval Δt the averaged value is then divided by 

a large number of counted charges n. The probability of an electron passing through 

the point A within the one time segmented is equal to (𝑁̅ 𝑛⁄ ) ≪ 1 and it opposes that 

the probability of and electron not passing through the point A during the time segment 

is 1 − (𝑁̅ 𝑛⁄ ). 

 

 

Figure 20. Shot noise current circuit.  

 

The probability of the electron passing through the point A within the N time 

segments is (𝑁̅ 𝑛⁄ )𝑁 thus the probability for electrons not passing through the point A 

during the remaining 𝑛 − 𝑁  segments is (1 − 𝑁̅ 𝑛⁄ )𝑛−𝑁 . One problem in this 

probability is that the fact you cannot distinguish one electron from another. Including 

this issue, the probability of the exact N electrons passing through within the time 

interval Δt is given by following binomial distribution  
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The proof of the sum of the probability to be equal to one is stated as follows: 
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Since the probability has been proving, the fluctuation of the noise current IN is: 
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and recalling the Nyquist sampling rate theorem, ∆𝑡 = 1 (2∆𝑓)⁄  , the root-mean-

square of the noise current is given by 

 

 2NI qI f=  .  (67) 
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To reduce the shot noise, the structural circuit is often used aluminium for its light 

weight and nonmagnetic nature. 

119BFlicker noise 

Flicker noise is a unique noise that found only at low frequency [226] often called 

pink, 1/f noise. The cause of this noise is not well understood or known however it is 

found specifically in the frequency range lower than 100 Hz. The first spectral density 

measurement of a flicker noise was measured by Johnson in 1925 [228] while he was 

studying shot noise. While Johnson studying the shot noise the excess spectral density 

was found at the lower frequency despite the fact the shot noise does not have a 

frequency dependency. The name “flicker effect” was given by Schottky in the 

following year with brief theoretical explanation [226]. Unlike other spectral property, 

the flicker noise does not have a Lorentzian structure but the distribution of flicker 

noise falls into the Gaussian. 

As for mathematical modelling, McWhorter Model describes the flicker noise 

as the fluctuation of the charge trapped in the surface area [229], which later studied 

further by Reimbold [230] and Ghibaudo [231] separately to define the spectral density 

of the drain current. The Brophy’s experiment raises the issue of large fluctuation in 

the variance; however, this issue was reinvestigated by Hooge and Hoppenbrouwers 

that the flicker noise variance is constant. His argument was supported experimentally 

[214] and theoretically [232]. Flicker noise is inversely proportional to the total number 

of free electron charges within the sample volume and also as long as the current level 

is low the power of flicker noise is negligible since the thermal noise will dominate 

[233]. 

120BEnvironmental noise 

To measure the signal accurately and highest sensitivity as possible, the external 

magnetic field homogeneity holds a very important role. Anything that disturbs the 

condition such as the electric current from the surrounding apart from the appropriate 

RF circuit, temperature differences, even floor vibration can affect the magnetic field 

homogeneity a risk [234, 235]. Environmental noise affects more on the lower field 

such as Earth’s field NMR. Each noise source and the measuring condition affect the 

overall signal differently, which therefore there is no specific mathematical model to 
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express environmental noise. Majority of the environmental noise is collected at the 

conductor of an instrument itself as an antenna. The environmental noise sources can 

be a power line (60 to 240 Hz), radio (just below 106 Hz) and TV (around 107 Hz) 

signal with narrow frequency bandwidths [211], or even by lightning that occurs close 

to the facility. Since environmental noise has a variety of sources it does not always 

classify as white or Gaussian noise.  

121BFloor vibration 

Due to the presence of floor vibration, where the NMR spectrometer located can be 

crucial to the NMR spectrum [234, 235]. The study concluded that the sensitivity 

strongly varies with frequency and similar to flicker noise, the noise becomes more 

significant below 10 Hz. The direction of vibrations also affects differently toward the 

sensitivity where horizontal vibrations are ten times more likely to affect sensitivity 

than vertical direction [236]. In the frequency domain, unlike white Gaussian noise, 

the environmental noise often selectively appears where the signal is and distorts 

Lorentzian spectral line shape. As a solution, the vibration isolation system is often 

installed to reduce the effect of floor vibration noise [236].   

122BNuclear spin noise 

The nuclear spin noise was first predicted by Bloch in 1946 [237], observed by Sleator 

et al. in 1985 [238]. Bloch stated that there is a weak residual of spin states due to the 

incomplete cancellation of magnetic fluctuations are to be observed as a noise. To 

experimentally measure nuclear spin noise, long consistent FID without any RF pulse 

or gradients are first collected. The collected time domain data were then divided into 

a segment with the length equal to the T2 relaxation time. Each segmented FIDs are 

then Fourier transform into the spectral data and accumulation of the data just like the 

time averaging of the signal are observed as nuclear spin noise spectra. It was truly 

difficult to measure the nuclear spin noise until recently. Since the first successful spin 

noise measurement was taken, more researchers such as Hoult and Bhakar [239] 

discover the truth of the nuclear spin noise of the different nuclei.  

There are two major factors that considered as the origin of this particular noise. 

The first is the quantum fluctuation of the transverse magnetisation and the other is 

incoherence in RF excitation which produces the Nyquist noise at the detection circuit 
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[240]. It is also known that the nuclear spin noise has a strong correlation to radiation 

damping which induced by the precessing transverse magnetisation current in the 

detection coil. Theoretically speaking, the nuclear spin noise shape is considered 

Lorentzian however it is often highly distorted.  

The total spin-noise power W(ω) that Sleator et al., and McCoy and Ernst have 

derived is following: 
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where Δω is the resonance offset which is between the Larmor frequency and the 

circuit resonance frequency, α is the damping factor and a(Δω) and d(Δω) are 

absorptive and dispersive spectral components respectively. The spectral line shapes 

of both absorptive and dispersive nuclear spin noise are: 
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The actual study and observation begin much later in the NMR history. In 1985 

the first nuclear spin noise observed by Sleator at liquid helium temperature [238], 

followed by McCoy and Ernest [240], Gueron and Leroy [241] independently in 1989 

at ambient sample temperature. The interests in spin noise increase rapidly recently 

for the probe tuning optimisation technique [242-244].  

123Bt1 Noise 

In multidimensional spectra, there are streaks along the indirect (t1) direction is often 

found randomly and this type of noise is specifically called “t1 noise” which considered 

due to the instrumental instabilities collected during signal acquisition [245]. The 

source of t1 noise includes a variation of the rotation angle and the phase of the RF 
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pulse, difference in the intervals between the operation, sample spinning (which cause 

amplitude and phase shift), receiver gain instability and magnetic field inhomogeneity 

[245, 246].  There are few post-processing methods such as reference deconvolution 

method [247], and Cadzow procedure (i.e., based on composite property mapping 

algorithm, see Section 3.7) [49] have been developed to reduce t1 noise. 

3.3 26BNMR SENSITIVITY 

The low sensitivity of NMR in comparison to other techniques such as mass 

spectroscopy and electron spin resonance has been mentioned previously as a key 

disadvantage. Sensitivity fundamentally comes down to the SNR, and NMR 

sensitivity can, therefore, be improved either by increasing the NMR signal or 

reducing of the noise. In this section, the calculation of SNR is briefly described 

followed by various approaches and key features that relate to NMR sensitivity and 

which are presented in the subsections below. 

3.3.1 65BSignal to noise ratio 

In NMR, there are a number of different equations for determining SNR values [167, 

248-250]. Some of these are described below. 

124BTheoretical SNR calculation 

Previously, major noise types and their origins were presented and there were several 

SNR studies in the early days of NMR development [159, 167, 251] using those 

information. A comprehensive expression for SNR giving the contributions from 

current and resistance in the receiver coils (see Hoult [167]) is given by: 
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Where the SNR Ψrms is estimated from many factors: K(B1)xy is the inhomogeneity 

factor and depends on the coil geometry, Vs is the volume of the sample and Nspin is 

the number of spins at resonance per unit volume, Ts is the temperature of the sample, 
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ρc is the perimeter of the conductor, F is the noise figure of preamplifiers, Tc the 

temperature of the coil, lc the length of conductor, ζ the proximity factor which 

replaces the filling factor and quality factor of the coil, Δf is the bandwidth (Hz) of the 

receiver, 𝜔0 the Larmor angular frequency, ς the permeability of the wire, ς0 the 

permeability of free space, and the ρ(Tc) the resistivity of the conductor. In this 

equation, there are many factors that cannot be defined or calculated accurately and 

the equation is not generally applicable to the every coil geometry.  

 Even though the SNR formula above cannot provide an accurate figure for the 

SNR for many situations it does emphasize the relationships between SNR and the RF 

coil and informs avenues for improvement. For example, to reduce the sensitivity issue 

due to the interaction of the coil, a cryoprobe [252-254] and dielectric insert [43] were 

invented to enhance sensitivity for such matter. 

125BBruker Topspin “SINO” command 

With the development of processing systems, there is software embedded SNR calculation 

tools that allow real-time sensitivity analysis. One of these is called the “SINO” command 

and is an SNR calculator embedded in Bruker’s Topspin software. It returns a value for SNR 

from, 
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Without any specification, the sino command will calculate maxval as the highest 

intensity of the signal region (i.e., the entire spectral range minus the noise region). 

Unless manually specified, the noise region is automatically selected as the first 1/16th 

of the spectral data set where known signals apart from the noise are assumed to be 

present. The noise component of Eq. (71) is defined by, 
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where y(i) is the frequency data of the noise region with total N data points (-n < i < 

n ). Taking the advantage of instant SNR calculation, the sino command was used in 

NMR diffusion study using Normalisation scheme (Chapter 4). The origin of Eq. (72) 

is hard to determine. 

126BGeneral SNR formula 

In every other SNR calculation used throughout this thesis, the SNR is defined by 

[255], 

 

 max(Signal Intensity)
SNR

stdev(noise)
=   (73) 

 

where the ‘stdev’ refers to the standard deviation of the noise region. This expression 

is intuitively clearer than the definition used in Eq. (72). The standard deviation of 

noise is calculated from the edge of the spectrum data (five to ten percent of the entire 

frequency range) where there is no signal observed.  

127BSNR and optimal acquisition time 

The study from Hoult mentioned that the RMS noise of the spectral baseline increases 

as the time increases [256]. Ultimately, an acquisition time equal to 1.26 T2
 should 

yield the maximum SNR. However, such short truncated data often results in a low-

resolution spectrum after Fourier transformation. When the FID is collected at 1.26 T2 

acquisition time, it is often smoothed-out by multiplying by exponential decay 

function. This procedure is called applying a window function and it is explained 

further in Section 3.4.2. Such alteration of the FID, while reducing the noise signal, 

can broaden the spectral line and lowers the peak amplitude. 

3.3.2 66BSignal averaging  

As a conventional NMR signal enhancement procedure, signal averaging is often 

performed. Recalling the noiseless FID signal xn from Eq.(23) and adding the noise 

signal as en, and presenting the experimentally measured FID yn as, 
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If the signal is repeatedly obtained perfectly aligned then as the number of scans (NS) 

increases, the signal increases periodically. However, the noise, specifically white 

Gaussian noise has characteristics of zero mean and a standard deviation of σn. The 

noise level after NS signal averaging will be, 
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Comparing with the signal property, the SNR of FID after NS signal averaging will 

be 
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Thus, the SNR increases as the square root of the number of scans. It is important to 

remember that even though signal averaging can increase the sensitivity, yet it does 

not mean that the noise becomes zero, in fact, the noise always increases but the signal 

increases faster [216]. 

3.3.3 67BIncreasing signal strength 

128BConcentration 

The majority of NMR studies are conducted with samples having a concentration 

range of 100 μM to 10 mM. The number of spins found within the signal detection 

range that gives the energy differences after the Zeeman splitting is very limited. Since 

increasing the concentration does not increase the noise, the concentration of the 

sample has a linear relationship with the SNR. In many cases, available sample 

quantity may be limited. In such cases, the sample is often diluted to meet the volume 
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requirement in order to be measured. When the sample is diluted, the population of 

spins located within the detection area decreases and leading to lower signal sensitivity. 

It is highly recommended not to dilute the sample any more than necessity dictates. 

Thus for every NMR experiment, it is important to measure the highest concentration 

that is available/allowed and avoid unnecessary dilution. In saying so, concentration 

changes can highly influence molecular behaviour within the solution (such as 

diffusion [257, 258] and reaction study [259]). Also, peptides and large proteins tend 

to aggregate forming new chemical structures as the concentration increases which 

sets an upper limit on the concentrations [260]. In many biological samples, for 

example, one cannot simply change the concentration since it may defeat the purpose 

of the measurements and study. 

129BSample volume 

In general, the standard 5 mm NMR tube requires 0.4 to 0.6 ml of the sample solution, 

where limited regions are measured. To avoid unnecessary dilution, when a very little 

amount of sample is available, it is often placed and/or stored in a special tube called 

capillary tube. The capillary tube is designed to carry a smaller amount of sample by 

having a specific separate insert within the 5 mm conventional NMR tube [261]. This 

capillary tube allows the limited amount of the sample to be located directly at the 

hight of the active coil volume. There is various volume sizes available, and they can 

be small as 30 μl of the sample stored within a 1.7 mm diameter insert tube which can 

increase the sensitivity by five-fold compared to the conventional 5 mm NMR tube 

[262, 263].  

130BSusceptibility match 

Magnetic field homogeneity is known to be adversely affected by magnetic 

susceptibility differences in the NMR tube materials, possible air bubbles and by the 

sample itself. A specially crafted susceptibility matched NMR tube (i.e., a Shigemi 

tube) has a known capability of solving lineshape defects matter [264] while 

enhancing the signal sensitivity significantly [265].  



67 | P a g e  

 

 

131BFilling factor 

With a standard 5 mm NMR tube and an appropriately sized probe, an RF active coil 

only covers about a 10 to 20 mm height at 50 to 70 mm above the bottom of the NMR 

tube. The higher the RF active coil volume with a homogeneous sample the higher 

NMR sensitivity becomes [266]. The ratio of the total sample volume to the RF active 

coil volume is commonly referred to as filling factor [267]. In other words, a higher 

filling factor is better NMR sensitivity received. 

132BCoil geometry 

The filling factor is predominantly influenced by the coil geometry within the probe 

[39]. Standard NMR probes contain two saddle coils aiming to match with two 

different nuclei [268]. Since two coils cannot be overlapped, one will be the inner coil 

and the other the outer coil. This small diameter difference between the inner and outer 

coil can largely influence the filling factor and thus the NMR sensitivity [42]. During 

the signal detection process, the same RF coil is used as a receiver. The closer the RF 

coil to the sample is, the stronger signal to be recorded. 

133BMagnetic field 

A stronger magnetic field does increase the spin polarisation, leading to an increase in 

both the NMR sensitivity by B0
3/2 and resolution due to high homogeneity [269]. For 

example, comparing spectra measured at 300 MHz and at 600 MHz, the SNR 

increment can be expected to be 2.83 times, following the equations here, 
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In the early days of NMR spectroscopy, iron electromagnets were used to 

provide the magnetic field. These magnets required constant electrical supplies to 

reach the range of 20-60 MHz and often suffered from poor homogeneity [270]. The 

first superconducting magnet was introduced in 1966 by Varian Instruments [271]. 

Ever since the trend of going to the higher field has led to the current commercially 
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available NMR magnetic field strength of 23 T (1 GHz) [272]. Since the cost of the 

instrument increases dramatically with the field strength and the installation procedure 

is time-consuming this trend of going higher field NMR is not always practical. The 

modern superconducting magnet consists of a superconducting solenoid magnet 

immersed in low-temperature liquid helium as Figure 21 shows. This liquid helium 

bath is to keep the magnet temperature below 4.2 K. Having such low temperature 

brings near zero resistance in the magnet creating superconductivity where the current 

loss is at its minimum which eventually eliminates the need for constant external 

power sources.  

 

 

Figure 21. Simplified cut off the image of NMR spectrometer and major components. 

 

Even with this very high magnetic field, there are many areas of study that 

require extensive signal averaging due to the low sensitivity of the nuclei. 

134BPolarisation transfer 

Apart from the magnetic field strength, there is a method which can increase the spin 

polarisation even further by a technique called polarisation transfer [85, 273]. 

Polarisation transfer which widely appreciated in solid-state NMR [274, 275] also 
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share the beneficial signal enhancement effect in liquid-state NMR [276, 277]. The 

method increases the signal intensity by transferring larger polarisation of higher-γ 

spin onto the lower-γ spin by inverting spin polarisation [278]. This application 

enables to lower the NMR experimental limit on biomolecule complex mixtures with 

low natural abundance such as 13C and 15N NMR studies [279, 280]. There are many 

applications using polarisation transfer. For example, heteronuclear nuclear 

Overhauser effect (NOE) [281], dynamic nuclear polarisation (DNP) [282], insensitive 

nuclei enhanced by polarisation transfer (INEPT) [283, 284], and optical pumping [2, 

285] are the major techniques associated with polarisation transfer. 

 As a short summary, polarisation transfer technique has a potential to increase 

resonance sensitivity significantly for those nuclei with a low gyromagnetic ratio and 

slow relaxation time. For this reasons, nuclei with very low gyromagnetic ratio and 

sensitivity (but high in natural abundance) such as 57Fe [283], 109Ag [286] in solid state 

have a great advantage in applying polarisation method. For some liquid state 

quadrupole nuclei such as 23Na on the other hand, due to the fast relaxation rate 

polarisation technique is considered the non-suitable option. 

135BDynamic nuclear polarization  

The Dynamic Nuclear Polarization (DNP) technique transfers the high spin 

polarization effects observed from the electrons of paramagnetic impurities which 

caused by microwave irradiation into the nuclei of interests [2, 282, 287]. The 

Theoretical idea of hyperpolarization was proposed way back in 1953 [288], noting 

that it was possible saturation of electron transition can increase the polarization of the 

nuclei. Soon after, this was experimentally performed on lithium metal by Caver and 

Slichter [289].  

A detailed description of a theoretical Overhauser DNP in the liquid state NMR 

can be found in [281] along with the Solomon equation, the overall signal enhancement 

ε after the DNP procedure can be calculated by Overhauser enhancement formula 

[290], 
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where ξ  is called the coupling factor, l is the leakage factor (i.e., 0 < l < 1), s is the 

saturation factor of the electron spins (i.e., 0 < s < 1), γe is the gyromagnetic ratio of 

the electron, and the γn is the gyromagnetic ratio of the nuclei. Basically, the factor of 

signal enhancement by DNP is given by the electron to nuclear gyromagnetic ratios. 

For example, the proton will theoretically experience the maximum signal 

enhancement by a factor of 658, and 2618 for the 13C. The DNP has been applied to 1H 

[291], 13C, 15N, 19F, 31P and more [292, 293]. 

Various methods to increase the nuclear spin polarization over the thermal 

equilibrium state have been proposed. Such techniques include chemically induced 

dynamic polarization [294], parahydrogen induced polarization [295], techniques also 

studied in all three physical states liquid state [296], noble gas [297], and solid state 

[298]. After a long silence, the DNP-NMR was reinvestigated recently with a 

development of terahertz range microwave source to suit higher magnetic field [299, 

300]. 

3.3.4 68BReducing noise 

Since thermal noise takes the majority of the noise input, reducing the temperature 

within the circuit become a primary target for reducing noise. 

136BProbe 

The probe where all the RF circuit and receiver embedded is the major source of the 

NMR noise, especially the thermal noise [301]. 

 The NMR probe is arguably the most important and also the most delicate part 

of the NMR spectrometer. Unlike the magnet, the NMR probe is more application 

[302, 303] and nuclei specific [304]. Almost all of the NMR phenomena explained 

before occurs within the probe. At advanced NMR facilities, it is often found more 

than one probe per spectrometer to suit their experimental requirements. Each probe 

has several RF circuits embedded into two layers: The innermost layer of the coil 

known as the observe coil is the most sensitive for given nuclei to be locked. The outer 

layer coil which will be less sensitive since it is slightly away from the sample is to 

decouple the signal arise from other nuclei within the sample. As the RF coil geometry 
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was discussed previously as the factor of increasing signal, the Probe design indeed 

influence largely in noise reduction [266] 

137BCryogenically cooled probe 

Another instrumental application for sensitivity increment is the use of the 

cryogenically cooled probe and its special NMR tube [39] in some cases, the 

application is known to enhance 1H NMR SNR up to 400 fold [305]. 

The concept of the cryogenic probe is to keep a temperature of rf coil and 

preamplifier below 20K to reduce the thermal noise arise from the resister of the coil 

and temperature of the coil and the preamplifier [41, 252]. The cryogenic probe was 

first demonstrated in 1984 improving the 13C signal by a factor of eight [41]. The 

commercially available cryogenic probe normally uses the closed-loop cooling system 

with a compressed helium gas [306]. There are much application for the cryogenic 

probe to be used to enhance signal sensitivity, such as large protein analysis [307], 

small molecules analysis [44, 308] and more [253, 306, 309-312]. The cryogenic probe 

can indeed increase the NMR sensitivity, however, it will be a lot of expenses to spend 

for such an application. 

138BOversampling 

The Nyquist sampling theorem as discussed is indeed important to present the 

observed signal accurately on the frequency range after FT. However, Nyquist 

sampling theorem can be a limiting factor in NMR sensitivity [175, 313]. Measuring 

the continuous sinusoidal signal in the discrete time scale can create the quantisation 

error which observed as digitization noise. Data sampling at a much faster rate known 

as the oversampling can reduce such noise. The sensitivity gain can be estimated by 

[160, 314]: 

 

 
2log

oversampling

Nyquist

SW
gain

SW
=   (79) 

 

The oversampling is known to benefit the multiple-resonance spectrum [315]. As in 

the multiple-resonance spectrum, there will be a wide range of the signal strength. If 

the study is to focus on small signals of the minor components, then the heavy 
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application of receiver gain can worsen the sensitivity of those weak signals. Yet, low 

receiver gain does not improve any sensitivity of those weak signals either. Thus, 

application of oversampling to lower the digitization noise can improve the overall 

sensitivity [315] without changing any experimental time. 

3.4 27BNMR SIGNAL PROCESSING 

Signal processing methods, which are applied to time domain data [60, 316], can be 

categorised into two streams: parametric and nonparametric which pertains, 

respectively, to whether they can be used with or without prior knowledge [317, 318]. 

The prior knowledge can include the number of exponentially decaying signals, their 

frequencies, amplitudes and decay rates. In NMR study, there are different aims and 

purposes for signal processing depending on its application. For example, high-

resolution NMR is widely used for large biomolecule analysis in a liquid state. 

Majority of biomolecule experiment does not have prior knowledge of the sample thus 

expected NMR spectrum is often unknown. In such an environment, a complex 

experimental technique such as multidimensional measurements are often applied and 

signal processing is aim to assist in obtaining maximum information (e.g., chemical 

shift and structure) from the experiment. Knowing the number of exponentials 

representing the signal within the FID is one of the most beneficial pieces of prior 

knowledge in the majority of signal processing approaches. Hence, signal processing 

approaches are suited to the analysis of most liquid state NMR spectra of quadrupolar 

nuclei, since such spectra typically have only one single peak. NMR diffusion 

measurements are performed by acquiring a series of echo attenuations at various 

magnetic gradient pulse amplitudes. Thus, each spectrum and the FID in the series 

differ only by peak amplitude with all other signal parameters remaining the same. 

In vivo quantitative analysis, signal processing is focused on both sensitivity 

and resolution to measure the area underneath the resonance correctly. For both fast 

and long relaxation nuclei, the severe truncation of the FID may be observed. For one 

of many applications, some signal processing methods are designed to estimate those 

missing data points to recover information which could not be measured during the 

experiment [319, 320]. In this section, only the major signal processing methods that 

are used regularly in modern days NMR study are presented. Towards the end of this 



73 | P a g e  

 

 

chapter, the foundation for this thesis “composite property mapping algorithm” is 

discussed in depth. 

3.4.1 69BZero-filling 

As discussed above, the measured FID contains real and imaginary parts. If a total of 

N data points were collected during the acquisition time, there are only N/2 

independent complex Fourier coefficients representing the absorption and dispersion 

mode signals each. The sensitivity and resolution of such a signal is significantly less 

than optimal but this can be improved by appending N zero amplitude data to the end 

of the FID prior to Fourier transformation [321]. This simple preprocessing is called 

zero-filling. Zero-filling is capable of enhancing both sensitivity and digital resolution 

[60, 174, 321, 322]. When the same number of data points with zeroes are added to the 

tail of the FID, the Fourier transformed spectrum increases the SNR by a factor of √2 

[174, 321]. However, zero-filling beyond twice the number of the original FID data 

points provides no further enhancement of sensitivity or resolution [174].  

3.4.2 70BWindow function 

A window function involves multiplying the FID by a function, typically to shorten 

the FID. The weighting function can be linear, sine bells, exponentially decay or more 

specialized form to fit the FID data [323]. 

As an example, Figure 22 shows the application process and the outcome 

results of multiplication by an exponential weighting function (the EM function is 

displayed in Figure 22b).  The rate of the decay is strongly associated with the line 

broadening parameter. It is evident from Figure 22 that the application of a window 

function can lead to inaccuracy in spectral parameters such as resonance amplitude, 

linewidth [324]. Thus in some signal processing techniques, use of the window 

function is only to assist further signal processing and the weighting function is 

multiplied back to cancel the effect applied to the FID before Fourier transformation 

[325]. An example situation where a window function is useful would be a truncated 

FID. Multiplying such an FID by an exponential function can effectively remove the 

Sinc wiggles from the spectrum at the expense of broadening the spectral lines. 
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Figure 22. Effects of EM function application in both FID and spectrum. a) Simulated 

FID with one exponential with additive random noise. b) Exponential multiplication 

line in red overlapped with noisy FID. c) FID after multiplied by the EM function. d) 

The spectrum of a). e) The spectrum of c). 

 

The window function is known to have a trade-off between resolution and 

sensitivity. For example, the matched filter, which for a Lorentzian peak amounts to 

line broadening by an amount that doubles the peak width, will yield a spectrum with 

grater SNR than other window functions. It will also reduce resolution as nearby peaks 

will overlap due to their increased peak widths. Even so, adapted window functions 

such as Transform of Reverse Added FIDs [323, 326] and the Matched Filter [327] are 

known to successfully improve sensitivity by applying line broadening that matches 

the original linewidth which results in the optimal SNR. Many argue that the trade-off 

between resolution and sensitivity is due to the FID structure where resolution resides 

in the tail of the FID as opposed to the sensitivity and SNR residing at the beginning 

of the FID [328].  

For the resolution enhancement, the Gaussian multiplication (GM) can be 

applied to convert the Lorentzian spectral line shape into a Gaussian spectral line shape. 

As previously mentioned in Section 0, Gaussian line shape has a much narrower base. 
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Application of appropriate GM function can increase spectral resolution while 

reducing the sensitivity due to deemphasising the effect at the beginning of the FID 

[305]. Thus, the GM function is often aimed at resolving the small coupling that may 

not be obvious at first. The further application and comparison of different types of 

window functions can be found in Ref. [323, 328, 329].   

3.4.3 71BReference deconvolution 

Similar to window function, reference deconvolution is a simple yet robust data 

processing method. The method can be used as a preparation step for other signal 

processing methods such as linear prediction and the maximum entropy method [53]. 

The idea of using experimental singlet resonance as a reference to analyse overlapping 

multiplets were first introduced by Keller et al, in 1966 [330]. The same principle was 

applied to enhance spectral resolution by Ernst et al., [331]. The most significant 

feature of reference deconvolution method is that the resonance artefacts such as noise 

distortion, poor shimming effect and truncation artefact can be smoothed out from this 

application [332, 333]. The basic concept is explained in the flowchart (Figure 23) and 

the supporting literature can be found in Ref [53, 333-336].  
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Figure 23. A flowchart of the reference deconvolution method. a) A phase distorted 

FID. b) The phase distorted spectrum which was Fourier transformed from the data a). 

c) IFT of the phase distorted spectral range in the rectangular region found in b). d)  

An ideal resonance of the selected range in b). e) IFT of d). f) correction function 

formed from data c)  and e) is multiplied to the original FID a). g) FT of f) as the 

reference deconvoluted NMR spectrum.  

 

To follow the flowchart, first, the experimental FID is collected (Figure 23a) 

which is then Fourier transformed into a spectrum (Figure 23b). A reference peak is 

chosen which is ideally the singlet resonance with the largest amplitude. A reference 

spectrum is created (Figure 23d) by applying an appropriate window function (Figure 

23c) to suppress all unrelated components including noise. The IFT of the reference 

spectrum is then performed (Figure 23d) to obtain the reference FID of the peak 

(Figure 23e). The correlation function is then made, applied to the original FID data 

to produce the reference deconvoluted FID (Figure 23f). The FT of this treated FID to 

produce a spectrum with each resonance having a Lorentzian lineshape.  

The method was developed to correct imperfect spectral shapes due to poor 

shimming. The corrected spectral data often requires further signal processing for 
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sensitivity enhancement. The majority of spectra that reference deconvolution is 

applied to contain multiple-resonances that are overlapped and/or have a baseline error. 

It is important to mention that the blind application of the reference deconvolution 

method can create further signal artifacts without Hilbert Transformation. For example, 

if the reference resonance is overlapped with other resonance (e.g., Section 6.3.1) and 

the zeroing window function is applied, there can be a drop between the reference 

signal region and the zeroed baseline (e.g., Chapter 6 Figure 38b). When this type of 

modified spectrum is transformed into a time-domain signal by IFT, additional 

incorrect information is added to the exponential decay function. A FT of such an FID 

can cause major truncation artifacts [53, 337]. 

3.4.4 72BWavelet shrinkage  

Wavelet transform described in Section 0 as the domain transformation method. 

Wavelet theory, in fact, can be developed into many signal processing methods such 

as solvent suppression [153], denoising [338, 339] and more [209, 340]. Wavelet 

shrinkage (see Donoho [74, 341]) is a nonparametric wavelet-based signal denoising 

method which is available through major programming software such as Mathcad (i.e., 

waveshrink) and Matlab (i.e., wdenoise). This wavelet shrinkage denoising method is 

composed of three major steps: 

 

1. Chose the appropriate wavelet base and perform a discrete wavelet transform 

to the measured data 

2. Apply soft coefficient thresholding and shrink the wavelet coefficients to zero 

3. Take an inverse discrete wavelet transform to reconstruct denoised data 

 

First of all, there are many types of wavelet forms (e.g., Harr, Coiflets, Symmlets, and 

Daubechies) available. When the appropriate wavelet form and its vanishing moment 

are chosen, then a square orthogonal finite wavelet transform matrix is constructed. 

This wavelet matrix is then multiplied by the measured signal vector yielding the 

wavelet coefficient vector. 

As a second step, the soft threshold value for the wavelet coefficient is defined 

through estimated noise level. The soft threshold is known to provide better smoothing 

than a hard threshold while preserving the spectral details [74]. By shrinking the 
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wavelet coefficients that are below the threshold to zero, noise properties related to 

those eliminated wavelet coefficients are also removed from the measurements. At the 

last steps, the inverse discrete wavelet transform is applied to transform the data to its 

original domain. 

This method is applied to one of the 1H 1-dimensional multiple-resonance 

NMR spectra in Chapter 7. The result of this denoising method is then compared with 

the newly proposed method (see Section 7.3) for its spectral accuracy and 

computational time. 

3.4.5 73BIterative thresholding and minimum l1-norm 

reconstruction method  

Throughout the history of NMR signal processing, a number of methods have been 

dedicated specifically to process multiexponential decay signals and also diffusion 

measurements (e.g., GANT [342],  ITAMeD [343], IQML [344]). As an example, 

iterative thresholding and the minimum l1 norm reconstruction method by Stern [57] 

is presented here. 

The iterative thresholding approach is a fixed-point technique where an 

operation is applied repeatedly until the output does not show any changes. Iterative 

thresholding and the minimum l1-norm reconstruction method both utilise the fact that 

the majority of the signal is at the beginning of the decay and the rest the decay mostly 

corresponds to the noise. The basic methodology of the thresholding and iteration 

process of this method is illustrated in the diagram in Figure 24. 

 

 



79 | P a g e  

 

 

 

Figure 24. Flow diagram of iterative thresholding and minimum l1-norm 

reconstruction method. 

 

The diagram in Figure 24 has seven cycle steps to follow: 1) The initial FID data for 

this method is collected from the Inverse Discrete Fourier Transform (IDFT, i.e. the 

inverse fast Fourier transform) of the spectrum which is then heavily truncated before 

it fully decays; 2) zero-filling is then applied to this truncated FID data; 3) take the 

Discrete Fourier Transform (DFT) of the zero-filled FID into the frequency domain; 

4) choose the amplitude threshold value τ to be such that it is smaller than the true 

peaks’ maxima but also greater than the artefacts caused by truncation (i.e. Sinc side 

lobes); 5) set any spectral amplitude below the threshold 𝜏 to zero and take the IDFT; 

6) truncate the tail of the FID the same amount as in the step 1) and 7) repeat the process 

until no change is observed in the spectrum. 

If the threshold value 𝜏 decreases at each iteration, the method is categorised 

as a soft thresholding method unlike hard thresholding where the value 𝜏 is stationary. 

There are similarities among the fixed point iterative process, minimal l1-norm 

reconstruction method [57], maximum entropy reconstruction (MaxEnt) [345], and 

minimum area reconstruction [59]. Those similarities are explained in the ref [57].  

 

3.4.6 Continuous Diffusion Coefficients (CONTIN) 

When studying the aggregation process, polymers and complex mixture analysis, a 

two dimensional NMR experiment called diffusion-ordered spectroscopy (DOSY) 
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NMR is often performed [346-349]. DOSY experiment can express both physical and 

chemical information in two dimensions: one dimension for self-diffusion behavior 

while others inform its chemical shift [350, 351]. DOSY is such a versatile approach 

yet limited by required spectral sensitivity, low concentrations, long relaxation time, 

and available data processing techniques [347]. There are two classes of data 

processing techniques that can be applied to DOSY NMR data sets: single channel 

methods and multivariate methods. 

A continuous diffusion coefficient (CONTIN) is one of the single channel 

methods available as a constrained regularisation program [352, 353]. To determine 

distributions of translational diffusion coefficients, DOSY experiments require the 

inverse Laplace transformation (ILT) [349, 351]. CONTIN can solve the ILT problem 

and provide the Laplace spectrum of the diffusion coefficients as well as smoothing 

the spectrum data by using a constrained regularisation to fit experimental data [351]. 

However, the method assume the noise is in random Gaussian which leads 

tosystematic errors and artifacts when SNR is low. As a limitation, due to smoothing 

and broadening features that CONTIN possess, the diffusion coefficient is often  

smaller than the true values [346, 347, 352, 353]. More details of the theory and 

applications of the CONTIN method can be found in Ref ([116, 352, 353]). For  spectra 

with overlapping resonances, a multivariate methods called DECRA (Section 3.4.7) 

would be much more suitable for signal processing. 

3.4.7 Direct Exponential Curve Resolution Algorithm 

(DECRA) 

Direct exponential curve resolution algorithm (DECRA) is a multivariate method that 

can resolve self-diffusion coefficients as well as spectral components [354-357]. 

DECRA is an extension of the generalized rank annihilation method (GRAM) which 

is an eigenvalue problem using two data matrices [358]. Compared to GRAM, it can 

process noisy data with much lower SNR and severe spectral overlap and is able to 

distinguish small differences in diffusion coefficient [359]. Previously, CONTIN has 

an assumption of the noise being random Gaussian, while a DECRA assumes each 

pure spectrum is formed by a pure exponential decay function [356]. This assumption 
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of the algorithm leads to inevitable error in NMR diffusion and relaxation analysis 

after processing NMR data with a non-single exponential decay function [140, 360].  

 

3.5  28BLINEAR ALGEBRA IN SIGNAL 

PROCESSING 

In this section, the matrix terminology and the basic matrix linear algebra used in 

composite property mapping algorithm is summarised. This is needed to understand 

the composite property mapping algorithm presented at the end of this chapter. For 

readers with the basic mathematical background can skip this section and move to 

Section 3.7 where the composite property mapping theory is discussed. 

3.5.1 74BMatrix terminology and operations 

The rest of this chapter is an introduction to the signal processing methods based on 

linear algebra and matrix decomposition. This section explains the major matrix 

terminologies used in the eigen (Section 3.5.3) and singular value decomposition 

(Section 3.5.4). The reader is assumed to be familiar with basic vector and matrix 

terminology, however, a brief review follows concentrating on those parts of matrix 

algebra that are important in the forthcoming sections. 

139BTranspose 

Transpose of a matrix is often denoted by superscripted T. Transport of a matrix can 

be done by converting rows element into columns element and vice versa. For example, 

if 

 

 1 2 3

4 5 6

a a a
A

a a a

 
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 
  (80) 

 

then, AT is 
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 . (81) 

 

140BConjugate transpose 

The term conjugate transpose also known as Hermitian transpose is the transpose of 

the matrix along with taking the complex conjugate of each element within. The 

conjugate transpose may denote by many alternate symbols such as *, H, and †. As an 

example, if 

 

 
1 1 2
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i
A

i i
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+ 
  (82) 

 

then 

 

 
1

1 2 2

i
A

i i


− 

=  
+ − 

 . (83) 

 

Note that for matrices possessing only real elements, the conjugate transpose is 

identical to the transpose. 

141BIdentity matrix 

A square matrix with principal diagonal elements equal to 1 and non-diagonal elements being 

zero is called an identity matrix (I). The principal diagonal runs from the top left to the bottom 

right of the matrix. One significant property of the identity matrix is that a matrix A multiplied 

by I is equal to A. For example, 
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142BOrthogonal matrix 

When multiplication of a matrix A by its transpose AT gives an identity matrix, then 

the matrix A is called an orthogonal matrix. For example, if 
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  (85) 

 

then 
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 , (86) 

 

and also 
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3 3 0 14 4
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TA A

−   
    = =     −  

   

 . (87) 

 

That is, A–1 = AT. 

143BUnitary matrix 

Unitary matrices generalise the concept of orthogonality to complex-valued matrices. 

A matrix with complex numbers as elements that when multiplied by its conjugate 

transpose gives the identity matrix is called a unitary matrix, i.e. A–1 = A*. 
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144BDeterminant 

A determinant simplifies a large square matrix data into a single value. It is often 

denoted as A or det(A). Both eigen and singular value decomposition require taking a 

determinant of a matrix to find the matrix eigen and singular value respectively. For 

example, if 

 

 
1,1 1,2

2,1 2,2

a a
A
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then, the determinant of A, det(A) is 

 

 
1,1 1,2

1,1 2,2 1,2 2,1

2,1 2,2

det( )
a a

A A a a a a
a a

= = =  −    (89) 

 

With non-square matrix A, a matrix A is multiplied by its transpose (AAT) or ATA before 

taking the determinant. 

145BMatrix norm 

To compare the differences or distance between two matrices, the matrix norm is often 

quantified. The most commonly used matrix norm in signal processing is called 

Frobenius norm (i.e., || A ||F or || A ||2). The Frobenius norm calculates the sum of the 

squares of all the matrix elements: 

 ( )
2

,

tr T

ijF
i j

A A A A= =   (90) 

 

When measuring the distance between two vectors or matrices A and B of the same 

dimension, then Frobenius norm is defined as 

 

 
2

,
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146BMatrix structure 

There are two types of matrix structure; Hankel and Toeplitz [361-365] are often used 

in NMR signal processing. Both matrix structures arrange each column elements in a 

way that creating a trend of signal rich and noise rich corner using FID signals (e.g., 

x0, x1, …, xn-1) as shown below. 
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3.5.2 75BMatrix subspaces, range, null space, and rank 

Let A be the l by m matrix where l > m. Writing Ax = b for some b gives an 

overdetermined system of equations,  
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  (91) 

 

where the matrix A becomes the linear transformation of the vector x in Rm to the 

vector b in Rl.  

There are two subspaces associated with the matrix A. The first subspace is 

called range. The range of the matrix A is equal to the number of the column that 

satisfy Ax = b ≠ 0, which means the maximum number of linearly independent 
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column/row vectors found within the matrix. The range of the matrix A is often 

denoted as R(A). The second subspace called null space of A is equal to the number of 

the column that leads non-zero vectors x mapped to zero by A (i.e., Ax = 0), denoted 

as N(A). The dimension of the range R(A) is called the ‘rank’ of the matrix and the 

dimension of the null space N(A) is called the ‘nullity’ of the matrix A. In another word, 

the sum of the range and null space dimension is equal to the length of column A.  

When the matrix A filled with randomly generated numbers, then all column 

and row vectors are linearly independent. Therefore, the rank of the matrix A = min (l, 

m), since l > m then the matrix rank of A is expressed a full rank which is equal to m. 

Each of the vectors x and b will be separated into two subspaces in respect to the 

matrix A as shown in Figure 25. Row space is a subspace of AT, has the range of AT: 

R(AT) with the same dimension of r. Null space of AT: N(AT) is a subspace of AT with 

dimension m - r. 

 

 

Figure 25. Linear relationships of four subspaces to the matrix A: Row to column space 

and null space to zero.  

 

These subspaces notations will become much clearer in the Section 3.5.4 with singular 

value decomposition. 
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3.5.3 76BEigenvectors and eigenvalues 

To solve matrix algebra, a matrix is often decomposed into simpler matrices. In 

particular matrix decomposition called eigendecomposition applies only to a square 

matrix though does not exist for all square matrices. A principal component analysis 

(PCA), for an example, utilises eigendecomposition of a covariance or correlation 

matrix to provide the least squared estimate of the matrix. A factorisation of a square 

matrix A by eigendecomposition produces a set of eigenvalues and eigenvectors. For 

a square matrix A, there is a set of eigenvalues λ and a corresponding eigenvectors v 

that satisfy the following linear relationships: 

 

 A =v v   (92) 

 

For example, if  
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A

 
=  
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  (93) 

 

then to find the eigenvectors v of a matrix A, the Eq. (92) 
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where I is the identity matrix and the Eq. (94) is equivalent to: 

 

 ( )det 0A I− =   (95) 

 

The determinant of a matrix (A – λI) is equal to: 
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which lead directly to the eigenvalues λ1 = -1 and λ1 = -2. Since eigenvalues are known, 

plugging the eigenvalues one at the time can find the corresponding eigenvectors. 

Starting from λ1 = -1: 
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  (97) 

 

where eigenvectors v11 = -v12 and for the λ2 = -2: 
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  (98) 

 

where eigenvectors v21 = -2v22 and finally, combining all those component into the 

original Eq. (92): 
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  (99) 
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can be simplified to: 

 

 
1

AV V

A V V −

= 

= 
  (100) 

 

The eigendecomposition can only be performed if a matrix A is a square diagnosable. 

3.5.4 77BSingular value decomposition 

Singular value decomposition, on the other hand, can be applied to every type of 

matrix [366, 367]. It can provide robust solutions to many problems: such as 

over/under-determined least squared problem [50, 366], matrix approximation [368] 

and optimisation of ill-conditioned systems [369]. The SVD method has such diverse 

applications such as system recognition [370, 371], filtering system [372], data 

compression [373] and more [374]. As in NMR signal processing, SVD-based methods 

can provide spectral analysis [375], parameter estimation [320, 376] and signal 

enhancement by noise reduction [51, 52, 64]. There is no specific origin of who 

concreated the theory, however, it can be traced down to five mathematicians solving 

linear algebra problems treating the number of linear equations as a matrix and vectors 

[377]. The fundamental of the SVD can factorise any form of a matrix A ∈ ℂL×M into 

three submatrices: 

 

 TA U V=    (101) 

 

where U ∈ ℂL×L and V ∈ ℂM×M are both unitary and Σ ∈ ℂL×M is a diagonal matrix. 

The Σ matrix has the form: 

 

 ( )1 2diag , , ,L M p   =  , (102) 

 

where p = min(L, M). The diagonal elements of Σ (i.e., σ1,σ2,…,σp) are called the 

singular values of A which are in descending order 
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 21 0p      .  (103) 

 

With matrix size of A being L > M, then the system is called overdetermined thus the 

p = M, while the matrix size of A being L < M, the system is called underdetermined 

and the p = L. Since both U and V being unitary matrices, the following properties of 

the SVD are established. 

 

 

T T T T

T T

A A V U U V

V V

=  

=  
  (104) 

 

Let Ʌ ∈ ℂM×M be defined by  

 

 ( )
( )

2 2 2

1 2

1 2

diag , , ,

diag , , ,

T

n

n

  

  

 =  

=

=

  (105) 

 

The Eq. (104) can be rewritten as  

 

 T T T TA A V V V V=   =    (106) 

 

This format looks somewhat similar to the eigendecomposition. Multiplying by V on 

both sides of Eq. (106) is then, 

 

 ( )T TA A V V V V V=  =    (107) 

 

Which indicates that the diagonal elements in the matrix Ʌ, (i.e., λ1, λ2,…,λn) are the 

eigenvalues of ATA. Thus the columns of the matrix V are the eigenvectors of ATA, or 

more specifically, the right eigenvector of ATA. Similarly, computing the AAT: 
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T T T T

T T

T

AA U V V U

U U

U U

=  

= 

= 

 , (108) 

 

and multiplying both sides by U gives 

 

 

T TAA U U U U

U

= 

= 
 . (109) 

 

leading to the columns of the matrix U being the left eigenvectors of AAT. In a similar 

manner to Figure 25, Figure 26 visualise the linear relationships between subspaces 

fond in SVD. 

 

 

Figure 26. Linear relationships between subspaces representing a property of singular 

values and left and right singular vectors. With r linearly independent column within 

the matrix A, the range of the matrix A; R(A) is represented by singular values σ 

multiplied by the right singular vectors u with the rank of r. Corresponding left 

singular vectors v of the rank r is represented by the range of AT. 
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As Figure 26 shows, the column space of A, which is the range of A (i.e., R(A)) is 

spanned by the first r columns of U. the null space of A (i.e., N(A)) is spanned by the 

last l – r columns of V. The row space (i.e., range of R(AT)) is spanned by the first r 

column of V. Finally, the null spacer of AT (i.e., N(AT)) is spanned by the last m – r 

columns of U. 

3.6 29BNMR SPECTRAL PARAMETER ESTIMATION 

USING SVD 

Next two subsections present well-known NMR spectral parameter estimation using 

SVD. By presenting these two methods, the relationships between the NMR spectral 

parameter in FID and the property of each submatrix after SVD should be clarified. 

3.6.1 78BLinear prediction singular value decomposition 

(LPSVD) 

The linear prediction singular value decomposition method was introduced to solve 

the NMR parameter estimation problem [76, 77, 165, 378]. Recalling the FID signal 

from Eq. (23), the time-domain signal can also be expressed as,  
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



=

=

= − +  +
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= − + 



   (110) 

 

where n = 0, 1, …, N-1 and ck is often called “complex amplitude” and the zk as the 

“signal pole”. The Eq. (110) can be further simplified as 

 

 n n nx s w= +   (111) 
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separating the FID xn into noiseless FID sn and the additive noise wn. Let T be an N-M 

by M Toeplitz matrix filled with xn excluding the first data point (x0): 

 

 
( )

1 1

1 2

1 2

T

M M
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x x x

x x x

x x x

−

+

− 
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 =
 
 
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  (112) 

 

The dimension of the matrix should satisfy (K ≤ M ≤ N-M < N). Multiplying the linear 

prediction coefficient vector p to predict a signal vector x̂ of N-M-1 length, the Eq. 

(112) can then written as 

 

 

0 1 1 1

1 1 2 2

1 1 2

x̂ T

M M
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p

 . (113) 

 

The linear prediction coefficients vector can be obtained by solving Eq. (113) using a 

linear least square approach. One obstacle in finding the linear prediction coefficient 

vector is that the matrix cannot do division. Instead, an inverse of the matrix T in the 

form of submatrices after singular value decomposition is used as  

 

 

1

1

ˆT x

ˆ= xTV U

−

−

=



p
.  (114) 

 

Once the linear prediction coefficient vector p is defined then Eq. (110) can define the 

signal pole by solving 

 

 
1 2 1

1 2 1 0M M M

M Mz p z p z p z p− −

−+ + + + + =   (115) 
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leading to estimation of spectral parameters in the signal pole, such as damping factor  

 

 
1

lnk kd z
t

−
=


,  (116) 

 

and the frequency  
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1

Im1
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z
f

t z

−=
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 . (117) 

 

Once the damping factors and the frequencies are estimated, the rest of the parameters 

amplitude and phase can also be estimated by solving the least square problem from 

Eq. (110). 

3.6.2  79BHankel singular value decomposition (HSVD) 

Hankel SVD [379] has a similar concept to LPSVD. Recalling the FID from Eq. (110), 

arranging the time domain vector xn into L by M Hankel matrix H 
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 
 
  

 . (118) 

 

The same condition in LPSVD applies to HSVD, both rows and columns number must 

be greater than K. The characteristic of HSVD is that the Vandermonde decomposition 

of H leads to three submatrices just like the SVD method. However, the factorised 

submatrices have special features and structure, 
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=

  (119) 

 

where zk and ck, k = 1,..,K represent the signal pole and the complex amplitude of the 

FID respectively. The format of a matrix 𝜁𝐿×𝐾 and 𝜁𝐾×𝑀
𝑇  is called Vandermonde where 

each row are represented by the signal pole of the FID and its exponents of the row 

numbers (i.e., 0,1, …, L-1). Giving this information, the following statement must be 

true. 
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=

  (120) 

 

where ζt is equal to the 𝜁𝐿×𝐾 entries without the top row, and ζb is missing the bottom 

row of the 𝜁𝐿×𝐾. The submatrices of Vandermonde and singular value decomposition 

share similarity that the 𝜁𝐿×𝐾 can be replaced by 𝑈̂𝑡, 𝑈̂𝑏 which equivalent to the right 

singular vector submatrices without the first and the last rows respectively and Z' as 

the diagonal matrix of zk notation and the Eq. (120) becomes 

 

 ˆ ˆ
t bU U Z =   (121) 

 

The Eq. (121) is now in the same condition as the linear prediction format that 

previously described in Section 3.6.1. To find the entries of Z', use the orthogonality 

of the matrix 𝑈̂𝑏 and multiply both sides of the Eq. (121) by 𝑈̂𝑏
𝑇  
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 ˆ ˆ ˆ ˆT T

b t b bU U U U Z = ,  (122) 

 

then take the inverse of 𝑈̂𝑏
𝑇𝑈̂𝑏 which allow eliminating 𝑈̂𝑏

𝑇𝑈̂𝑏 from the right side of 

the equation by multiplying the matrices on the left side 

 

 ( )
1

ˆ ˆ ˆ ˆT T

b b b tU U U U Z
−

=   (123) 

 

The matrix property 𝑈̂𝑏
𝑇𝑈̂𝑏 can be rewritten as  

 

 ( )ˆ ˆ ˆ ˆT T

b b b bU U I= − u u   (124) 

 

where I is the unit matrix and where 𝐮̂𝑏 is the last row vector of 𝑈̂𝑏. Applying the 

Sherman-Morrison matrix inversion formula [380, 381] to the Eq. (123) with Eq. (124): 

 

 
ˆ ˆ ˆ ˆ

ˆ ˆ1

T
Tb b
b bT

b b

Z I U U
 

 = + 
− 

u u

u u
.  (125) 

 

The Z' matrix is diagonal and from this the signal pole elements including the damping 

factors and frequencies can be obtained first then amplitudes and phases can be 

calculated from Eq. (110). 

When performance is compared between LPSVD and HSVD, HSVD is known 

to process much faster and provide more precise results than LPSVD since there is no 

polynomial rooting is required [79]. 

3.6.3 Matrix Pencil Method (MPM) 

Unlike the LPSVD method, the Matrix Pencil method finds the signal pole property 

by determining an eigenvalue. LetX0 and X1 be (N-M) by M matrices filled with 

noiseless FID data  
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  (125) 

 

where the length of column M is called the pencil parameter that is equal to or larger 

than the true minimum rank (i.e., K) of the matrix. Similar to HSVD, these two 

matrices can be decomposed as 

 

 0 1,L R L RX Z CZ X Z CZZ= =   (126) 

where submatrices ZL, C, ZR, and Z are 
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  (127) 

 

This method shares many similarities with HSVD such as Vandermonde matrix 

structures in the ZL and ZR matrices, diagonal matrix forms found in both C and Z that 

contain the complex amplitude and signal poles properties respectively. Creating the 

matrix pencil X1 – λX0 to compare the linear combination of two matrices X0 and X1 

can be done by finding its eigenvalues λ. 
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  (128) 

 

Eq. (128) shows that the set of signal poles can be found by generalising the 

eigenvalues of these two matrices X0 and X1. For each eigenvalue, there will also be 

an eigenvector ξk, 

 

 1 0k k kX z X=    (128) 

 

Multiplying both sides of the equation with the Moore-Penrose pseudo-inverse of X0, 

X0
*, gives, 

 

 
*

0 1 k k kX X z=  .  (128) 

 

Since the matrix elements are noiseless, solving for the eigenvectors ξk leads to finding 

the signal pole property zk of the matrices X0, X1 and their complex amplitude ck. The 

MPM approach has been included as part of a novel detection-estimation scheme [76] 

as well as other applications [81, 382]. 

3.6.4 Filter Diagonalization Method 

The Filter Diagonalization Method (FDM) is a nonlinear parametric method originally 

designed by Neuhauser and Wall to solve quantum dynamics problem. This method 

was subsequently introduced to NMR as parameter estimation and spectral resolution 

enhancement method [73, 383, 384]. The term “filter” refers to the segmentation of the 

spectrum into small sections in order to reduce the computational burden. The FDM 

is designed to solve the HI problem [383, 385]. With 1D NMR data sets, FDM is used 
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to fit the time-domain complex signal xn to a Hamiltonian operator function with 

complex eigenvalues [386], 

 

 

( ) ( )( )
1

1

0 0

exp exp 2

ˆ

K

n k k k k

k

K
n

k k

k

n

x A i d i f n t

c u

U

 
=

=

= − + 

=

=  



   (129) 

where Φ0 is often stated as some “initial state” and Û  is a Hamiltonian operator. If 

the Hamiltonian operator Û  is diagonalized and normalised by a set of orthogonal 

eigenvectors Ek, then the operator Û can be written in spectral representation using 

eigenvalues uk and normalised eigenvectors  
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Applying Eq. (130) into Eq. (129) leads to  
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  (131) 

shows that eigenvectors can determine the amplitude and phase of the exponential 

decay signal while the eigenvalues determine its frequency and widths. Unlike other 

similar methods such as LP, the operator Û  in FDM does not require to be full rank. 

The FDM method can also be applied to multidimensional NMR data sets for both 
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parameter estimations and signal processing purposes [72, 73, 383, 385, 387]. Two 

well known limitations of FDM in NMR signal processing is that the method does not 

perform well with low SNR nor overlapping spectral data. 

 

3.7  COMPOSITE PROPERTY MAPPING 

ALGORITHM (CADZOW’S METHOD) 

147BIntroduction 

The composite property mapping algorithm proposed by Cadzow has become one of 

the fundamental NMR signal processing technique since when published in 1988 [52]. 

The general concept of the composite property mapping algorithm is that if the set of 

the measured signal is known to possess certain well-defined properties then the 

solution set can be optimised to find the new signal set with elements that lie closest 

to the noiseless composite property set in the minimum Frobenius norm sense [366, 

388]. The method represents a series of discrete time data into a structured matrix form. 

The structured matrix form possesses three properties: Toeplitz structure, positive 

semi-definite and pre-specified rank. By reducing the rank of the matrix, it minimizes 

the root mean square error (RMSE) between the original and the reduced rank 

approximation. In the past, the relation between the Eigen polynomials and the 

Toeplitz matrix representation in the spectral analysis has been studied by various 

researchers [362, 389-391], yet it was often criticized for its computational load [78, 

79, 318]. This is perhaps a reason for its limited use when first introduced. However, 

with modern technology and improvements in computer processing capabilities, it is 

very much worth revisiting and studying for possible applications and improvements. 

3.7.1 80BSignal processing with composite property mapping 

theorem 

There are four major steps involve in the composite property mapping theory which 

are illustrated in Figure 27. Let the measured FID data set (xn) from Eq. (23) be the 

sum of two (i.e., K = 2) exponential decay signals (sn) and the noise (wn) with total N 
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data points (n = 0,1,…, N-1). When the xn is formed into the L by M overdetermined 

Toeplitz matrix structure, it can be assumed that the matrix structure of the noiseless 

signal sn and the noise wn also follow as  

 

 

1 0 1 0 1 0

1 1 1 1 1 1

M M M

N L N L N L

x x s s w w

x x s s w w

X S W

− − −

− − − − − −
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     
          

= +

 , (132) 

 

where Toeplitz matrix X which can be written as the sum of two matrices S + W: 

noiseless FIDs (S) and the noise properties matrix (W). The three properties: Toeplitz 

structure, positive semi-definite and pre-specified rank only (and always) applies to 

the noiseless matrix S; while the noise properties matrix does not hold any of these 

eigencharacteristics. The Toeplitz matrix of W has full rank while the Toeplitz matrix 

S have prespecified rank (i.e., k = 2) after SVD. Recalling the definition of the matrix 

rank, which is equal to the maximum number of linearly independent column and row 

vectors, if the sums of two sinusoidal signals formatted into Toeplitz or Hankel 

structure, there will be only two linearly independent column vectors that exist in the 

matrix S. Therefore, pre-specified matrix rank is equal to the number of summed 

sinusoids in the noiseless FID. By preserving the properties equal to the prespecified 

rank and removing the others, the processed matrix X” holds the minimum error to the 

noiseless data set S.  
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Figure 27. A conceptual view of Cadzow’s composite property mapping algorithm. 

The method contains four fundamental steps: 1) Arrangement of the measured FID 

into Toeplitz matrix, 2) Factorise the matrix X by SVD. 3) Reduce the matrix rank to 

its prespecified minimum rank. 4) Take the average of sub-diagonal elements to 

reconstruct Toeplitz structure. 

 

To explain further, in the first step, the dimension of the Toeplitz matrix L by 

M must be greater than the number of exponentials (K ≤ min (L, M)), where N = L + 

M – 1. The number of rows L is greater than the number of columns M. For faster 

computation (O(LM 2) for M < L) and also creating the overdetermined matrix algebra 

environment, the column number M was set to 1/10th of the N (Rows L: Column M) 
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throughout this thesis. This large Toeplitz matrix is then decomposed into three 

submatrices U, Σ and VT by the singular value decomposition method, 

  

 
T

L M L L L M M MX U V   =     (133) 

 

where U and V are column orthogonal matrices containing right and left singular 

vectors, respectively. The Σ matrix is a diagonal matrix with positive real values called 

singular values (σ), which, in descending order, determine the rank of the overall 

matrix X, r = M (in L > M). After the SVD, the three decomposed submatrices for both 

the signal and noise properties are represented separately as 
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With eigencharacteristics of the noiseless Toeplitz matrix, the number of the 

prespecified rank of the matrix S is equal to the number of non-zero singular values in 

the Σ matrix after factorisation. As Eq. (129) states, the noiseless data can be 

reconstructed by multiplying r columns of the submatrix U by an r by r diagonal 

matrix Σ, and by r rows of the submatrix VT, 
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  (135) 

Each singular value corresponds to the magnitude of the FID amplitude or 

spectral amplitude (including noise) of each contributing resonance. As the noise 

amplitude increases, the singular values of the noise increase while the signal singular 

values stay the same. This leads to difficulties in determining the minimal matrix rank 

to extract the signal since the gap between the singular values of the signal and noise 
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become smaller and harder to differentiate [52]. By removing the noise related singular 

value elements Eq. (128) becomes, 
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r r r r or or or

T

r r r
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  (136) 

 

where S still continues to be a Toeplitz matrix filled with signal only elements, while 

the E is a non-Toeplitz matrix filled with error values that arise from the original noise 

elements wn of the minimal rank r = k. After the multiplication of the three submatrices 

with the reduced rank Σr matrix, the average of the sub-diagonal elements are taken to 

reconstruct not only the Toeplitz matrix form but also the estimated reduced noise FID 

x''(t) vector form, 

  

 ( ) ( ) ( ) ( )0 1 1
T

x t x x x N   = −     (137) 

 

The mathematical proof of how the sub-diagonal averaging leads back to the FID 

vector form is found in [392]. 

In general, increasing noise levels complicates the determination of the 

minimum rank. Even if the correct minimum rank is known, if the noise level is large 

then the residual noise may affect the minimum rank singular values, and thus, the 

estimated optimal data set. The minimum rank determination process becomes even 

harder with complex data with multiple resonances and highly noise distorted data.  

148BProof of reducing rank and optimisation 

Replacing the tail singular values (those related or coming from the noise) by zeros 

would reduce the dimension of the overall matrix. This is called the reduced rank 

matrix [393]. By reducing the rank of the matrix, the RMS error between the original 

and the reduced rank approximation is minimised. Let A be the original matrix and A’ 

the approximated matrix (i.e., the reduced rank matrix) 
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Since the Σ matrix is known as diagonal square matrix it can be simplified by replacing 

l by k and m by n, then  Eq. (132) can be rewritten as, 

 

 2 T T

ik kk kj in nn mj
i j k n

A u v u v =   . (139) 

 

Eq. (133) shows that if k = n then ∑ 𝑢𝑖𝑘𝑢𝑖𝑛𝑖 = 1  since the vector u is column-

orthonormal. The same rule applies to vector v which is row orthonormal (i.e., 

∑ 𝑣𝑘𝑗
𝑇 𝑣𝑚𝑗

𝑇 = 1𝑗 ), and as result, only the singular value components remain, 
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Let us assume that the rank of the matrix is reduced from k to t and new singular value 

matrix is denoted as Σ', the reconstructed matrix A' is then, 
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To minimize ‖𝐴 − 𝐴′‖2, requires keeping the large singular values and replacing the 

smaller singular values with zero and as results, the rank of the matrix is reduced.  

149BSolvent suppression with Cadzow’s method 

As previously mentioned, singular values yielded through the composite property 

mapping algorithm are proportional to the amplitude of the sinusoidal components of 
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the FID. Resonance manipulation apart from noise reduction, such as solvent 

resonance suppression can also be applied by adjustment of the singular values in a 

similar manner [154, 156]. In solution state 1H NMR studies, processing FID data is 

often dominated by the large solvent signal. This amplitude difference also shows in 

the singular values, leaving solute and noise singular values significantly small. Thus 

the determination of the minimum rank separating signal from noise becomes difficult.  

The elimination of the solvent signal can be easily performed by replacing the 

first singular value with zero and reconstructing using the same procedure taken for 

noise reduction. This approach is only applicable if the resonance lineshape is 

Lorentzian. When the solvent resonance is somehow distorted (e.g., Figure 41 in 

Chapter 7), more than one singular value may require to be replaced with zeros to 

eliminate the solvent resonance from the FID. 

 

3.7.2 Other Signal Processing Methods similar to Cadzow’s 

method 

Harmonic Inversion (HI) 

The harmonic inversion noise reduction (HINR) method was developed by Taylor et 

al, to improve spectral sensitivity to facilitate the detection of weak NMR signals [69, 

71]. There are four steps in the method: 1) Transform the original FID into a spectrum 

via FT. 2) Segment the spectrum into a smaller window of approximately 300 Fourier 

grid points and take the inverse FT of each spectral segment. 3) A Hermitian 

correlation matrix is then constructed from the  segmented FID. 4) Perform SVD to 

clean the FID by discarding small (i.e., noise) singular values. Step 4 is performed in 

the same manner as Cadzow’s rank determination process. A detailed mathematical 

explanation for HINR method is found in Ref [65, 69, 394]. HINR method has been 

tested in 13C [65], 15N [69], 17O, and 31P [70].  

Singular Spectrum Analysis (SSA) 

“Singular Spectrum Analysis (SSA)” also known as “Structured Total Least Squares 

(STLS)” is a time series analysis and noise filtering technique using a rank reduced 

Hankel matrix method [395]. The method is constructed by two complementary 
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stages: decomposition and reconstruction with two steps each within. The first step 

“embedding” maps the 1D time series (i.e., FID) data into a Hankel matrix H. The 

characteristics of the Hankel matrix include both the rows and columns which  are 

subseries of the original time series resulting in anti-diagonal elements (see Eq.(118)). 

The number of rows is specifically called window length in the SSA method. The 

second step of the Decomposition stage is computing the SVD of this Hankel matrix. 

The Hankel matrix is first multiplied by its transpose matrix (viz., HHT) to create a 

covariance matrix which then decomposed into submatrices containing eigenvalues 

and its corresponding eigenvectors. The first reconstruction step is so-called Eigen-

triple grouping [396]. This grouping step chooses the set of Eigen-triple which refers 

to the signal component of the eigenvalues. This and the following last steps “diagonal 

averaging” follow the same procedure as other SVD-based signal processing methods 

to reform the matrix data back into 1D time series vector. 

There are two key parameters that the SSA method’s outcome are highly 

dependents on; the window length of the embedding, and the number of eigenvalues 

that separate the signal from the noise. These two parameters must be chosenand if an 

unsuitable choice is made for one parameter the outcome of the noise reduced 

spectrum may not be the optimum [397]. The SSA method is designed to overcome 

the heavy computational load in SVD without any compensation on the accuracy of 

the results [398, 399]. To reduce the SVD computational time,  extensions of the SSA 

method such as QR factorisation [400] and the Lanczos method [401] were also 

developed, however, both methods have limited outcome accuracy and reliability 

which depend on the smoothness and/or the decay rate of the original singular 

spectrum [402]. Under certain conditions, the SSA method can be viewed as one 

iteration of Cadzow’s basic algorithm [52, 395]. Meaning that One iteration of 

Cadzow’s basic algorithm will yield the same results obtained from the SSA method 

if the window length and the Eigen-Triple grouping chosen are the same values in both 

methods. There is some discussion about the superiority of the methods between SSA 

and Cadzow’s [403]. Even with such similarity found in the procedure, both methods 

are still studied, improved and applied to many studies not only for NMR but also for 

other fields. For this thesis, Cadzow’s composite property mapping algorithm was 

chosen to be studied, applied and utilised to improve existing NMR signal processing 

methods. 
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CHAPTER 4. 3BSHORTENING NMR 

EXPERIMENTAL TIMES WITH 

NORMALISATION 
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4.1 31BINTRODUCTION 

Some NMR experiments are typically run as an array in which one experimental 

parameter (EP) is iteratively varied to modulate the signal amplitude. Two common 

examples being NMR relaxation [93, 404] and NMR diffusion [27, 28] measurements. 

When measuring longitudinal relaxation using the inversion recovery sequence [93], 

the parameter being varied is the  delay between the  and /2 RF pulses. For 

diffusion measurements, the varied parameter is the magnitude of the dephasing 

effects of the diffusion encoding gradients normally proportional to the magnitude g 

of the gradient pulses [111]. In either case, the result is ultimately a change in the 

magnitude of the acquired signal. Due to low SNR and phase cycling considerations, 

a considerable number of scans may be required for each value of the varied 

experimental parameter. Both types of measurements have traditionally, and possibly 

out of early computational limitations, been conducted with the same number of scans 

for each iteration. Consequently, the SNR changes significantly from one spectrum to 

the next, in a generally defined manner, due to signal attenuation depending upon the 

experimental parameter whilst the noise component of the signal is constant. In general, 

approximate values for the diffusion coefficient or relaxation times are known 

beforehand. Quite often there is more than sufficient SNR at some values of the 

experimental parameter (e.g., at long or very short  values or at low gradient values) 

but insufficient at others (e.g.,  values near the null point or at high gradient values) 

in conventionally performed experiments. 

Without additional hardware or complicated pulse sequences, much simpler 

and time efficient array experiments can be performed using the ‘normalisation 

technique’ presented here. Unlike the conventional signal collection scheme with a 

constant number of scans throughout the experiment, the number of scans is tailored 

for each value of the experimental parameter to optimise the SNR. In the normalisation 

approach, a target SNR (SNRrequired) is chosen and a sufficient number of scans is 

calculated for each value of the experimental parameter, NS(EP), so that (ideally) the 

acquired signal, S(EP), exceeds SNRrequired. Importantly, NS is now a function of EP, 

and the signal acquired for each EP value is then normalised according to the total 

number of averages that were used to acquire it. This is done independently for each 

EP value. This time efficient ‘scan number normalisation’ approach to acquiring 
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arrayed NMR experiments is quite general and is readily applicable beyond relaxation 

and diffusion measurements. 

The utility of this approach is demonstrated with 23Na NMR diffusion and spin-

lattice relaxation measurements on an aqueous 10 mM NaCl sample. As will be shown, 

this approach leads to a significant reduction in experimental time and increased 

experimental precision yet requires only a trivial change to the acquisition protocol 

and analysis. 

4.2 32BTHEORY 

4.2.1 81BPractical implementation of the normalisation 

approach 

150BT1 measurement 

The signal intensity M(τ) resulting from the standard inversion recovery sequence (see 

Figure 7 from Section 2.6 ) was previously given at  Eq. (11). An initial measurement 

M(0) and NSinitial scans is used to determine SNRinitial. Hence, the number of scans 

required at τ = 0, (NS(0)), to obtain a spectrum with at least SNRrequired is given by 
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where NScycle is the number of scans required for one phase cycle and the floor function 

ensures an integer value. Including the effects of relaxation using Eq. (11), the number 

of scans required (NS(τ)) for τ > 0 can be estimated from 
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In practice, an upper limit of NS(τ) would be set to prevent impracticably large values 

near the null point (i.e., τnull = T1 ln(2)), or, alternatively, the null point could be 

skipped. 

Since, M(τ) was acquired with NS(τ), prior to regression of Eq. (11) onto the 

relaxation data, the individual M(τ) values must be normalised according to 
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Eq. (11) is then regressed onto the Mnormalised(τ) values to obtain the T1 relaxation time. 

151BDiffusion measurement 

The NMR signal attenuation resulting from a standard PGSE sequence (see Figure 9 

in Section 2.8) for a freely diffusing species is given at the Eq. (16). The diffusion 

coefficient D is determined by regressing Eq. (16) onto the E(g) values. A typical 

PGSE measurement begins by a rough determination of the maximum b value, 

corresponding to the values of the PGSE  parameters (i.e., , g, ) required to attenuate 

the echo signal by at least 90% (i.e., E(g)  0.1). This also provides an approximate 

value of D. In a conventional measurement, the same value of NS is used for all 

gradient strengths. Similar to the relaxation measurements, in the normalisation 

approach the number of scans required for each gradient strength, NS(g), can be 

estimated and tailored.  

Using Eq. (136) and including the effects of the PGSE attenuation from Eq. 

(16), the number of scans required for g > 0 spectra, (NS(g)), can be estimated by 
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where NS(0) is now the number of scans required to obtain SNRrequired at g = 0. 

However, blind use of Eq. (139) could lead to a very large number of scans at high 

attenuations. In practice, an upper limit of NS(g) should be set. 

Since, S(0) was acquired with NS(0), prior to regression of Eq. (16) onto the 

PGSE data, the individual E(g) values must be normalised according to 
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4.3 33BMATERIALS AND METHODS 

4.3.1 82BSample preparation 

A 0.5 ml aliquot of a 10 mM NaCl solution in D2O was dispensed into a 5 mm NMR 

tube (Wilmad, USA). The sample was bringing to the room temperature (298K) at the 

time of the experiment. 

4.3.2 83BNMR Experiments 

All 23Na NMR measurements were performed at 298 K and 105.8 MHz on a 400 MHz 

Bruker Avance NMR spectrometer (Bruker Biospin, Karlsruhe, Germany) using a 5 

mm BBFO probe equipped with a z-gradient coil. A typical /2 pulse length as 9.8 s. 

A spectral width of 847 Hz was digitised into 32,768 points with an acquisition time 

of 0.3 s and a recycle delay of 0.3 s sufficient for full thermal relaxation. A line 

broadening of 0.5 Hz was applied prior to Fourier transformation. Spectral intensities 

were determined by integration of the region from -0.2 to 0.2 ppm. SNR values were 

calculated using the Bruker Topspin command ‘SINO’.  Inversion recovery and PGSE 
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measurements were performed using the standard sequences [28, 93]. NScycle = 8 for 

both inversion recovery and PGSE NMR sequences, respectively. The 23Na diffusion 

measurements were conducted with ∆ = 60 ms, δ = 4 ms and g increased from 0.006 

to 0.503 T m-1 in increments of 0.050 T m-1. Data fitting was performed using 

OriginPro 9.1 (OriginLab, Massachusetts, USA). 

4.4 34BRESULTS AND DISCUSSION 

4.4.1 84BT1 measurement 

The 23Na T1 was roughly estimated from the null point to be 47.0 ms. Twelve different 

τ values ranging from 0.001 to 0.8 s were then selected to accurately measure the T1. 

As a reference, a conventionally acquired T1 relaxation measurement with NS = 80 

yielded T1 = 49  1 ms (Figure 28a and b). The SNR for these reference spectra ranged 

from 45 ( = 0.02 s) to 174 ( = 0.8 s) as shown in Table 3. 

  

Table 3. The  values used in the 23Na inversion recovery experiments and the 

measured SNR from the NS = 80 ‘reference’ inversion recovery experiment. Also 

shown are the estimated number of scans, NS(τ), required to achieve SNR  40 and 

the measured SNR(τ) values. The NS value for τ = 0.001 s was used as NS(0). 

 

 

 

 

 

 

 

 

 

 

 

 

τ (s) SNR of NS = 

80 

Normalisation Approach 

NS(τ) SNR(τ) 

0.001 102 8 43 

0.003 112 8 34 

0.005 115 8 39 

0.01 90 16 36 

0.02 45 80 45 

0.05 57 80 57 

0.06 88 40 49 

0.07 90 24 58 

0.08 118 16 45 

0.2 103 8 49 

0.5 138 8 55 

0.8 174 8 54 
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The T1 measurement was then performed using the normalisation approach using the 

same  values, but with the NS() values are chosen to achieve an SNR of ~ 40. The 

NS() values together with the corresponding experimentally measured SNR values 

are tabulated in Table 3. The corresponding spectra and analysis are plotted in Figure 

28c and d, respectively, giving T1 = 49  1 ms, which is in perfect agreement with the 

reference dataset but with a 68% reduction in experimental time. 

 

 

 

 

Figure 28. 23Na inversion recovery measurements of 10 mM NaCl in D2O at 298 K a) 

Reference spectra acquired with NS = 80 and c) spectra acquired with NS() as defined 

in Table 1. The corresponding T1 relaxation time estimation plots are shown in b) and 

d), respectively.  

 

4.4.2 85BDiffusion measurement 

The number of scans required at the highest gradient strength (g = 0.503 T m-1) to 

satisfy SNR required = 40 was first calculated to be NS = 1440. A conventionally acquired 

reference NMR diffusion dataset acquired with NS = 1440 at every gradient strength 
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gave the sodium diffusion coefficient to be D = (1.27  0.02)×10-9 m2 s-1. The SNR for 

these reference spectra is tabulated in Table 4. To utilise the normalisation approach, 

a spectrum was first collected with the lowest gradient strength (g = 0.006 T m-1) with 

NS = 8, which gave SNRinitial = 13. Thus, according to Eq. (136), 72 scans (i.e., NS(0)) 

were required to achieve SNRrequired = 40. The NS(g) values estimated from Eq. (139) 

are tabulated in Table 4 together with the corresponding experimental SNR(g) values. 

The spectral data set after normalisation according to Eq. (140) and its analysis using 

Eq. (16) is presented in Figure 29 giving D = (1.26 ± 0.03)×10-9 m2 s-1, which is within 

experimental error of the estimate from the reference dataset but with a 75% reduction 

in experimental time. 

 

Table 4. The SNR of the NS = 1440 reference 23Na NMR diffusion experiment. Also 

shown are the estimated number of scans (NS(g)) required to achieve an SNR = 40 

and the corresponding measured SNR(g) values. The NS value for g = 0.006 T m-1 was 

used as NS(0).  

 

g (T m-1) SNR of NS = 

1440 

Normalisation Approach 

NS(g) SNR(g) 

0.006 135 72 40 

0.055 171 72 45 

0.105 126 80 35 

0.155 142 96 39 

0.205 161 120 44 

0.254 97 160 33 

0.304 67 216 29 

0.354 87 320 37 

0.404 67 496 37 

0.453 63 824 36 

0.503 43 1440 43 

 



116 | P a g e  

 

 

 

Figure 29. a) 23Na PGSE NMR spectra of 10 mM NaCl in D2O at 298 K obtained with 

NS(g) as defined in Table 2 and b) non-linear regression of Eq. (5) onto the data set 

gave D = (1.26 ± 0.03)×10-9 m2 s-1. 

 

4.5 35BCONCLUDING REMARKS 

The normalisation approach, in conjunction with a simple calculation preparation, can 

significantly reduce the overall experimental time in diffusion and T1 (or similarly T2) 

measurements with essentially no loss in accuracy. Both of the above examples 

involved some elements of prior knowledge in choosing the experimental parameters 

(i.e., an estimate of the diffusion coefficient and the relaxation time) and the functional 

form of the signal amplitude dependence on the experimental parameter (i.e., Eqs. (11) 

and Eq. (16) ). In general, the functional form will be known and in most cases it is 

possible to obtain some pertinent estimate of T1 or D. Less accurate estimates of T1 or 

D will still lead to parameters resulting in a considerable reduction in overall 

experimental time compared to merely using the same number of scans for each 

element of the experimental array. In contrast to other approaches for speeding up 

NMR experiments, the normalisation approach can be rather generally applied and in 

principle, could be largely or totally automated. 
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5.1 36BINTRODUCTION 

As discussed in Section 1.3.1 and Section 2.7, quadrupolar nuclei are ubiquitous and 

thus extremely important in biology and chemistry. Rapid quadrupolar relaxation can 

further exacerbate signal-to-noise issues [89, 108]. For example, 23Na relaxes rapidly 

(e.g., T1 = 49 ms in D2O at 298K measured in Chapter 4) and the SNR can easily 

become a limiting factor in the practicality of an experiment when there is a significant 

duration in the pulse sequence between excitation and acquisition as in a diffusion 

experiment. 

Quadrupolar nuclei often have a significant advantage in NMR post-signal 

processing. Specifically, solution state spectra of quadrupolar nuclei NMR generally 

have only one resonance thus allow the rank of the Toeplitz matrix into which the FID 

is formatted to be pre-specified as one. Therefore, no matrix rank investigation is 

required during the signal processing procedure. What is more, there will be no false 

rank determination which could lead to inaccurate results. 

Here we apply ‘Composite property mapping’ method [52] for the analysis of 

quadrupolar nuclei NMR diffusion measurements. The theory and methodology of the 

composite property mapping algorithm are previously provided in Section 3.7. 23Na 

nuclei was used as an example for quadrupolar nuclei NMR diffusion experiment.  

This simple application of a composite property mapping method is believed 

to provide superior SNR with very short processing time. The effect of noise reduction 

was compared with the usual direct Fourier transformation approach and the Savitzky-

Golay (SG) filtering method. The SG filtering method is a well-known NMR 

denoising technique using polynomial function fitting and windowing [405-407]. The 

only concern for applying composite property mapping algorithm is the sensitivity 

limitation. When the noise level increases, the residual noise error within the processed 

data also increases, thus the accuracy and precision of the diffusion coefficient 

estimation decrease. The sensitivity limitation of composite property mapping was 

investigated further by using simulated diffusion data. 
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5.2 37BMATERIALS AND METHODS 

5.2.1 86BSample preparation and NMR measurements 

NaCl (99.0%, Chem-supply, AU) was dissolved in D2O and diluted to 10 mM. 

Aliquots (0.5 ml) were dispensed into 5 mm NMR tubes (Wilmad, USA).  

5.2.2 87BNMR diffusion measurements 

23Na PGSE NMR diffusion experiments were performed at 105.8 MHz, on a 400 MHz 

Bruker Avance NMR spectrometer using a 5 mm BBFO probe at 298 K. The 

parameters for the standard PGSE sequence (see Figure 9 ) are: δ = 5 ms, Δ = 60 ms, 

g from 0.005 to 0.503 T m-1 in increments of 0.045 T m-1, an acquisition time of 0.2 s 

and a recycle delay of 0.3 s (i.e., total recycle delay = 0.5 s). Each spectrum was 

originally digitised into 32 K data points from 24K data points collected as the FID. 

The narrow frequency region (i.e., 423.36 Hz) containing the sodium signal was 

extracted and inverse Fourier transformed for processing. The size of the dataset was 

reduced to 926 data points. The processing of each spectrum took less than half a 

second on a PC (CPU of 3.40 GHz and RAM of 16.0 GB) to enhance the SNR of each 

spectrum using Cadzow’s method (see Section 3.7.1) code written in MathCad 15. With 

prior knowledge of the resonance being a single peak, the minimum rank for the matrix 

was set equal to one for each dataset. 

5.2.3 Savitzky-Golay Filtering Method 

The effectiveness and efficiency of Cadzow's technique were compared with the 

nonparametric SG filtering method [51, 407]. The SG method shares similarities with 

other methods such as the moving average method, Whittaker smoother [405, 408] 

and the low pass filter method. As the term "filtering" suggests, the SG method is not 

designed to estimate parameters, but to smooth the data directly from the time-domain 

signal [409]. The SG filtering method uses least squares polynomial fitting with small 

moving windows. To obtain optimal output, two key parameters; the degree of the 

polynomials and the size of the moving window must be chosen adequately [410, 411]. 

For example, if the spectrum contains narrow peaks represented by 10 data points, and 

the moving window size must be chosen with more than 10 data points, the resulting 
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filtered spectrum contains broadened peaks with much lower amplitudes. The degree 

of the polynomial function is also important for data smoothing and fitting. A 

polynomial of degree one will give a linear fit to the data values within the window 

and thus only a very small smoothing effect. The basic theory, methodology, and 

applications of SG filters can be found in the following references ([406, 407, 410-

412]). Due to the accessibility and adaptability of this method, the SG filtering method 

was written in many processing programming languages such as Matlab [413] and 

Mathcad [414]. Following the steps in ref [414], the experimental 23Na NMR diffusion 

data acquired with NS = 64 was treated with a 4th degree polynomial with 15 and 25 

moving window data points, and fitted with an 8th degree polynomial also with 15 and 

25 moving window data points as presented in the next section. 

5.3 38BRESULTS AND DISCUSSION 

5.3.1 88BDiffusion coefficient estimation of Na+ in aqueous 

solution 

The 10 mM NaCl sample was measured with RG = 16384 with NS = 2048 (“reference” 

dataset), 128 or 64 (“noisy” datasets). All datasets were processed using standard FT 

processing followed by diffusion coefficient determination. The ‘noisy’ datasets were 

also processed with Cadzow’s method followed by diffusion coefficient determination. 

The analysis for the NS = 64 datasets is shown in Figure 30 and the results for all three 

datasets are summarized in Table 5.  

Table 5. SNR and results of the diffusion coefficient determination for the 23Na 

resonance of the reference and noisy datasets after processing using FT and with 

Cadzow’s method.  

 

NS SNR after FT1 D after FT 

(×10-9 m2s-1) 

SNR after Cadzow1 D after Cadzow 

(×10-9 m2s-1) g = 0.005 

(T m-1) 

g = 0.503 

(T m-1) 

g = 0.005 

(T m-1) 

g = 0.503 

(T m-1) 

2048 453 35 1.24 ± 0.02 298100 204000 1.24 ± 0.01 

128 107 11 1.21 ± 0.05 21970  9288 1.23 ± 0.04 

64 61  6 1.27 ± 0.05 53000  3000 1.23 ± 0.04 
1with increasing gradient strength. 
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As can be seen in Figure 30, the application of Cadzow’s method results in significant 

noise reduction, providing cleaner spectra and more accurate diffusion coefficient 

values with far fewer scans. In the present case, this results in a 32-fold reduction in 

experimental time.  

 

 

Figure 30 23Na PGSE NMR spectra of NaCl in D2O at 298 K obtained with a) NS = 

2048, c) NS = 64 and the diffusion attenuation analysis of the data using Eq. (16) are 

shown in panels b) and d), respectively. For the same dataset with NS = 64, but after 

signal processing with Cadzow’s method, the spectra and diffusion attenuation 

analysis are shown in e) and f), respectively.  

 

The spectrum with the lowest SNR in Figure 30e shows Cadzow’s method is 

unable to recover the correct line shape below a certain SNR threshold. To investigate 

the SNR threshold above which the SNR of raw diffusion NMR data has to be kept in 

order to obtain valid denoised results, the following simulation study with different 

additive Gaussian noise level was conducted. 
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5.3.2 89BSNR threshold for Cadzow’s method studied by 

simulation 

The key to the successful application of Cadzow's method lies in the determination of 

the minimum matrix rank when the number of resonances is unknown. Even with the 

prespecified minimum rank (i.e., the number of resonances is known), the 

reconstructed matrix still contains noise components (see Eq. (131)). This residual 

noise embedded within the singular values of minimal rank can affect spectral 

amplitude even after signal processing.  

The reference diffusion coefficient value was determined to be D = (1.24 ± 

0.01)×10-9 m2 s-1. The amplitudes of the simulated FIDs were determined at eleven 

equally incremented gradient strengths and each FID was constructed with 2048 data 

points. Additive white Gaussian noise was generated using signal processing 

command ‘gaussn(n)’ in Mathcad and added to the simulated FIDs. The Mathcad 

command, gaussn(n), act as a simulated noise generator which returns an n element 

vector of noise in Gaussian distribution of mean 0 and standard deviation of 1. Series 

of additive white Gaussian noise were tested to find the SNR threshold for the raw 

diffusion NMR data to be processed by using the composite property mapping 

algorithm. The diffusion coefficient values obtained before and after the noise 

reduction are summarised in Table 6 indicating the highest and the lowest SNR values 

obtained from each simulated data before and after signal processing. This tabulated 

data is then visually summarised in Figure 31 a) and b) as before and after noise 

reduction respectively. 
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Table 6. SNR values and results of the diffusion attenuation analysis for the simulated 
23Na spectra of the reference and the spectra with added noise after processing using 

FT and with Cadzow’s method.  

 

Dataset Noisy data Processed Data 

SNR Diffusion 

coefficient 

(×109 m2 s-1) 

SNR Diffusion 

coefficient  

(×109 m2 s-1) 
g = 0.005 

(T m-1) 

g = 0.503 

(T m-1) 

g = 0.005 

(T m-1) 

g = 0.503 

(T m-1) 

1 295.6 24.4 0.98 ± 0.07 8.5 ×105 8.2 × 104   1.24 ± 0.01 

2 143.7 11.8 0.76 ± 0.08 1.1 × 106 6.7 × 104 1.24 ± 0.01 

3 112.4 9.2 0.59 ± 0.08 1.0 × 106 9.6 × 104 1.25 ± 0.02 

4 65.9 7.6 0.45 ± 0.07 1.1 × 106 3.6 × 104 1.22 ± 0.02 

5 59.2 6.2 0.36 ± 0.07 4.7 × 105 2.9 × 104 1.21 ± 0.03 

 

These simulations show that highly accurate diffusion coefficient determination (e.g., 

1% error) can be achieved by the application of Cadzow’s method to the dataset having 

the lowest SNR of 11.8 at applied gradient strength g = 0.503 T m-1 (corresponding to 

dataset_2). This SNR value is about three times lower than the experimentally 

measured dataset’s lowest SNR of 35 (NS = 2048 in Table 5). The diffusion 

coefficients obtained from the processed datasets_3 to 5 listed in Table 6 are in 

agreement with the reference diffusion coefficient value of 1.24 × 109 m2 s-1 however 

the error range is more than 1%. This slight shift in the diffusion coefficient after 

processing are also visualised in Figure 31b). Figure 32a) shows the echo attenuation 

plot of the simulated dataset_5 with SNR ranging from 6.2 to 59.2 listed in Table 6. 

This dataset is similar to the experimental dataset collected with NS = 64 in terms of 

SNR range.  
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Figure 31. Diffusion coefficient estimates obtained from simulated datasets before and 

after composite property mapping signal processing. The weight of additive white 

Gaussian noise increased from noisy 1 to 5 datasets as indicated in Table 6. a) The 

accuracy and precision of estimated diffusion coefficient estimation from those noisy 

datasets are compared with the simulated reference diffusion coefficient and its error 

range indicated with a dotted line. b) Diffusion coefficients and its errors after 

application of composite property mapping signal processing to the corresponding 

noisy datasets are represented as processed data sets. 

 

It can be seen in Figure 31 that a remarkable improvement in diffusion coefficient 

estimation was achieved by the application of Cadzow’s method to all the simulated 

datasets. To have a closer look at the improved diffusion estimation, we turned to the 

dataset_5 with the lowest SNRs. Figure 32 shows the fitting of Eq. (16) to the original 

and processed dataset_5; the processed dataset_5 clearly follows the pattern of a single 

exponential decay in contrast with the highly distorted decay pattern of the original. 
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Figure 32. The illustration comparing the accuracy of the signal attenuation rate and 

its exponential curve fitting precision of the simulated diffusion experiments dataset_5 

before a) and after b) applying composite property mapping signal processing. 

 

The results in Figure 31 clearly highlight the strength of Cadzow’s method. These 

simulated results have revealed that in order to successfully reduce the noise and 

obtain accurate diffusion coefficient estimation a certain level of SNR is required in 

the original dataset. As mentioned previously in Section 3.7, there is always a residual 

noise 𝑤̅𝑛  remained within the processed dataset. This inevitable fact leads to the 

limitation of the Cadzow’s method yet; promising sensitivity enhancement was 

evidently demonstrated in this study. From both experimental and simulated studies, 

acquiring an accurate and precise diffusion coefficient by Cadzow’s signal processing 

method require the minimum SNR of 11.8. Each processing only took less than a 

second of computational time which is almost negligible compared to the experimental 

time taken for signal averaging. 

5.3.3 Savitzky-Golay Filtering method post-signal 

processing 

The SG filtering method was applied to 23Na PGSE NMR spectra of NaCl in D2O at 

298 K obtained with NS = 64. The effect of the parameters k = “degree of polynomial” 

and w = “moving window data points” on the SG filtering is illustrated in Figure 33. 

The effect of the SG filtering method was compared with the original noisy spectrum 
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(Figure 33a) on the 23Na PGSE NMR spectra of NaCl with the lowest applied gradient 

strength ( g = 0.05 Tm-1) acquired with NS = 64. 

 

 

Figure 33. The stacked plot of the 23Na NMR spectrum (NS = 64) with and without 

SG filtering. a) Original spectrum. b) to e) SG filtered spectra. The values of the key 

parameters k = “degree of polynomial” and w = “moving window data points” used 

for each SG filtering process were b) k = 8, w = 25; c) k = 8 and w = 25; d) k = 4 and 

w = 15, and e) k = 4 and w = 25. 

 

Figure 33 shows that higher the degree of polynomial chosen for the fitting, fewer 

changes to its spectral width and less noise removal is observed especially on the 

baseline. Applying lower degrees of polynomial, on the other hand, can smooth out 

baseline noise with the cost of broadening of the spectral width. The same degrees of 

a polynomial function with moving window size was applied to the rest of the 

attenuation spectrum to estimate its diffusion coefficient. The waterfall spectrum of 

the 23Na NMR PGSE data with SG filter of 8th polynomial function with 25 moving 
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window size is provided at Figure 34 a) and the corresponding diffusion attenuation 

plot is found in Figure 34 b). 

 

 

Figure 34. a) 23Na PGSE NMR spectra of NaCl in D2O at 298 K acquired with NS = 

64, processed with Savitzky-Golay filter parameter of 8th polynomial function and 25 

moving window size. b) Diffusion attenuation analysis of the data a) giving the 

diffusion coefficient of 1.26 ± 0.05 ×109 m2 s-1. 

 

Interestingly, all of the processed data presented the diffusion coefficients of 1.26 ± 

0.05 ×109 m2 s-1. As the reference diffusion coefficient acquired with NS = 2048 being 

1.24 ± 0.02 ×109 m2 s-1 and the original diffusion coefficient acquired with NS = 64 

being 1.27 ± 0.05 ×109 m2 s-1, it is appropriate to say that the SG filtering method did 

smooth out the noise spectrum. However, the method did not achieve sufficient signal 

enhancement to obtain accurate and precise diffusion coefficient after processing 

compared to Cadzow's method processing the same dataset giving a diffusion 

coefficient of 1.23 ± 0.04 ×109 m2 s-1. 

 

5.4 39BCONCLUSIONS 

Cadzow’s method can improve the SNR of the noisy NMR data under certain 

conditions and do so much more efficiently than merely acquiring more signal 

averages. It is suited to experiments such as NMR diffusion measurements were all of 

the spectra in a series differ only by an attenuation factor. Solution-state spectra of 

quadrupolar nuclei are especially suited as there is generally only a single peak in the 
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spectrum. It is possible to process one NMR diffusion dataset using Cadzow’s method 

in only a few seconds.  

As the noise level exceeds a certain threshold, the noise properties found within 

the singular values and corresponding singular vectors of the minimal rank can affect 

the estimated signal and its amplitude. To determine diffusion coefficients with 

sufficient accuracy all spectra in a dataset should have SNR > 11.8. A spectrum 

acquired with a low gradient value combined with a rough estimate of the diffusion 

coefficient is sufficient to allow cogent settings of gradient parameters and NS value 

to achieve the SNR threshold. 

 Compared to the SG filtering method, Cadzow's method provides far superior 

noise removal providing accurate and precise spectral information which, in turn, 

allows accurate estimation of the diffusion coefficient. Cadzow's method does not 

require any pre-calculation for method optimisation in contrast to the SG filtering 

method in which the optimal degrees of a polynomial function and window size for 

spectral data smoothing must be determined. 
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CHAPTER 6. 5BFREQUENCY 

SELECTIVE SIGNAL PROCESSING 

FOR MULTIEXPONENTIAL 

DECAYS 
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6.1 40BINTRODUCTION 

1H and 13C NMR are often used as quantitative analytical tools to study 

macromolecules such as proteins in biological samples [115, 312, 415]. Almost all 

biological molecules contain hydrogen and carbon as their major constituents, indeed 

carbon atoms form the backbone of most organic molecules. Both 1H and 13C nuclei 

are spin 1/2, and the nuclei are often spin-coupled, consequently, the measured signals 

have multiple resonances. Each resonance's frequency, signal intensity, and splitting 

pattern provide a lot of molecular level information. This is why the NMR technique 

is highly regarded in many areas of study including protein/ligand binding [416] and 

biofluid analysis [417]. In real-life NMR diffusion study of the biomedical and 

synthetic sample, and protein analysis often presented in a crowded spectrum heavily 

distorted by noise obtaining an accurate measurement of diffusion difficult. 

A complex mixture analysis, affinit NMR approach [416], and the purity assay 

of nanoparticles often face difficulty analysing due to the presence of proteins, 

biofluids, macromolecules and other impurity contents that measured altogether 

creating heavily overlapped resonance with broad baseline [418-420]. Although these 

problems are most commonly observed when acquiring 1H spectra, the issues are 

general and can occur with any nucleus. 

The difficulties often arise due to the existence of a large solvent signal that is 

non-deuterated, specific measuring temperature requirement, and/or simply having 

low solute concentrations. Having a large solvent signal can lead to radiation damping 

due to the strong net magnetisation which resulted in inefficient solvent suppression 

and creating artifacts. Solvent signal suppression pulse sequences have been studied 

and introduced yet not many can be applied to PGSTE or PGSE NMR sequence. To 

remove such a hurdle, a number of experimental approaches including advanced pulse 

sequences such as PGSE WATERGATE [157, 158, 421], and the T2 filtration method 

[419, 422] were previously proposed. The WATERGATE pulse sequence, which was 

briefly summarised in Section 2.9, is a commonly used solvent suppression pulse 

sequence that can be incorporated into the PGSTE NMR sequence without generating 

any phase distortions [421]. The T2 filtering method based on the Carr-Purcell-

Meiboom-Gill (CPMG) sequence can be used to detect the resonances of small 

molecules which are often hidden under broad macromolecular resonances [419, 423]. 
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The total relaxation delay time in the pulse sequence can be set so that there is a large 

loss of transverse magnetisation from the large molecules and solvent signals  

compared to other smaller molecules within the mixture leading to sufficient filtration 

of the rapidly relaxing macromolecule resonances [419, 422]. 

These experimental signal suppression approaches provide superior 

acquisition of weak signals in the presence of a solvent than standard pulse and acquire. 

However, the acquired spectral data still contains noise and post-signal processing is 

often required for further signal enhancement and accurate diffusion measurement. 

Further, large differences in amplitudes between signals can also frustrate the 

application of the composite property mapping algorithm since the processing 

procedure is strongly influenced by the amplitude of the signals (Section 3.7). The 

challenges involved with post-signal processing exist irrespective of the advanced 

suppression technique, unless, the signal of interest can be extracted from the crowded 

multiple-resonance spectra. 

Most signal processing methods are designed to be applied to the entire FID. 

As noted in Chapter 5, signal processing of liquid state quadrupolar nuclei using the 

composite property mapping algorithm was simplified by the prior knowledge of there 

being only a single resonance in the spectrum thus making the denoising process 

almost autonomous with none or only a few iterations being required. However, with 

a multiple-resonance dataset, even with prior knowledge such as the number of 

exponentially decaying signals within the FID, denoising the entire dataset without 

loss of sensitivity or resolution can be very difficult. Especially in diffusion NMR 

measurement, each molecule within a mixture has an individual signal attenuation rate 

thus diffusion coefficient. If any resonance attenuates fully during the diffusion NMR 

experiment, the minimum rank of the matrix will change through each element of the 

arrayed experiment. 

The signal processing of biomolecular NMR often requires some form of 

starting values/conditions such as the model spectrum and noise level. In the 

composite property mapping algorithm, the starting condition is the threshold matrix 

rank, where the rank of the matrix is the number of singular values which are strongly 

correlated with the resonance amplitudes. The threshold matrix rank can be roughly 

estimated by knowing the number of resonance in the data or using so-called hard/soft 
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thresholding estimation [424]; however, it is often manually determined from the 

singular value plot. 

In this chapter, the new composite property mapping algorithm-based signal 

processing approach is applied to NMR diffusion measurements involving spectra 

containing multiple resonances. Specifically to diffusion NMR data sets containing 

resonances from each component that are moderately well separated from each other. 

This new signal processing approach reduces the number of iterations required and 

prevents processing errors that are often encountered in the matrix rank determination 

process when multiple resonances are involved.  

In the previous subsections (Sections 3.7.2 and 3.4.3), a brief summary of 

harmonic inversion and reference deconvolution method was presented respectively. 

The efficiency and the accuracy of both harmonic inversion and reference 

deconvolution methods increase significantly when the data contains only a  single 

resonance compared to a multi-resonance spectrum [53, 69, 425]. Knowing the 

advantage of processing only a single resonance, a new signal processing approach for 

multiple-resonance diffusion measurement was proposed. The idea of this new signal 

processing approach started with "What if" question. What if the measured signal is 

segmented with a small window that covers only the signal of interest and possibly a 

few overlapped baseline just like choosing the reference signal in reference 

deconvolution method. If such data set is then processed as a singlet resonance using 

Cadzow's method would be a segment of a Harmonic Inversion scheme, would this 

outcome be similar to signal processing a liquid state quadrupolar nuclei data 

presented in Chapter 5. If this frequency selective signal processing can yield accurate 

diffusion estimates from data sets containing multiple-resonance almost 

autonomously then the method may able to assist and provide signal enhancement of 

the small signals hiding beneath the large solvent resonance that originaly required 

complex pulse sequences such as WATERGATE and T2 filtration. The aim of this 

study is to develop a much simpler signal processing approach without requiring the 

estimation of the minimum matrix rank and or iteration processes. Here this approach 

is applied to NMR diffusion measurements in order to obtain accurate diffusion 

estimates but with fewer scans. This new approach named “frequency selective signal 

processing” involves the application of the composite property mapping algorithm to 

a single signal in a selected frequency range. Hence, this approach reduces the problem 
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of dealing with a spectrum containing multiple resonances into dealing with a 

spectrum containing only a single resonance akin to the study in Chapter 5 on the 

diffusion of quadrupolar nuclei. 

6.2  41BMATERIALS AND METHODS 

6.2.1 90BExperimental details 

The experimental NMR diffusion dataset was kindly provided by Mr Wijesekera. The 

dataset was of a sample containing 38 mM BSA (heat shock fraction, pH 7, ≥ 98%) 

and 5 mM 2-nitroimidazole (98%) both purchased from Sigma-Aldrich (Australia) 

diluted in deuterium oxide (99.8% D) and sodium deuteroxide (99.5% D, 40% in D2O) 

purchased from Cambridge Isotope Laboratories Inc. (USA) in a 5 mm NMR tube 

(535-PP-7 Wilmad, USA). 

1H NMR diffusion measurements were measured at 500 MHz on a 500 MHz 

Bruker Avance III (Bruker Biospin, Karlsruhe, Germany) using a 5 mm PABBI-Z 

inverse probe at 298 K using the standard PGSTE sequence (see Section 2.8). Typical 

experimental parameters were a /2 RF pulse length of 8.25 s, δ = 1 ms, Δ = 70 ms, 

g from 0.001 to 0.509 T m-1 in increments of 0.027 T m-1, a spectral width of 12500 

Hz, an acquisition time of 1.49 s and a recycle delay was 25.3 s (i.e., total recycle delay 

of 26.79 s). The reference experimental data was acquired with NS = 64, RG = 80.6, 

collected with 37 K data points digitised into a 4096 point spectral domain. The total 

number of data points were reduced to 4096 due to matrix size limitations in the 

subsequent signal processing. The total acquisition time for the reference dataset was 

just over 9 hours. The noisy data set to be processed, the same experiment was 

conducted with NS = 8 but RG = 256, and only the diffusion time was changed from 

70 to 30 ms. The total acquisition time for the noisy data set was just over an hour. 

6.2.2 91BFrequency selective signal processing 

At first, a single resonance of interest and its surrounding frequency range were 

defined in the experimentally measured diffusion NMR spectrum. Secondly, the mean 

value of the noisy spectral baseline where no signal resonances to be found was 

calculated. This calculated mean value of the noisy spectral baseline replaced the 
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experimentally measured spectrum apart from the previously selected signal 

frequency range of interest.  

The modified spectrum should contain only resonance of interest similar to the 

liquid state quadrupolar nuclei NMR spectra in Chapter 5. Inverse Fourier transform 

of this modified spectrum is then noise reduced in the exact same manner as Chapter 

5. This modified FID is then formatted into a Toeplitz matrix where the column length 

is equal to 1/10th of the number of FID data points. This Toeplitz matrix is then 

factorised through SVD, the matrix rank reduced to one and reconstructed accordingly. 

Unlike other signal processing methods developed for multiexponentially decaying 

signals, the SVD of such discrete time domain data with Toeplitz properties is able to 

determine the minimum rank of the matrix without any iterative process 

6.3 42BRESULTS AND DISCUSSION 

6.3.1 92BChoosing a signal of interest 

Figure 35 shows the 1D 1H NMR noisy spectrum of 2-nitroimidazole and BSA from 

the NMR diffusion data set acquired with NS = 8 at g = 0.001 T m-1 (i.e., the lowest 

applied gradient strength). The well-defined singlet resonance at 8.4 ppm was chosen 

to be the signal of interest. 
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Figure 35. Noisy 1D 1H NMR spectrum of 2-nitroimidazole and BSA in D2O acquired 

with NS = 8 at g = 0.001 T m-1. The inset is an expansion of the spectrum to allow the 

resonances of the interest, 2-nitroimidazole and BSA to be clearly seen. The large peak 

at 4.8 ppm is the residual HDO of the solvent. The signal of interest is a single 

resonance at 8.4 ppm. 

 

6.3.2 93BSignal attenuation rate differences in biological 

sample 

Two diffusion NMR spectra acquired with different applied gradient strengths are 

presented in Figure 36. The difference in attenuation of the peaks according to the 

individual diffusion coefficient leads to the difference in theordering of the singular 

values representing specific resonances between the two spectra and also changes the 

minimum matrix rank for the noise reduced spectrum reconstruction.  
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Figure 36. 1D 1H PGSTE NMR spectrum of 2-nitroimidazole and BSA in D2O 

acquired with a) 0.001 T m-1 and b) 0.509 T m-1 applied diffusion gradients. The dashed 

lines highlight the different signal attenuation of the signal of interest. 

 

Some resonances may attenuate fully during the diffusion NMR experiment 

and thus the application of a conventional signal processing approach of denoising the 

entire spectrum would require numerous iterations to find the minimum matrix rank 

for each spectrum in the dataset leading to a long processing time. 

 

6.3.3 94BSingular value plot of biological NMR data 

Figure 37 shows the singular value plot of the whole spectrum of 2-nitroimidazole and 

BSA in D2O acquired with 0.001 T m-1 applied diffusion gradient (Figure 36a). 
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Figure 37. Singular value plot of the noisy 500 MHz 1H PGSTE NMR spectrum of 2-

nitroimidazole and BSA in D2O acquired with a 0.001 T m-1 applied diffusion gradient. 

The inset is an expansion of the first 25 singular values. 

 

Visual inspection of the singular value plot in Figure 37 suggests the minimum matrix 

rank to be either seven or nine. However, it is obvious from the whole spectrum shown 

in Figure 36 that the measured spectrum contains more than seven or nine resonances. 

6.3.4 95BSpectrum modification for frequency selective signal 

processing 

As the first step of frequency selective noise reduction the signal frequency region (i.e., 

7.92 to 8.72 ppm) which includes the resonance of interest (i.e., 8.4 ppm) was defined. 

The mean value of the baseline was calculated from the frequency region containing 

no signals (i.e., 9.0 to 10.0 ppm). The whole noisy spectrum (Figure 38a), apart from 

the previously selected signal frequency range was replaced by this mean value of the 

baseline as shown in Figure 38b. 
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Figure 38. The noisy spectrum of BSA and 2-nitroimidazole in D2O from 0.0 to 10.0 

ppm region a) before data modification. b) Same spectral data as a) where everything 

except the range 7.92 to 8.72 ppm was replaced with the mean value of the baseline. 

 

The modified spectrum in Figure 38b shows only one resonance creating and is thus 

similar to the liquid state quadrupolar nuclei NMR spectra in Chapter 5. The FID 

generated by taking the inverse Fourier transform predominantly contains information 

on the signal of interest. SVD of such discrete time domain data with Toeplitz 

properties was known to have the minimum rank of the matrix as being equal to one 

and no iteration process was required during the noise reduced spectral reconstruction. 

The computational time for processing a single spectrum using frequency 

selective signal processing only required less than two seconds to process 4096 data 

points including the spectral data modification process. 

6.3.5 96BDiffusion coefficient estimation 

The diffusion coefficient value of the signal of interest was accurately determined 

from the reference data set giving D = (0.18 ± 0.01) × 10-9 m2 s-1 as shown in Figure 

39a. Direct analysis of the noisy dataset resulted in a much poorer estimate of the 

diffusion coefficient with D = (0.10 ± 0.05) × 10-9 m2 s-1 as shown in Figure 39b. 

However, after processing the noisy dataset, the diffusion coefficient was able to be 

accurately and precisely determined as shown in Figure 39c. The waterfall plot of the 
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processed spectra are shown in Figure 39d and the resonance of interest is show to be 

free of other spectral interference. 

 

 

Figure 39. Diffusion coefficient estimation of the resonance of interest. a) PGSTE 

attenuation plot from the reference PGSTE NMR dataset acquired with NS = 64. b) 

PGSTE attenuation plot from the noisy PGSTE NMR dataset acquired with NS = 8 

without signal processing and c) after processing, d) a waterfall plot of the processed 

noisy PGSTE NMR spectra of interest. 

 

The b value scale and the attenuation range difference between the reference data 

(Figure 39a) and the fewer scanned data (Figure 39b and c) were due to the changes 

in the experimental parameter as mentioned. This change in parameters decreased the 

maximum signal attenuation at the highest b value to 50% instead of the 80% observed 

in the reference data set. This parameter change in the noisy data set (Figure 38b) 

allowed the signal of interest to have a higher SNR of 49.5 at the higher applied 

diffusion gradient strength (i.e., 0509 T m-1) with NS = 8. The results show that 

application of frequency selective minimum rank signal processing allows the total 

experimental time reduced to one eighth.  
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6.4 43BCONCLUSION 

The frequency selective composite property mapping algorithm successfully 

reconstructed a resonance of the interest from noisy spectra in a biomolecular 1H NMR 

diffusion data set without any matrix rank determination and iteration process. This 

allowed an accurate and precise diffusion coefficient to be determined. This diffusion 

coefficient was within experimental error and similar precision to that obtained from 

a conventional ‘reference’ NMR diffusion data set collected with eight times more 

scans and thus an SNR of about 2.8 times better. Thus, in just a few seconds the signal 

processing makes up for the shortfall in SNR in going from 64 to 8 scans.  

The frequency selective approach transformed the biomolecular NMR 

spectrum containing multiple resonances into a spectrum containing only a single 

resonance of interest. As long as the resonance of interest was a well-defined 

resonance and the number of data points kept the same, the composite property 

mapping algorithm treated the inverse Fourier transformed FID data of the modified 

spectrum similar to the FID of a liquid state quadrupolar nucleus. Spectral 

modification provided the prior knowledge of the modified FID containing 

information of only one resonance, the processing matrix rank was known to be one. 

This process completely eliminated the possibility of erasing the solute signal from 

the whole spectrum during the matrix rank determination. 
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CHAPTER 7. 6BSINGULAR VALUE 

RATIO METHOD FOR NOISE 

REDUCTION IN BIOMOLECULAR 

NMR 
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7.1 44BINTRODUCTION 

Previously, the strength of the composite property mapping algorithm [52] in noise 

reduction was demonstrated by its application to the quadrupolar nuclei NMR 

diffusion experiment (see Chapter 5). The application was also extended to 1H 

biomolecular NMR diffusion measurements with frequency selective approach (see 

Chapter 6). By selecting the frequency range, noise reduction for the resonance of 

interest was easily performed. Both studies confirmed that effective noise and 

experimental time reduction can be achieved with prior knowledge of the matrix rank.  

In this final chapter of the thesis, the singular value ratio method was applied 

to the determination of the matrix rank in biomolecular NMR signal processing. 

Biomolecules are often studied using 1H and 13C NMR [426]. Their chemical structures 

are often represented by heavily overlapped resonances [427]. Processing and 

analysing such data requires high resolution and sensitivity and generally, the 

experiments require considerable signal averaging. Prior knowledge of the original 

spectrum such as the number of resonances and the noise level makes the application 

of a noise reduction process much faster and more accurate [428-431].  

The composite property mapping algorithm stated that the noiseless FID holds 

three theoretical properties when the data is represented in the form of a matrix: a 

Toeplitz matrix structure, being positive semidefinite, and having a prespecified rank. 

The factorisation of a Toeplitz matrix containing the noiseless FID data via SVD 

resulted in two groups of singular values: non-zero singular values in descending order, 

and zero value singular values. Each non-zero singular value correspond to the 

strength of the resonance amplitude only when the resonance holds Lorentzian 

lineshape. The number of the singular values corresponding to the number of 

resonances becomes the prespecified rank.  

In reality, experimentally measured data does not possess exactly Lorentzian 

lineshapes and is often distorted due to the presence of noise and by large solvent 

signal(s). As a result, the number of resonances observed in the frequency range would 

not match with the number of the prespecified rank of the matrix. For such reasons, 

the determination of the prespecified rank becomes challenging for noisy biomolecular 

NMR data. Thus a soft threshold matrix rank is defined first by examining the plot of 

the singular values and then it will be gradually reduced through iteration to the 
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minimum matrix rank (i.e., prespecified matrix rank) [52]. This soft threshold matrix 

rank must not be lower than the prespecified matrix rank. Otherwise, the composite 

property mapping algorithm could recognise a signal as noise and eliminate the signal 

erroneously. 

With the composite property mapping, the soft threshold matrix rank is often 

determined by spotting a sharp decline in the magnitude of the singular values as 

illustrated in Figure 40. However, this method often leads to unreliable results. For 

example, the spectrum of a low concentration biomolecular sample often contains a 

large solvent resonance and its singular value plot would look similar to Figure 40a. 

Without any prior knowledge the singular values corresponding to the biomolecular 

resonances would be falsely recognised as corresponding to noise and thus be 

mistakenly eliminated due to the extremely large singular value of the solvent 

resonance. Figure 40b illustrates another case of biomolecular NMR data in which 

there are multiple prospective minimum ranks.  

 

 

Figure 40. Examples of singular value magnitude versus index plot for a biomolecular 

sample containing a large solvent resonance and much smaller resonances. a) Obvious 

cut-off singular value before a sharp descent highlighted with a red circle. b) Two 

possible cut-off singular values corresponding to two possible soft threshold matrix 

ranks also indicated with red circles. 

 

The singular value ratio method presented here can be used to estimate the soft 

threshold matrix rank of a real experimental dataset, which is never less than, but very 

close to, the prespecified rank. Once the optimal soft threshold matrix rank is defined 

and the Σ matrix (see Section 3.7.1) is processed accordingly, the noise reduced 

spectrum should contain some residual noise represented by dispersion peaks. The 

a) b) 
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observation of dispersion peaks indicates the matrix rank should be reduced closer to 

the minimum matrix rank through iteration. Since it is not practical to obtain noiseless 

experimentally measured FIDs, the term prespecified rank only remains valid 

theoretically and the minimum matrix rank is used instead in processing experimental 

data. 

The utility of the singular value ratio method was demonstrated on a 1H NMR 

spectrum of lysozyme. To highlight the strength of this singular value ratio method, 

partial solvent suppression was performed using the WATERGATE sequence (see 

Section 2.9) and the residual water resonance appeared as a dispersion peak. Some 

signal processing methods such as MEM are not capable of processing dispersion 

peaks because of the undesirable conversion into magnitude mode [66, 68]. The 

overall effect of signal enhancement by the singular value ratio method was compared 

with another widely used NMR signal processing method: Wavelet shrinkage (see 

Section 3.4.4).  

In this chapter, the rank determination process was tested with simulated 

overlapped multiplet spectral data with various SNR levels and compared with the 

MDL method as described in Section 7.2.5. Unlike the wavelet shrinkage method, the 

SVD-based signal processing method is often criticised for it being limited to 

processing only very small data sets (1~ 2K) and its heavy computational load. To 

overcome this limitation, localisation approaches, such as LocCapE which utilises the 

MDL and the MP-based methods, have been developed to reduce the overall 

computational time [432]. All of the signal processing and analysis performed in this 

chapter used 4K data sets. This larger data set size were able to be successfully 

processed in a reasonable processing time by changing the matrix size to a much 

narrower column matrix instead of the square matrix which is typically used in the 

SVD-based signal processing method.  

7.2 45BMATERIALS AND METHODS 

7.2.1 97BSample preparation 

A 0.5 ml aliquot of a 2 mM lysozyme (Sigma-Aldrich, Australia) solution in 90% H2O 

and 10% D2O was dispensed into a 5 mm standard NMR tube (Wilmad, USA).  
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7.2.2 98BWATERGATE parameter 

1H NMR measurements were performed at 298 K on a 400 MHz Bruker Avance NMR 

spectrometer (Bruker Biospin, Karlsruhe, Germany) using a 5 mm BBFO probe 

equipped with triple-axis gradients. Typical acquisition parameters for the 

WATERGATE experiments were: NS = 256, DS = 4, spectral width = 8012.82 Hz, 

acquisition time = 1.2 s, T1 relaxation delay = 3.0 s, gradient recovery delay = 250 μs, 

inter-pulse delay = 208 μs, FID recorded with 19228 data points, π/2 RF pulse length 

was 15.50 μs, g = 0.106 T m-1, and  = 2 ms. The measured FID was Fourier 

transformed into a spectrum containing 4096 data points. 

7.2.3 99BSingular value ratio method 

Following the first step of the composite property mapping previously illustrated in 

Figure 27, the experimentally measured FID (xn) with the total number of data points, 

N = 4096, was converted into a 3689  408 Toeplitz matrix XL×M. The size of the 

matrix was selected to ensure the number of columns was larger than the minimum 

matrix rank and much smaller than the number of rows. Having such a structure creates 

an overdetermined environment for SVD. It also leads to shorter computational times 

as the matrix becomes a skinnier rectangle. 

In the second step, this Toeplitz matrix was then factorised through SVD 

giving three submatrices: U, Σ, and VT. Due to the presence of noise, the rank (p) of 

the matrix was full (i.e., p = min(L, M)). The singular values (𝜎: 𝜎0 ≥ 𝜎1 ≥ ⋯ ≥

𝜎𝑝−1 ≥ 0) are the diagonal elements of the matrix Σ which hold the key to successful 

noise reduction with the composite property mapping algorithm. 

This new approach, the singular value ratio method, calculates the singular 

value ratio by dividing the first/largest singular value (𝜎0,0) by itself and all the other 

singular values (𝜎𝑖,𝑖 𝑖 = 0,1, … , 𝑝 − 1 ). The plot of singular value ratio against its 

index number is illustrated in Figure 41 and shows a more characteristic sigmoidal 

pattern than the plot of singular values itself (Figure 40).  
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Figure 41. The sigmoidal-shaped plot of the singular value ratio calculated by dividing 

the first/largest singular value by itself and all the other singular values, respectively.  

 

To define the soft threshold matrix rank (r), a linear function is fitted to the first two 

distinctive slopes separately. The index value corresponding to the intercept of two 

lines of best fit becomes the soft threshold matrix rank, r, as shown in Figure 42. 

 

 

Figure 42. Soft threshold matrix rank (r) determination. Application of linear fitting 

(red line) to the first two slopes of the singular value ratio plot. The index value 

corresponding to the intercept of the two lines of best fit becomes the soft threshold 

matrix rank.  

  

Once the threshold rank was determined, the reduced rank matrix X' was calculated 

by: 
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As described in Section 3.7, the reduced rank matrix X' no longer holds a Toeplitz 

form which violates the characteristics of the matrix formed from the noiseless FID. 

Thus, an average of the sub-diagonal elements is taken to reconstruct the non-Toeplitz 

X' into Toeplitz form. The first column and the first row of these Toeplitz matrix 

elements are then reformatted into a single column vector as the noise reduced FID.  

The noise reduced FID is then Fourier transformed into a spectrum. If the noise 

reduced data contains any dispersion peaks, further matrix rank reduction will be 

iteratively performed to remove these peaks. 

7.2.4 100BSimulation studies 

To study the capability of this Singular value ratio method, an FID model including a 

total of thirty resonances with different amplitudes and frequencies creating 

overlapped multiplets was simulated as a reference. Two hundred additive Gaussian 

noise 4K vectors were generated for each of thirteen different strengths of applied 

noise amplitude leading to an SNR range of 37.88 to 106.24 and added to the reference 

to create a collection of noisy FID data sets. The SNR calculation was performed using 

Eq. (73). The processing data size limitation in the SVD-based advanced signal 

processing methods is a well-known issue [432]. To enable processing to proceed in a 

reasonable time-frame (e.g., at most 10 seconds per data set) in the simulation study 

using singular value ratio method, the FIDs were constructed with 4K vectors each.  

Simulated FID data sets were processed with the singular value ratio method found in 

Section 7.2.3 to find the threshold matrix rank of the noisy data sets. To compare the 

efficiency and accuracy of the study outcome, the results were compared with the 

MDL method (see Section 7.3.6).  

7.2.5 Minimum Description Length (MDL) Method 

The MDL method is an information theory-based method used for Matrix rank 

determination in NMR signal processing [76, 433, 434]. The MDL method is often 
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compared with other information theoretical methods such as the Akaike Information 

Criterion (AIC) [435]. The AIC method is known to perform well with low SNR 

signals provided that the number of data points is limited (<4K) since the accuracy of 

the rank determination deteriorates as the number of data points increases [436]. The 

main difference between these information theory methods when compared to the 

majority of reduced rank signal processing methods is that both the MDL and AIC 

methods do not require any prior threshold settings nor human observations for rank 

determination. 

Application of MDL in the matrix rank determination process starts with fitting 

noisy FID data into an L by M Toeplitz matrix followed by the basic Matrix Pencil 

Method (Section 3.6.3) of decomposing a matrix by performing SVD. For each rank r 

of the matrix, the minimum description length is calculated using the equation , 
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where N is the total number of data points and σi are the singular values. The  MDL is 

plotted as a function of r in Figure 43.  

 

 

Figure 43. A plot of MDL as a function of r. The value of r giving the minimum MDL 

value leads to the minimum matrix rank of the processed data. 
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The minimum matrix rank is defined by the value r at which the MDL value is a 

minimum. Figure 43 illustrates the effortless determination of the matrix rank. 

7.3 46BRESULTS AND DISCUSSION 

7.3.1 100BSNR calculation 

In order to compare the sensitivity before and after the signal processing, one 

resonance well resolved from the remainder of the spectrum was selected to calculate 

its SNR. This signal of interest, which did not overlap with any other resonances was 

selected from the chemical shift range -0.6 to -0.8 ppm as shown in the inset to Figure 

44. The maximum amplitude of this peak was measured and then divided by the 

standard deviation of the baseline noise (14.6 to 12.1 ppm) following Eq. (72), 

providing an SNR of 15.58, which is greater than the minimum SNR (i.e. SNR = 11.80 

given in Chapter 5) required for highly accurate signal reconstruction. 

 

 

Figure 44. 1H 400 MHz spectrum of 2 mM lysozyme in 90% H2O and 10% D2O 

obtained at 298 K using the WATERGATE sequence. The resonance in the red box (-

0.6 to -0.8 ppm) within the inset was used to calculate SNR. 
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7.3.2 101BConventional threshold determination process 

A plot of the full rank singular values obtained after SVD is shown in Figure 45. The 

plot shows a sharp decline in magnitude between the first two singular values followed 

by a smoothly decaying curve. 

 

Figure 45. Singular value plot obtained from the SVD of the FID acquired of the 2 

mM lysozyme sample. An expansion of the singular values corresponding to the 

majority of the solute signals and also the noise is presented in the inset. The red circles 

within the inset indicate the cut-off singular values corresponding to possible soft 

threshold matrix ranks. 

 

The singular value plot in Figure 45 is a good example of why the conventional soft 

threshold matrix rank determination process can be a difficult task. Through visual 

inspection, there are three potential soft threshold matrix ranks circled in red illustrated 

in Figure 45. In fact, none of these three potential soft threshold matrix ranks lies close 

to the optimal minimum matrix rank. Had any one of those red circled potential soft 

threshold matrix ranks been used in noise reduction, an underdetermined minimum 

matrix rank would have been obtained. Therefore, the utilisation of the singular value 

ratio method is necessary. 
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7.3.3 102BSingular value ratio method 

The new threshold determination method which uses the singular value ratios and two 

linear fitting functions is illustrated in Figure 46. The first linear function was fitted to 

the initial steepest linear region on the singular value ratio plot, in this case, the 

singular values corresponding to the index number 65 to 120 and contained singular 

values relating to solute resonances. The second linear function was fitted to the linear 

region immediately following the previous one, in this case, the singular values 

corresponding to the index number 250 to 500 was mainly associated with the noise. 

 

 

Figure 46. The singular value ratio plot used for soft threshold matrix rank 

determination. Linear functions (red lines) were fitted to the initial steepest linear 

region and the following linear region. The index value corresponding to the intercept 

of the two lines of best fit was found to be 143 (i.e. the soft threshold matrix rank was 

143).  

 

The index value corresponding to the intercept of two lines of the best fit 

provided the soft threshold matrix rank (r). This estimated soft threshold matrix 

rank(i.e. r = 143) was tested by replacing all the following singular values (i.e. all the 

singular values with an index number > 143) in the Σ matrix to zero and then 

reconstructing the FID. As expected, the noise reduced spectrum reconstructed with 

the matrix rank = 143 still contained some noise existing as dispersion peaks (Figure 

47b circled in red). However, dramatic noise reduction was observed by comparing 
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the full rank (noisy) original data (Figure 47c) and noise reduced spectrum at r = 143 

(Figure 47b). Further matrix rank reduction was performed through an iterative 

procedure until a minimum matrix rank of r = 128 was found (Figure 47a). The total 

computational time including the iterations was less than 4 minutes. 

 

 

Figure 47. The noise reduced lysozyme spectrum with minimum matrix rank of 128 a), 

the partially noise reduced spectrum with estimated soft threshold matrix rank of 143 

b), and the original full rank (noisy) experimentally measured spectrum c). 

 

To compare the sensitivity enhancement before and after noise reduction, the same 

signal and chemical shift range (i.e., -0.6 to -0.8 ppm for signal amplitude, 14.6 to 12.1 

ppm for baseline noise) used previously in Figure 44 was applied to calculate the SNR 

in Figure 48b. The SNR values for the spectra in Figure 48a and b were calculated as 

15.58 and 36.37, showcasing a significant SNR enhancement achieved by the noise 

reduction using the singular value ratio method followed by further matrix rank 

reduction. A detailed comparison between Figure 48a and Figure 48b also showed 

minimal changes caused by noise reduction in terms of a line shape, line width,  and 

signal amplitude.  
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Figure 48. Comparison of the spectral properties of the selected chemical shift range 

(i.e., 0.0 to -1.5 ppm) before a) and after b) signal processing and the full noise reduced 
1H 400 MHz spectrum of the lysozyme sample c). 

 

7.3.4 103BWavelet shrinkage method 

For comparison, the wavelet shrinkage method (see Section 3.4.4), as contained in 

MathCad was applied using the same (noisy) lysozyme 1H NMR spectrum used for 

testing the singular value ratio method. Figure 49 shows the spectra processed with 

the Daubechies 4 filter (Figure 49a), Daubechies 8 filter (Figure 49b), and the original 

spectrum (Figure 49c) for comparison. Each inset is presented to emphasise the effects 

of wavelet shrinkage denoising technique on spectral properties. 
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Figure 49. The noise reduced 1H 400 MHz spectrum of the lysozyme sample obtained 

with the wavelet shrinkage method. using a) the Daubechies 4 filter, b) the Daubechies 

8 filter, and. c) the original 1H lysozyme spectrum. The insets indicate the frequency 

range including the resonance at -0.75 ppm used as a reference signal for SNR 

calculation. 

 

Compared to the original spectrum (Figure 49c), denoising with the 

Daubechies 4 and 8 filters both reduced the noise dramatically with the SNR values 

being calculated as 16.41 and 12.83 respectively with the same SNR calculation used 

in Section 7.3.1. This reduction in SNR can be attributed to the significant decline in 

the signal amplitude after noise reduction. However, as a segment of the resonances 

shown in the inset of Figure 49a and b, the spectral lineshape is far from being 

Lorentzian after noise reduction, which is in contrast with the Lorentzian lineshape 

presented in Figure 48b. Furthermore, the signal amplitude and the spectral resolution 

were reduced dramatically after the increase of the vanishing moment from 4 to 8 

(Figure 49 a and b). 
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7.3.5 103BSSimulation study with singular value ratio method 

The singular value ratio method proposed in Section 7.2.3 was tested with a simulated 

noisy FID data set as described in Section 7.2.4. This study was conducted to 

determine the efficiency of the initial matrix rank determination process using the 

singular value ratio method. Figure 50a is the simulated noiseless multiple-resonance 

spectrum. A simulated spectrum with additive noise of SNR 106.24 and 37.88 are also 

shown in Figure 50b and c, respectively. The singular value ratio plot of Figure 50c 

data with insets demonstrating the threshold rank determination process is found in 

Figure 50d. 

 

Figure 50. Simulated spectrum and its singular value ratio plot. a) Noiseless simulated 

spectrum. b) Noisy simulated spectrum with SNR of 106.24. c) Noisy simulated 

spectrum with SNR of 37.88. d) Singular value ratio plot of c) where the inset is an 

expansion of the region where the two linearly fitted functions intersect. 

 

The ideal outcome of this method is to predict the initial threshold matrix rank 

to be equal to or slightly larger than the actual minimum rank of the matrix which is 

30. Figure 50d shows the determined threshold matrix rank to be 32 after the singular 

value ratio method is applied to the noisy FID data set with SNR of 37.88. The 
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threshold rank of the matrix is determined by finding the intercept of the two linear 

fits as shown in the inset of Figure 50d where the intercept value was rounded up to 

an integer. The outcome of the simulation study with the proposed singular value ratio 

method is summarised in Table 7. 

 

Table 7. Summary of matrix threshold rank determination with the proposed singular 

value ratio method. Average SNR, Minimum, Maximum and Average rank were 

calculated from two hundred simulated data sets. 

Data Set Average SNR Min Rank Max Rank Average Rank 

1 106.24 30.1 ≅ 30 31.7 ≅ 32 30.4 ≅ 30 

2 90.61 29.7 ≅ 30 31.5 ≅ 32 30.6 ≅ 31 

3 78.11 29.4 ≅ 29 31.3 ≅ 31 30.4 ≅ 30 

4 77.23 29.4 ≅ 29 31.4 ≅ 31 30.3 ≅ 30 

5 65.77 29.3 ≅ 29 31.7 ≅ 32 30.2 ≅ 30 

6 57.83 29.1 ≅ 29 32.0 ≅ 32 30.2 ≅ 30 

7 52.89 28.7 ≅ 29 33.3 ≅ 33 30.4 ≅ 30 

8  51.23 28.7 ≅ 29 33.3 ≅ 33 30.4 ≅ 30 

9 48.10 28.4 ≅ 28 34.8 ≅ 35 30.6 ≅ 31 

10 48.15 28.5 ≅ 29 37.3 ≅ 37 31.0 ≅ 31 

11 41.95 28.8 ≅ 29 51.3 ≅ 51 31.9 ≅ 32 

12 42.36 28.2 ≅ 28 52.3 ≅ 52 32.3 ≅ 32 

13 37.88 28.2 ≅ 28 52.3 ≅ 52 32.3 ≅ 32 

 

 

The results in Table 7 suggests that this singular value ratio method is capable of 

determining the threshold matrix rank close to the minimum matrix rank for a wide 

range of SNR levels from 37.88 to 106.24. There were a few underdetermined ranks 

collected from this simulation study, however, the maximum difference between the 

minimum matrix rank and the underdetermined rank was only two. The singular value 

ratio method decreases the accuracy of matrix rank determination as the SNR levels 

decrease. However, the overall threshold matrix rank determined by this singular value 
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ratio method satisfies the aim of determining the matrix rank close to the minimum 

matrix rank. 

7.3.6 A simulation study with the minimum description 

length method 

The simulated FID data sets from Section 7.2.4 were also processed with the MDL 

method (see Section 7.2.5). The MDL method is an autonomous method which does 

not require any prior knowledge nor parameter settings to operate. The estimated 

minimum matrix rank is equal to the k value where the minimum MDL value is 

obtained from Eq. (147). A plot of the matrix estimation process with the MDL method 

is shown in Figure 51.   

 

 

Figure 51. MDL method rank estimation plot. a) MDL rank estimation of SNR 106.24 

data giving the estimated minimum matrix rank of 26. b) MDL rank estimation of SNR 

37.88 data giving the estimated minimum matrix rank of 19. 

 

Figure 51 illustrates the capability of the MDL method which can provide an estimated 

minimum matrix rank automatically by finding the k value where the value of the 

MDL function is a minimum. However, knowing that the exact minimum matrix rank 

was 30 for this simulated data, all of the obtained estimate rank values were 

underdetermined by more than 3 ranks. Table 8 summarises the outcome of matrix 

rank estimation by the MDL method. 
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Table 8. Summary of the matrix threshold rank determination with the minimum 

description length method. The average SNR, Minimum, Maximum and Average rank 

were calculated from two hundred simulated data sets. 

Data Set Average SNR Min Rank Max Rank Average Rank 

1 106.24 26 27 26.3 ≅ 26 

2 90.61 24 25 24.5 ≅ 25 

3 78.11 24 25 24.3 ≅ 24 

4 77.23 23 24 23.5 ≅ 24 

5 65.77 23 23 23 

6 57.83 22 23 22.5 ≅ 23 

7 52.89 22 22 22 

8  51.23 22 22 22 

9 48.10 21 22 21.5 ≅ 22 

10 48.15 21 21 21 

11 41.95 20 21 21.3 ≅ 21 

12 42.36 17 20 18.5 ≅ 19 

13 37.88 17 20 18.5 ≅ 19 

 

The consistency of the MDL method having a very narrow range of estimated 

minimum matrix rank is illustrated in Table 8. However, all of the estimated ranks 

were significantly underdetermined especially when the result is compared to the 

proposed singular value ratio method. Noise reduced signal reconstruction using the 

MDL method then results in an incorrect spectrum due to missing resonances. 

 

7.4 47BCONCLUSION 

The new soft matrix rank threshold determination process using the singular value 

ratio method affords much higher accuracy than the conventional threshold 

determination process and also the MDL method. The singular value ratio method not 

only required just 15 iterations to reach the minimum matrix rank on noisy lysozyme 

spectrum but also preserved all the singular values corresponding to the solute 

resonances.  
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The advantage of applying the composite property mapping algorithm to a 

biomolecular spectrum is that when the estimated matrix rank is above the minimum 

rank of the matrix, the non-zero singular values beyond the minimum rank results in 

dispersion peaks in the noise reduced spectrum. In this study, all the resonances were 

recovered after the noise reduction using a minimum matrix rank close to the 

prespecified matrix rank obtained using the singular value ratio method. However, it 

is important to state that the composite property mapping has its own limitations. As 

one example, the composite property mapping algorithm cannot be used to recover 

hidden resonances whose amplitude is equal to or lower than the noise level. This is 

simply because it is impossible to differentiate between the singular values 

corresponding to these resonances and the ones corresponding to noise. Therefore, in 

order to utilise this new threshold determination method in biomolecular NMR, all the 

resonances of interest are expected to have sufficient SNR values to allow 

differentiation between the resonances and the noise.  

Despite the wavelet shrinkage method being fast, generally applicable, and 

easy to set up, significant changes in a line shape and signal intensity were observed 

when the lysozyme spectrum was processed using the wavelet shrinkage method. 

These changes were absent in the noise reduced spectrum obtained using the singular 

value ratio method. Compared with the MDL method, the singular value ratio method 

has a higher accuracy of finding the threshold matrix rank close to the minimum matrix 

rank. Underdetermination of the matrix rank rarely results with the singular value ratio 

method while the simulated study showed larger matrix rank underdetermination with 

the MDL method. These results indicate the potential of the proposed method to 

become a standard noise reduction procedure. 
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CONCLUSIONS AND FUTURE 

RESEARCH 
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8.1 48BGENERAL CONCLUSIONS 

The overall aim of the work contained in this thesis was to implement and develop 

MR signal processing strategies to enable more efficient use of experimental time and 

thus expand the possible range of applications. Various strategies were attempted: (i) 

The Normalisation Approach for arrayed experiments in which the required number 

of signal averages for each element of the array was tailored carefully based on a 

fundamental understanding of how the SNR changes with the arrayed experimental 

parameter. NMR diffusion and inversion recovery experiments were used to illustrate 

the approach and it was experimentally verified that the method significantly reduced 

the experimental time required for such experiments but with no loss of accuracy in 

the final result. (ii) The Composite Property Mapping Algorithm was studied 

extensively and applied to liquid state diffusion measurements of quadrupolar nuclei. 

The spectra of quadrupolar nuclei in solution make almost ideal candidates for this 

type of noise reduction signal processing and facilitate it being implemented in an 

almost automated fashion. The sensitivity limitation of the composite property 

mapping algorithm for reconstructing noise reduced spectra with highly accurate 

resonance intensities and line shapes was also investigated. The experiments revealed 

that the minimum workable SNR of the noisy spectrum prior to processing was 11.8. 

Comparison between the composite property mapping algorithm and the SG filtering 

method highlighted the superiority of the composite property mapping algorithm in 

signal enhancement without line shape distortion or broadening. Application of the 

composite property mapping algorithm afforded a 32 fold reduction in experimental 

time in 23Na NMR diffusion measurements. (iii) The Frequency Selective Noise 

Reduction Method an adaptation of the composite property mapping algorithm, was 

applied to noise reduction in biomolecular NMR spectra. In this approach, frequency 

selection was combined with the composite property mapping algorithm to process a 

resonance of interest from a spectrum containing multiple peaks. If the 

resonance/solute of interest is well-defined and separated from other solute resonances 

then replacing the frequency domain data apart from the resonance of interest with the 

mean noise baseline transforms this complex spectrum into a simpler spectrum similar 

to that of the liquid state quadrupolar nuclei. The resonance of interest could then be 

with the composite property mapping algorithm. (iv) The Singular Value Ratio 
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Method was developed to determine the optimal threshold matrix rank for noise 

reduction using the composite property mapping algorithm. The difficulty in defining 

the initial matrix rank to reduce noise in biomolecular spectra was investigated. This 

singular value ratio method was developed to solve the threshold matrix rank 

determination in spectra containing multiple resonances such as those containing 

biomolecules. This new method defines the initial matrix threshold rank using singular 

value ratios and linear fitting functions successfully preserved all the singular values 

corresponding to the solute resonances while the estimated matrix rank was close to 

the minimum matrix rank. A simulation study was also conducted to verify the 

reliability and superiority of the singular value ratio method compared to another 

available rank determination method (i.e., MDL). The results revealed that the singular 

value ratio method accurately determined the minimum rank, while the MDL method 

significantly underdetermined the minimum matrix rank on every tested data set.  

The importance of the results presented in this thesis lies in the ability to make better 

and more efficient use of expensive magnetic resonance infrastructure. The methods 

presented are quite general in application and can be performed quickly on commonly 

available computing platforms. Use of these approaches expands the range of 

applications since some experiments previously deemed too time consuming now 

become practicable. 

 

8.2 49BFUTURE RESEARCH 

Although the results obtained in this thesis answered many questions, they also 

resulted in new questions and ideas for future research. For example, the combination 

of the normalisation method presented in Chapter 4 and the composite property 

mapping algorithm could be investigated as a means of providing an even more time-

efficient approach of performing arrayed NMR experiments than when one of these 

two methods is used individually. 

 It would be interesting to investigate frequency selective noise reduction 

(Chapter 6) in conjunction with the singular value ratio method (Chapter 7) for 

obtaining the minimum matrix rank more accurately when used on (noisy) 

biomolecular NMR spectra.  
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9BAPPENDICES 

50BAPPENDIX A: THRESHOLD DETERMINATION 

MATHCAD PROGRAM 

Import spectral data from the txt file as data: 

 

data =  

 

Define the frequency range (min_w, max_w) and a number of data points (N) 

from the data: 

 

min_w =  

max_w =  

N rows data( ) 10−=  

 

Note: Exported Topspin data in the text file is formatted in a way that first 9 rows 

are filled with the information of the data set. 

 

Extract spectral data: 

 

Original_Spec submatrix data 10 rows data( ) 1− 0 0 ( )=  

 

Create a frequency scale: 
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original_ppm

original_ppmi 0 min_w
min_w max_w−

N 1−
i−

i 0 N 1−for

original_ppm

=

 

 

Take inverse Fourier transform to obtain FID: 

 

Original_FID ICFFT Original_Spec( )=  

 

Creating the time scale in second: 

 

AQ =  

original_time

original_timei 0 
AQ

N 1−
i

i 0 N 1−for

original_time

=

 

 

Plot both spectrum and FID 
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Define Toeplitz matrix size  

 

Matrix_size 10=  

Column number (L1) 

 

L1 floor
N( )

Matrix_size









1−=
 

 

Row number (M1) 

 

M1 N L1− 1+=  

 

Formatting FID into Toeplitz matrix  
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Toeplitz_FID

Xi0 j0 Original_FIDj0 i0+

j0 0 M1 1−for

i0 0 L1 1−for

X1 X
T



X2i j X1i L1 1− j− 

j 0 L1 1−for

i 0 M1 1−for

L1 M1if

X1 X

X2i j X1i M1 1− j− 

j 0 M1 1−for

i 0 L1 1−for

otherwise

Toeplitz_FID X2

=

 

 

Singular value decomposition of Toeplitz_FID 

 

SVD svd2 Toeplitz_FID( )=  

 

 

Define each submatrix 

 

U SVD1=
, 

 SVD0=
, 

Vt SVD2=
 

 

Create singular_value_index in order to plot singular values 

 

singular_value_index

singular_value_indexi 0 i

i 0 L1 1−for

singular_value_index

=
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Plot the singular values 

 

 

 

Create a singular value ratio 

 

singular_value_ratio

singular_value_ratioi 0 

 0 0 

 i 0 


i 0 L1 1−for

singular_value_ratio

=

 

 

 

 

 

 

Plot the singular value ratio 
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Select the region for the steepest slope: 

 

region_1_start =  region_1_end =  

 

Select the region for the following slope: 

 

region_2_start =  region_2_end =  

 

Extract the data of the steepest slope region 1 (R1) and the following slope region 

2 (R2) 

 

R1 submatrix singular_value_ratio region_1_start region_1_end 0 0 ( )=

R2 submatrix singular_value_ratio region_2_start region_2_end 0 0 ( )=  

 

Format each region data set into a column vector R1, R2 and create the 

corresponding index column vector X1, X2 respectively. 

 

0 200 400 600
0

100

200

300

400

500

singular_value_ratio

singular_value_index
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R1 r1s region_1_start

r1e region_1_end

R1i 0 singular_value_ratior1s i+ 0 

i 0 r1e r1s−( )for

R1

=

 

X1

X1i 0 i region_1_start+

i 0 region_1_end region_1_start−( )for

X1

=

 

R2 r2s region_2_start

r2e region_2_end

R2i 0 singular_value_ratior2s i+ 0 

i 0 r2e r2s−( )for

R2

=

 

X2

X2i 0 i region_2_start+

i 0 region_2_end region_2_start−( )for

X2

=

 
 

Create a new fitted linear function F(r)and finding the parameter for the new 

fitted linear function 𝐅(𝐫) = 𝒂 × 𝒓 + 𝒃 . Solving the equation below to find the 

value r: 

 

F r( )
r

1









=
 S1 linfit X1 R1 F ( )=

 S2 linfit X2 R2 F ( )=  
 

S1 =  (
𝑎1
𝑏1

), S2 =  (
𝑎2
𝑏2

) 

 

𝑎1 × r + 𝑏1 = 𝑎2 × r + 𝑏2 
 

 
The value r is the soft threshold value for the Toeplitz_ FID. Let 𝐫 ≔
𝐢𝐧𝐢𝐭𝐢𝐚𝐥_𝐩𝐞𝐚𝐤, reduced ranked new_Σ will be formed as 
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new_

new_ i 0  i 0 

new_ j 0 0

j initial_peak 1+ L1 1−for

i 0 initial_peakfor

new_

=

 
 

Re-assemble together with U and Vt submatrices. 

 

new_matrix U diag new_( ) Vt=  
 

Since_new_matrix is not in the Toeplitz form, average of the subdiagonal 

elements are taken then reformatted into a one column vector (new_FID). 

 



194 | P a g e  

 

 

new_FID r rows new_matrix( )

c cols new_matrix( )

rc r c−

C0 i submatrix new_matrix 0 i c 1− i− c 1− ( )

C20 i 

tr C0 i ( )
cols C0 i ( )



i 0 c 1−for

C2

Dj 0 submatrix new_matrix j j c+ 1− 0 c 1− ( )( )

D2j 0 

tr Dj 0 ( )
c



j 1 rcfor

D2 submatrix D2 1 last D2( ) 0 0 ( )

Ek k submatrix new_matrix rc rc k+ c 1− k− c 1− ( )

k 0 c 1−for

E1 Ek k 
T



e cols E1( ) 1−

E20 m submatrix E1 0 m e m− e ( )

E30 m 

tr E20 m ( )
cols E20 m ( )



m 0 efor

E4 E3
T



E5n 0 E4rows E4( ) 1− n− 0 

n 0 rows E4( ) 1−for

E5 submatrix E5 1 last E5( ) 0 0 ( )

new_FID stack C2
T

D2 E5 ( )

=

 
 

 
 

Take an FT of the new_FID to observe the results 
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new_FT Re CFFT new_FID( )( )=  

 
Iterate the process reducing the rank of the matrix until reach minimum = no 

dispersion noise peaks to be observed. 

■ 
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51BAPPENDIX B: MATRIX SIZE, COMPUTATIONAL 

TIME, AND PROCESSED RESULTS 

Throughout this thesis, the column length of the Toeplitz matrix used for composite 

property mapping was equal to one-tenth of the total data points. In this appendix, the 

reason why this ratio was chosen is presented using simulated data. Since the matrix 

dimension has to be overdetermined (rows > columns) in the matrix decomposition 

for signal processing, the length of the columns are defined first. To define the length 

of the column, the floor of the total number of data points divided by the term named 

“matrix size” was calculated. For example, if the matrix size is equal to 2 then the 

constructed matrix has a square or almost square matrix. The computational time of 

the SVD was the major problem in the past especially the majority of the matrix used 

was a square matrix. 

For quadrupolar nuclei, in a liquid state, there is only one resonance in the 

spectrum thus only a few as 926 data points were selected to process in Chapter 5. 1H 

NMR multiple-resonance of the lysozyme spectrum in Chapter 7, on the other hand 

containing numerous resonances that 4096 data points were used for spectral 

digitization. For this reason, the relationships between the matrix size and 

computational time were studied using a total data points of 4000 and 5000 with 

various matrix size. The matrix size of 2, 4, 5, 10, 20 and 25 was chosen to construct 

the overdetermined Toeplitz matrix with 4000 and 5000 random numbers. 

Those 4000 and 5000 random numbers were processed in a similar way as 

reduced rank matrix problem. Matrix rank was reduced from full to one. The time 

required from the formation of the specified Toeplitz matrix size from a column vector 

with 4000 and/or 5000 data points, until reconstructed data with one rank which are 

reformatted back to a column vector of the same length was measured. B-1 shows the 

relationships between Computational time versus matrix size. 
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B-1. Matrix size versus computational time measurements for reduced rank data 

reconstruction with a total number of data points N = 4000 (in a red star) and N = 

5000 (in a black square). 

 

At the matrix size of 10, the column length of the matrix of N = 4000 and 5000 are 

equal to 400 and 500, the processing time of 2 and 5 seconds respectively. From B - 

1, the matrix size of 10 or higher seems to be able to process a large volume of data 

points within the reasonable timeframe. The next question is how big the matrix size 

can be, in other words, how skinny the decomposing Toeplitz matrix can be to 

reconstruct spectral data correctly. To investigate, noiseless FID with one resonance 

was simulated with N = 4096 (B-2a). With additive white Gaussian, the noisy 

spectrum (i.e., B-2b) with SNR = 7.07 was processed with various matrix size (i.e., 

matrix size = 5, 10, 15, 20, 30). Reducing the matrix rank to k = 1.  
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B-2. Simulated spectrum processing with different matrix size: a) noiseless reference 

data; b) noisy data with SNR = 7.07; c) processed spectrum with matrix size 5; d) 

processed spectrum with matrix size 10; e) processed spectrum with matrix size 15; f) 

processed spectrum with matrix size 20; g) processed spectrum with matrix size 30. 

 

The result shows the impeccable signal reconstruction by the matrix size 5 and 10 is 

observed. The slight spectral intensity decline in B-2d with matrix size 10 is due to the 

phase distortion due to the matrix size. As the matrix size increases, the matrix 

becomes skinner and by the matrix size 30, the processed spectrum (B-2g) is similar 

to the heavily truncated spectrum having a frequency ripple. From these results, the 

entire signal processing using a composite property mapping algorithm in this thesis 

was processed with the matrix size of 10 to have sufficient processing speed and 

spectral resolution. 

 

a) b) c) d) e) f) g) 




