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Abstract
Spectral Density Functions and Their Applications

Chung Y Wong
Hugo Woerdeman, Ph.D.

The Bernstein-Szegő measure moment problem asks when a given finite list of complex numbers form the

Fourier coefficients of the spectral density function of a stable polynomial in the one-variable case. Szegő

proved that it is possible if and only if the Toeplitz matrix form by these numbers is positive definite (see

[Szegö 1919]). Bernstein ([Bernstein 1930]) later proved a real line analog of the problem.

The question remained open in two variables until Geronimo and Woerdeman stated and proved the

necessary and sufficient conditions in [Geronimo and Woerdeman 2004]. Unlike the solution in one variable,

it does not suffice to write down a single matrix and check whether it is positive definite. A positive definite

completion condition is also required.

In this thesis, we further pursue the moment problem in two variables and beyond. We first enhance

the two-variable results by identifying the eigenstructure of matrices that arise from the theory. We then

create a method that allows us to compute the Fourier coefficients in a given infinite region by using a finite

portion of the coefficients. Use is made of determinantal representations of stable polynomials. In addition,

we compute the asymptotics for the Fourier coefficients and later generalize the result to higher dimensions.

In the final chapter, we draw a connection between offset words and a particular type of spectral density

functions and compute the asymptotics of the number of offset words as different parameter changes.
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Chapter 1: INTRODUCTION

1.1 Background

The classical moment problem asks to find necessary and sufficient conditions for which an arbitrary sequence

of real numbers m1,m2, . . . is the sequence of moments
∫
E
xn dµ(x) of a real measure µ over a specified range

of integration E. (See, for instance, [Akhiezer 1965] and [Shohat and Tamarkin 1943].) One version of this

problem is, given complex numbers c0 = c0, . . . , cn = c−n, to find a positive measure σ on T = {z ∈ C :

|z| = 1} with moments σ̂(k) =
∫
T z

k dσ(z) = ck for each k = −n, . . . , n. The book [Bakonyi and Woerdeman

2011] provides a possible introduction to the study of assorted moment problems and other related topics. In

particular, a classical Bernstein-Szegő measure is a measure on T of the form Sp(z) = |p(z)|−2
dz, where p

is a single-variable stable polynomial. These measures were first studied by Szegő in [Szegö 1919]. Bernstein

later considered a real line analog in [Bernstein 1930].

The Bernstein-Szegő measure moment problem asks to find an nth degree single-variable stable polyno-

mial p so that the moments Ŝp(k) of the classical Bernstein-Szegő measure stemming from the spectral density

function Sp satisfy Ŝp(k) = ck for k = −n, . . . , n. Equivalently, the Fourier coefficients (2π)−1
∫ 2π

0
e−ikθSp(eiθ) dθ

must match the prescribed ck. This moment problem is solvable if and only if the (n+ 1)× (n+ 1) Toeplitz

matrix T = (ci−j)
n
i,j=0 is positive definite. Historical progress towards this solution is grounded in the works

of Carathéodory, Toeplitz, and Szegő. Documented accounts and synopses of the subsequent mathematics

developed by these three are relayed in [Akhiezer 1965] and [Aheizer and Krein 1962]. In this case, the

stable polynomial p(z) = p0 + · · · + pnz
n (which is unique when we require p0 > 0) may be found via the

Yule-Walker equation 

c0 c1 · · · cn

c1 c0
. . .

...

...
. . . . . . c1

cn · · · c1 c0





p0

p1

...

pn


=



1
p0

0

...

0


.
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Proofs of a matrix-valued version and a stronger, operator-valued version of the prior fact are offered in

[Delsarte et al. 1978] and [Gohberg et al. 1989], respectively.

In the series of papers [Genin and Kamp 1977], [Delsarte et al. 1979], and [Delsarte et al. 1980], Genin

and Kamp, who are later accompanied by Delsarte, initiated research towards establishing a general theory

of multivariable orthogonal polynomials and Bernstein-Szegő measures over Td. In the bivariate setting,

complex numbers ck,l, (k, l) ∈ {0, . . . , n} × {0, . . . ,m} are given. Geronimo and Woerdeman [Geronimo and

Woerdeman 2004] stated and proved the following theorem:

Theorem 1.1.1. Complex numbers ck,l, (k, l) ∈ {0, . . . , n} × {0, . . . ,m}, are given. There exists a stable

polynomial

p(z, w) =

n∑
k=0

m∑
l=0

pklz
kwl

with p00 > 0 so that its spectral density function

f(z, w) :=
(
p(z, w)p(1/z, 1/w)

)−1

has Fourier coefficients f̂(k, l) = ckl, (k, l) ∈ {0, . . . , n} × {0, . . . ,m}, if and only if there exist complex

numbers ckl, (k, l) ∈ {1, . . . , n} × {−m, . . . ,−1}, so that the (n+ 1)(m+ 1)× (n+ 1)(m+ 1) doubly indexed

Toeplitz matrix

Γ =


C0 · · · C−n

...
. . .

...

Cn · · · C0

 ,

where

Cj =


cj0 · · · cj,−m

...
. . .

...

cjm · · · cj0

 , j = −n, . . . , n,

and c−k,−l = ckl, has the following properties:

1. Γ is positive definite;
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2. The (n + 1)m × (m + 1)n submatrix of Γ obtained by removing rows 1 + j(m + 1), j = 0, . . . , n and

columns 1, 2, . . . ,m+ 1, has rank nm.

In this case one finds the column vector

[
p2

00 p00p01 · · · p00p0m p00p10 · · · p00p1m p00p20 · · · p00pnm

]T

as the first column of the inverse of Γ. Here T denotes a transpose.

Note that there are two key differences between this theorem and the solution to the classical Bernstein-Szegő

measure moment problem. First, the ck,l with indices of mixed sign are missing and need to be identified.

Second, the positive-definiteness of Γ no longer guarantees the existence of a stable polynomial with the

desired properties; a low-rank condition must be satisfied as well.

1.2 Definitions and Notations

Throughout this paper, we will focus mainly on two-variable stable polynomials and their intersecting zeros.

We will also explore some results in d variables. A d-variable scalar polynomial p(z1, · · · , zd) is called stable

when p is nonzero for (z1, · · · , zd) ∈ Dd, where D is the closure of D = {z ∈ C : |z| < 1}. With p we will asso-

ciate its adjoint and reverse. In particular, for two-variable scalar polynomial p(z, w) =

n∑
i=0

m∑
j=0

pijz
iwj ,

we will associate its adjoint p∗(z, w) =
n∑
i=0

m∑
j=0

p̄ijz
iwj and its reverse ←−p (z, w) = znwmp(1/z̄, 1/w̄) =

n∑
i=0

m∑
j=0

p̄ijz
n−iwm−j .

The notion of intersecting zeros of p(z, w) was introduced in [Geronimo and Woerdeman 2004]. We say

(z, w) is an intersecting zero of p(z, w) if

p(z, w) =←−p (z, w) = 0.

If (z, w) is an intersecting zero of p(z, w), it is straightforward to show that (1/z̄, 1/w̄) is also an intersecting
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zero.

For a stable polynomial p(z, w) we define its spectral density function by

f(z, w) =
1

p(z, w)p∗(z−1, w−1)
.

We are interested in the Fourier coefficients of the spectral density function. Given a function f(z1, . . . , zd),

let f̂(k) be the kth Fourier coefficient, where k ∈ Zd.

Frequently used symbols in this paper include N,N0,Z,T,D, and C, which stand for the sets of positive

integers, nonnegative integers, integers, complex numbers of modulus one, complex numbers with modulus

less than one, and complex numbers, respectively.

Given subsets of Zd, we frequently order them using lexicographical ordering, which in two variables is

defined by

(k, j) <lex (k1, j1) ⇐⇒ k < k1 or (k = k1 and l < l1).

Throughout the paper we shall use matrices whose rows and columns are indexed by subsets of Zd. For

example, if Λ = {(0, 0), (0, 1), (1, 1)}, then

C = (cu−v)u,v∈Λ

is the 3× 3 matrix

C =


c00 c0,−1 c−1,−1

c01 c00 c−1,0

c11 c10 c00

 .

The matrix C may be referred to as an Λ × Λ matrix. The first row in this matrix will be referred to the

(0, 0)th row, and similarly for the columns. The entries are referred to according to the row and column

index. For example, c1,1 is the ((1, 1), (0, 0)) entry.

Lastly, for polynomials of one or two variables, we may consider ∞ as a root. In one variable, we say
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a(z) =
∑n
i=0 anz

n has a root at infinity when an = 0. Equivalently, ∞ is a root of a(z) if and only if 0 is a

root of ←−a (z). In two variables, let

p(z, w) =

n∑
i=0

m∑
j=0

pijz
iwj =

m∑
j=0

pj(z)w
j =

n∑
i=0

p̃i(w)zi

be a polynomial of degree (n,m). Then p(z,∞) = 0 corresponds to the statement pm(z) = 0, while

p(∞, w) = 0 corresponds to the statement p̃n(w) = 0. The statement p(∞,∞) = 0 corresponds to the

statement pnm = 0.

1.3 Results and Organization

In this dissertation, we set out to expand on the solution to the Bernstein-Szegő moment problem in two

variables stated in Section 1.1 and subsequent results such that those summarized in [Bakonyi and Wo-

erdeman 2011]. By doing so, we hoped to gain insights into the generalization of the problem in higher

dimensions. While the question remains open, we were able to use the knowledge we gained and applied it

to the combinatorical object called abelian squares and developed asymptotics of a generalized object.

In Chapter 2, we began with the examination of the matrices Φ1Φ−1 and Φ∗2Φ−1 from Theorem 3.3.1 in

[Bakonyi and Woerdeman 2011] (stated as Theorem 2.1.2 in Section 2.1). Mainly, we aimed to determine

their eigenstructure. The result is given as Theorem 2.1.3, which completely describe the two matrices using

solely the intersecting zeros of the polynomial p and ←−p , when the intersecting zeros are distinct. When an

intersecting zero has a higher multiplicity, we are able to determine their eigenvectors. The question of how

to determine the Jordan structure of Φ1Φ−1 and Φ∗2Φ−1 remains open.

Following the above result, we expanded the region of computable Fourier coefficients in Theorem 2.2.1

in [Geronimo and Woerdeman 2004] (stated at Theorem 2.2.1 in Section 2.2) by artificially increasing the

degrees of the stable polynomial p. By doing so, we introduced new intersecting zeros and subsequently

arrived at Corollary 2.2.3. With this corollary, we are able to compute any Fourier coefficients, as long as

we increase the degrees accordingly.

In Section 2.3, we explored the possibility of using determinantal representation of a stable polynomial



1.3 Results and Organization 6

and the Bernstein-Szegő moment problem. By using permanent expansion of determinantal represenation,

we are able to offer an alternate proof to the low rank condition when the degree of the polynomial is (1, 1).

We are hopeful this connection will provide new insights when there are more than two variables.

In Section 2.4, we return our focus to the Fourier coefficients of the spectral density function. In particular,

we aim to determine asymptotics of the coefficients in any given direction in two variables. In the second

and fourth quadrants, we used Theorem 2.2.1 and Jordan decomposition of the matrices in the formula. In

the first and third quadrants, we used the theory developed by DeVries, van der Hoeven, and Pemantle in

[DeVries et al. 2011] to determine the asymptotics.

In Chapter 3, we presented a conjecture that aim to provide a first step toward an eventual solution to

the moment problem in higher dimensions. The conjecture gave sufficient and necessary conditions for a

list of complex numbers to be the Fourier coefficients of p = 1 − z1+z2+z3
r , r > 3. To prove the conjecture,

we only need to prove two recurrence relations, which can be checked numerically. The exploration of this

polynomial gives rise to the study of abelian squares and their progenies in Chapter 4.

We also generalized the result in Section 2.4. Given a direction r = (r1, . . . , rd), ri > 0 or ri < 0 for all

i = 1, . . . , d, we found the upper bound for the decay rate. Notice the restriction we placed on the direction

r. In this case, the result only applies in the two specific regions. It remains open as to how to determine

the asymptotics if the ri are not all positive or negative.

In Chapter 4, we studied the application of the spectral density function f = 1/ |p|2, p = 1−x
∑d
i=1 zi, x <

1/d. Through the joint work with Charles Burnette, Jr., we give a combinatorial interpretation of the Fourier

coefficients of f by introducing the concept of offset words (See Definition 4.2.2). We then determine the

asymptotics of the number of offset words in three ways: as the length of the words goes to infinity without

changing the offsetting, as the number of letters in the alphabet goes to infinity with the length of the

pre-offset words fixed, and as the length of the offset grows in a give direction. We conclude the chapter and

the dissertation by discussing possible future work, the main one involving Bernstein-Szegő moment problem

and other possible combinatoric classes. If this is achievable, it may provide a way to explore the moment

problem further using combinatoric theories.
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Chapter 2: Two-Variable Results

2.1 Eigenstructure of Matrices Associated with Bivariate Bernstein-Szegő Mea-
sures

Theorem 2.1.2 in Section 2.1.3 stated that, given cij in a set Λ = {0, 1, . . . , n} × {0, 1, . . . ,m}, there exists a

stable polynomial p(z, w) =

n∑
i=0

m∑
j=0

pijz
iwj such that the Fourier coefficients f̂(i, j) of f(z, w) = 1/|p(z, w)|2

equal cij for (i, j) ∈ Λ if and only if certain conditions that involve the commutativity of two matrices S and

S̃ built from the data cij are met. In this section, we will examine the relationship between the intersecting

zeros of p(z, w) and the eigenstructure of the matrices S and S̃ in the scalar case.

2.1.1 Stable Factorization

We will need the notions of left and right stable factorizations of matrix-valued trigonometric polynomi-

als. The following definitions and Proposition 2.1.1 are from [Geronimo and Woerdeman 2004]. A square

matrix polynomial G(z) is called stable if det (G(z)) is stable. Let A(z) =

n∑
i=−n

Aiz
i be a matrix-valued

trigonometric polynomial that is positive definite on T. In particular, since the values of A(z) on the unit

circle are Hermitian, we have Ai = A∗−i, i = 0, · · · , n. The positive matrix function A(z) allows a left stable

factorization, that is,

A(z) = M(z)M(1/z̄)∗, z ∈ C\{0},

with M(z) a stable matrix polynomial of degree n. In the scalar case, this is the well-known Fejér-Riesz

factorization and goes back to the early 1900’s. For the matrix case the result goes back to [Rosenblatt

1958] and [Helson 1964]. When we require that M(0) is lower triangular with positive diagonal entries, the

stable factorization is unique, which we shall call the left stable factor of A(z). Similarly, we can define right

variations of the above notions.

For a square matrix-valued function G(z) we define its spectrum by Σ(G) = {z : detG(z) = 0}. The
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following proposition plays an important role in the proof of the main theorem.

Proposition 2.1.1. Let p(z, w) be a stable polynomial of degree (n,m) with p(0, 0) > 0, and let f(z, w) be

its spectral density function. Write

p(z, w) =

m∑
i=0

pi(z)w
i, f(z, w) =

∞∑
i=−∞

fi(z)w
i.

Put pi(z) ≡ 0 for i > m, then the following hold:

i ) Tk(z) := (fi−j(z))
k
i,j=0 > 0 for all k ∈ N0 and all z ∈ T.

ii ) For all k ≥ m− 1 and for all z in the domain of Tk with z /∈ Σ(Tk):

Tk(z)−1 =


p0(z) 0

...
. . .

pk(z) · · · p0(z)




p̄0(1/z) · · · p̄k(1/z)

. . .
...

0 p̄0(1/z)



−


p̄k+1(1/z) 0

...
. . .

p̄1(1/z) · · · p̄k+1(z)




pk+1(z) · · · p1(z)

. . .
...

0 pk+1(z)

 := Ek(z). (2.1.1)

iii ) For k ≥ m− 1, the left stable factors Mk(z) and Mk+1(z) of the positive trigonometric matrix polyno-

mials Ek(z) and Ek+1(z), respectively, satisfy

Mk+1(z) =

 p0(z) 0

col(pl(z))
k+1
l=1 Mk(z)

 . (2.1.2)

iv ) The spectra of Mm−1,
←−
Mm−1 and znEm−1 are given by

Σ(Mm−1) = {z ∈ C∞\D : ∃w such that (z, w) is an intersecting zero of p},
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Σ(
←−
Mm−1) = {z ∈ D : ∃w such that (z, w) is an intersecting zero of p},

Σ(znEm−1) = {z ∈ C∞ : ∃w such that (z, w) is an intersecting zero of p} ⊂ C∞\T.

In particular, p has only a finite number of intersecting zeros. In addition, for k ≥ m,

Σ(Mk) = Σ(Mm−1) ∪ {z ∈ C∞ : p0(z) = 0},

Σ(
←−
Mk) = Σ(

←−
Mm−1) ∪ {z ∈ C∞ :←−p0(z) = 0},

Σ(znEk) = Σ(Mk) ∪ Σ(
←−
Mk).

An analogous proposition can be stated with p(z, w) =

n∑
j=0

p̃j(w)zj , f(z, w) =

∞∑
j=−∞

f̃j(w)zj .

2.1.2 Two-Variable Bernstein-Szegő Measures

The following theorem regarding the two-variable matrix valued generalizations of Bernstein-Szegő measures

can be found in [Bakonyi and Woerdeman 2011].

Theorem 2.1.2. Let bounded linear operators cij ∈ L(H),(i, j) ∈ Λ := {−n, · · · , n} × {−m, · · · ,m}

\{(n,m), (−n,m), (n,−m), (−n,−m)} be given. There exist stable polynomials

p(z, w) =
n∑
i=0

m∑
j=0

pijz
iwj ∈ L(H), r(z, w) =

n∑
i=0

m∑
j=0

rijz
iwj ∈ L(H) (2.1.3)

with p00 > 0 and r00 > 0 such that

p(z, w)∗−1p(z, w)−1 =
∑

(i,j)∈Z2

cijz
iwj = r(z, w)−1r(z, w)∗−1, (z, w) ∈ T2, (2.1.4)

for some cij ∈ L(H), (i, j) /∈ Λ, if and only if

i ) Φ1Φ−1Φ∗2 = Φ∗2Φ−1Φ1;
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ii ) when we put

c−n,m = row(ck−l) k=(0,m−1),
l∈{1,··· ,n}×{0,··· ,m−1}

Φ−1col(ck−l)k∈{0,··· ,n−1}×{1,··· ,m},
l=(n−1,0)

,

then the operators

(ck−l)k,l∈{0,··· ,n}×{0,··· ,m}\{(n,m)} and (ck−l)k,l∈{0,··· ,n}×{0,··· ,m}\{(0,0)}

are positive definite.

Here

Φ = (ck−l)k,l∈{0,··· ,n−1}×{0,··· ,m−1},

Φ1 = (ck−l)k∈{0,··· ,n−1}×{0,··· ,m−1},l∈{1,··· ,n}×{0,··· ,m−1},

Φ2 = (ck−l)k∈{0,··· ,n−1}×{0,··· ,m−1},l∈{0,··· ,n−1}×{1,··· ,m}.

There is a unique choice for cn,m that results in pn,m = 0, namely

cn,m = (ck−l)k=(n,m),l∈{0,··· ,n}×{0,··· ,m}\{(0,0),(n,m)}

×[(ck−l)k,l∈{0,··· ,n}×{0,··· ,m}\{(0,0),(n,m)}]
−1(ck−l)k∈{0,··· ,n}×{0,··· ,m}\{(0,0),(n,m)}

l=(0,0)

.

When i) and ii) are satisfied, the coefficients of the polynomials p(z, w) and r(z, w) can be found via the

equations

(ck−l)k,l∈{0,··· ,n}×{0,··· ,m}col(pij)i∈{0,··· ,n},{0,··· ,m} = e00p
∗−1
00 , (2.1.5)

(ck−l)k,l∈{0,··· ,n}×{0,··· ,m}col(rn−i,m−j)i∈{0,··· ,n},{0,··· ,m} = e00r
∗−1
00 . (2.1.6)

If one requires that p00 > 0 and r00 > 0, the solutions above are unique.
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The matrices that we are interested in are Φ1Φ−1 and Φ∗2Φ−1. In particular, we will consider the case

when p(z, w) is a scalar polynomial and all of its intersecting zeros of are distinct.

2.1.3 Main Result

The following theorem is the main result in this section.

Theorem 2.1.3. Let cij, (i, j) ∈ Λ := {−n, · · · , n}×{−m, · · · ,m} \{(n,m), (−n,m), (n,−m), (−n,−m)} be

such that they satisfy the conditions of Theorem 2.1.2. Suppose the intersecting zeros of the stable polynomial

p(z, w) that arose from the cij are (z1,
1
w̄1

), · · · , (znm, 1
w̄nm

) and ( 1
z̄1
, w1), · · · , ( 1

z̄nm
, wnm), z1,...,nm, w1,...,nm ∈

D, with multiplicity of 1. Let

vj =



zn−1
j

...

zj

1


⊗



1

w̄j

...

w̄n−1
j


, j = 1, · · · , nm. (2.1.7)

Then {v1, · · · , vnm} are common eigenvectors of Φ1Φ−1 and Φ∗2Φ−1, with eigenvalues zj and w̄j, respectively.

Furthermore, {v1, · · · , vnm} are linearly independent.

In order to prove Theorem 2.1.3, we need the following lemma.

Lemma 2.1.4. Given a stable polynomial p(z, w) of degree (n,m), det (Em−1(z)) = 0 if and only if there

exist a w such that (z, w) is an intersecting zero.

Proof. Let p(z, w) =

m∑
i=0

pi(z)w
i be a stable polynomial of degree (n,m). If det (Em−1(z)) = 0, then the

lemma follows from Proposition 2.1.1 (iv).

For the converse, when z 6= 0, let q(z, w) = 1
zn
←−p (z, w) =

m∑
i=0

p̄m−i

(
1

z

)
wi. Consider the following resultant

matrix

R(q, p) =

A B

C D

 ,
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where

A =


p̄0

(
1
z

)
· · · p̄m−1

(
1
z

)
. . .

...

p̄0

(
1
z

)

 , B =


p̄m
(

1
z

)
...

. . .

p̄1

(
1
z

)
· · · p̄m

(
1
z

)

 ,

C =


pm(z) · · · p1(z)

. . .
...

pm(z)

 , D =


p0(z)

...
. . .

pm−1(z) · · · p0(z)

 .

It is simple to check that B and D commute. Therefore, for D invertible,

det (R(q, p)) = detD det (A−BD−1C) = det (DA−BC) = det (Em−1(z)).

For D not invertible, let ε > 0 and consider

A B

C D

+

0 0

0 εI

 .

Then D + εI is invertible and

det (R(q, p)) = lim
ε→0

det (D + εI) det (A−B(D + εI)−1C)

= det (DA−BC) = det (Em−1(z)).

Recall that the resultant is 0 if and only if the two polynomials share a common roots. But (z, w) is an

intersecting zero, therefore det (R(q, p)) = det (Em−1(z)) = 0.

If z = 0, p(z, w) reduces to p(w) =

m∑
j=0

p0jw
j and ←−p (z, w) becomes ←−p (w) =

m∑
j=0

p̄0jw
m−j =

m∑
j=0

p̄0,m−jw
j .



2.1 Eigenstructure of Matrices Associated with Bivariate Bernstein-Szegő Measures 13

A,B,C,D reduces to

A =


p̄00 · · · p̄0,m−1

. . .
...

p̄00

 , B =


p̄0m

...
. . .

p̄01 · · · p̄0m

 , C =


p0m · · · p01

. . .
...

p0m

 , D =


p00

...
. . .

p0,m−1 · · · p00

 .

and the rest follows similarly from the case z 6= 0.

We also need the following one-variable result:

Lemma 2.1.5. Let Tm(z) =

∞∑
i=−∞

Ciz
i, where Ck =


ck0 · · · ck,−m

...
. . .

...

ck,m · · · ck0

 , k ∈ Z. Let Mm(z) =

n∑
i=0

Miz
i

be the left stable factor defined in Proposition 2.1.1 (iii). Then Tm(z)Mm(z) = Mm( 1
z̄ )∗−1 and


C0 · · · C−n

...
. . .

...

Cn · · · C0




M0

...

Mn

 =



M∗−1
0

0

...

0


. (2.1.8)

Similarly, if Rm(z) =

n∑
i=0

Riz
i is the right stable factor of Em(z), then Tm(z)Rm

(
1
z̄

)∗
= Rm(z)−1 and


C0 · · · C−n

...
. . .

...

Cn · · · C0




R∗n

...

R∗0

 =



0

...

0

R−1
0


. (2.1.9)

Proof. Since Tm(z) = Em(z)−1 = Mm( 1
z̄ )∗−1Mm(z)−1,

Tm(z)Mm(z) =

∞∑
i=−∞

Ciz
i
n∑
j=0

Mjz
j = M∗−1

0 +O(1/z),
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we have

C0M0 + C−1z
−1M1z + · · ·+ C−nz

−nMnz
n = M∗−1

0

and so forth. Statement 2.1.9 can be proven similarly.

The above lemma can be proven similarly with w as the variable. Let us now state the proof of Theorem

2.1.3.

Proof. First, consider Φ1Φ−1. Notice that

Φ =


C̃0 · · · C̃−n+1

...
. . .

...

C̃n−1 · · · C̃0

 ,Φ1 =


C̃−1 · · · C̃−n

...
. . .

...

C̃n−2 · · · C̃−1

 , where C̃k =


ck0 · · · ck,−m+1

...
. . .

...

ck,m−1 · · · ck0

 ,

for k = −n, · · · , n. Therefore, we must have

Φ1Φ−1 =



∗ · · · · · · ∗

I 0

. . . . . .

I 0


.

Recall from Lemma 2.1.5, 
C0 · · · C−n

...
. . .

...

Cn · · · C0




M0

...

Mn

 =



M∗−1
0

0

...

0


.
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Remove the first block row, we have


C1 · · · C−n+1

...
. . .

...

Cn · · · C0




M0

...

Mn

 =


0

...

0

 .

Using the fact

Ck =

 ck0 row(ck,−j)
m
j=1

col(ckj)
m
j=1 C̃k

 ,Mm(z) =

 p0(z) 0

col(pl(z))
m
l=1 Mm−1(z)

 ,

we can remove the first row and column from every block matrix. Thus, if we define Mm−1(z) =

n∑
i=0

M̃iz
i,

we have 
C̃1 · · · C̃−n+1

...
. . .

...

C̃n · · · C̃0




M̃0

...

M̃n

 =


0

...

0

 ,

which can be expressed as


C̃1

...

C̃n

 M̃0 +


C̃0 · · · C̃−n+1

...
. . .

...

C̃n−1 · · · C̃0




M̃1

...

M̃n

 =


0

...

0

 .

Thus, we have 
C̃1

...

C̃n

 = −


C̃0 · · · C̃−n+1

...
. . .

...

C̃n−1 · · · C̃0




M̃1

...

M̃n

 M̃
−1
0 .
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By taking the Hermitian transpose, we have

[
C̃−1 · · · C̃−n

]
= −M̃∗−1

0

[
M̃∗1 · · · M̃∗n

]

C̃0 · · · C̃−n+1

...
. . .

...

C̃n−1 · · · C̃0

 .

Thus, we have

Φ1Φ−1 =



−M̃∗−1
0 M̃∗1 · · · · · · −M̃∗−1

0 M̃∗n

I 0

. . . . . .

I 0


.

Now, suppose z is an eigenvalue of Φ1Φ−1 with eigenvector X =col(Xi)
n
i=1. We then have

−M̃∗−1
0 M̃∗1X1 − · · · − M̃∗−1

0 M̃∗nXn = zX1, X1 = zX2, . . . , Xn−1 = zXn.

But this means that

−M̃∗−1
0 (M̃∗1 z

n−1 + · · ·+ M̃∗n)Xn = znXn,

which simplifies to

zn
(
M̃∗0 +

1

z
M̃∗1 + · · ·+ 1

zn
M̃∗n

)
Xn = 0.

But M̃∗0 + 1
z M̃

∗
1Xn + · · · + 1

zn M̃
∗
n = Mm−1( 1

z̄ )∗, and det (Mm−1( 1
z̄ )∗) = 0 implies that det (Em−1(z)) = 0.

Therefore, by Lemma 2.1.4, there exists a w such that (z, 1
w ) is an intersecting zero of p. Since Mm−1(z)∗ is

anti-stable, we have that z, w ∈ D.

It remains to show that X =col(zn−1−iX)n−1
i=0 = col(zn−1−i)n−1

i=0

⊗
col(wj)n−1

j=0 . In other words, we need

to show that Mm−1( 1
z̄ )∗col(wj)n−1

j=0 = 0. For this, consider again the resultant matrix from Lemma 2.1.4,
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with k = m. We have that

A B

C D





1

w̄

...

w̄2m−1


=


0

...

0

 .

But then we have

A


1

...

w̄m−1

+B


w̄m

...

w̄2m−1

 =


0

...

0

 and C


1

...

w̄m−1

+D


w̄m

...

w̄2m−1

 =


0

...

0

 .

Solving for col(w̄i)2m−1
i=m from the second equality and substituting into the first equation, we have


w̄m

...

w̄2m−1

 = −D−1C


1

...

w̄m−1

 , (A−BD
−1C)


1

...

w̄m−1

 =


0

...

0

 .

Multiplying D on the left, we get

Em−1(z)


1

...

w̄m−1

 = Mm−1(z)Mm−1(1/z̄)∗


1

...

w̄m−1

 =


0

...

0

 .

Since Mm−1(z) is stable, it follows that col(w̄i)m−1
i=0 in the kernel of Mm−1(1/z̄)∗, as desired.
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Next, consider Φ∗2Φ−1. Observe that

Φ∗2Φ−1 = (Qij)
n−1
i,j=0, Qij =



0 δijI

. . . . . .

0 δijI

∗ ∗ ∗ ∗


,

where δij is the kronecker delta.To show that Φ∗2Φ−1 has the desired properties, let

Φ̂ = PΦP−1 =


Ĉ0 · · · Ĉ−m+1

...
. . .

...

Ĉm−1 · · · Ĉ0

 , Φ̂2 = PΦ2P
−1 =


Ĉ−1 · · · Ĉ−m

...
. . .

...

Ĉm−2 · · · Ĉ−1

 ,

where P is a permutation matrix such that

Ĉk =


c0k · · · c−n+1,k

...
. . .

...

cn−1,k · · · c0k

 .

i.e. Φ̂ and Φ̂2 are in reverse lexicographic order. We then follow the same proof for Φ1Φ−1 and have that

Φ̂∗2Φ̂−1 =



0 I

. . . . . .

0 I

−R̃−1
0 R̃m · · · · · · −R̃−1

0 R̃1


,

where Rn−1(w) =

m∑
i=0

R̃iw
i is the right stable factor of Ẽn−1(w). We can then show w̄ is an eigenvalue for

Φ̂∗2Φ̂−1 with an eigenvector col(w̄i)m−1
i=0

⊗
col(zn−j−1)n−1

j=0 . This implies that Φ∗2Φ−1 has w̄ as an eigenvalue

with eigenvector col(zn−i−1)n−1
i=0

⊗
col(w̄j)m−1

j=0 , as desired.
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To show v1, · · · , vnm are linearly independent, suppose

a1v1 + · · ·+ anmvnm = 0.

Grouping the vi’s based on their eigenvalues zi’s, we have

(a11v11 + · · ·+ a1k1v1k1) + · · ·+ (aj1vj1 + · · ·+ ajkjvjkj ) = 0,

where vli, i = 1, · · · , kl is an eigenvector for zl, l = 1, · · · , j. Also, (al1vl1 + · · · + alklvlkl) is an eigenvector

for zl. Since distinct eigenvalues has linearly independent eigenvectors,

al1vl1 + · · ·+ alklvlkl = 0, l = 1, · · · , j.

We also have that vli is an eigenvector for w̄li. Since the multiplicity of each intersecting zeros is 1, w̄li 6= w̄l̃i

for i 6= ĩ. Therefore, vl1, · · · , vlkl are linearly independent, and

al1 = · · · = alkl = 0, l = 1, · · · , j.

Therefore, ai = 0 for i = 1, · · · , nm, and v1, · · · , vnm are linearly independent.

We have the following corollary if the multiplicity is higher than 1.

Corollary 2.1.6. Let cij, (i, j) ∈ Λ := {−n, · · · , n} × {−m, · · · ,m} \{(n,m), (−n,m), (n,−m), (−n,−m)}

be such that they satisfy the conditions of Theorem 2.1.2. Suppose (zi, 1/w̄i) is a repeated intersecting zeros

of the stable polynomial p(z, w) that arose from the cij. If k is the minimum multiplicity of 1/w̄i as a zero
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of p(zi, w) and ←−p (zi, w), then


zn−1
i

...

1


⊗ dl

dwl


1

...

wm−1



∣∣∣∣∣∣∣∣∣∣∣∣
w̄i

, l = 0, · · · , k − 1,

are eigenvectors of zi of Φ1Φ−1. Similarly, if k̃ is the minimum multiplicity of zi as a zero of p(z, 1/w̄i) and

←−p (z, 1/w̄i), then

dl

dzl


zn−1

...

1



∣∣∣∣∣∣∣∣∣∣∣∣
zi

⊗


1

...

w̄m−1
i

 , l = 0, · · · , k̃ − 1,

are eigenvectors of w̄i of Φ∗2Φ−1.

Proof. Consider the eigenvectors of zi for Φ1Φ−1. Suppose k is the minimum multiplicity of 1/w̄i as a zero

of p(zi, w) and ←−p (zi, w). This implies that

dl

dwl
p(zi, w)

∣∣∣∣
w̄i

=
dl

dwl
←−p (zi, w)

∣∣∣∣
w̄i

= 0, l = 0, · · · , k − 1.

Therefore, for the matrix R(q, p) from lemma 2.1.4, with z = zi, we have

A B

C D

 · dl

dwl

∣∣∣∣
w̄i


1

...

w2m−1

 =


0

...

0

 , l = 0, · · · , k − 1.

We can prove the statement about the eigenvectors of w̄i for Φ∗2Φ−1 similarly.

Furthermore, similar statements can be made when we have Φ−1Φ1 and Φ−1Φ∗2.

Theorem 2.1.7. Let p(z, w) =

n∑
i=0

m∑
j=0

pijz
iwj be a stable polynomial of degree (n,m), and let f(z, w)

be its spectral density function. Suppose the intersecting zeros of p(z, w)are (z1,
1
w̄1

), · · · , (znm, 1
w̄nm

) and
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( 1
z̄1
, w1), · · · , ( 1

z̄nm
, wnm), z1,...,nm, w1,...,nm ∈ D, with multiplicity of 1. Then

vj =

(
1 zj . . . zn−1

j

)⊗(
w̄m−1
j . . . w̄j 1

)
(2.1.10)

are common left eigenvectors of Φ−1Φ1 and Φ−1Φ∗2, with eigenvalues zj and w̄j, j = 1, . . . , nm, respectively.

Furthermore, {v1, · · · , vnm} are linearly independent.

Corollary 2.1.8. Let p(z, w) =

n∑
i=0

m∑
j=0

pijz
iwj be a stable polynomial of degree (n,m), and let f(z, w) be its

spectral density function. Suppose (zi, 1/w̄i) is a repeated intersecting zero. If k is the minimum multiplicity

of 1/w̄i as a zero of p(zi, w) and ←−p (zi, w), then

(
1 zj . . . zn−1

j

)⊗ dl

dwl

(
wm−1 . . . w 1

)∣∣∣∣
w̄j

, l = 0, · · · , k − 1,

are left eigenvectors of zi of Φ−1Φ1. Similarly, if k̃ is the minimum multiplicity of zi as a zero of p(z, 1/w̄i)

and ←−p (z, 1/w̄i), then

dl

dzl

(
1 z . . . zn−1

)∣∣∣∣
zj

⊗(
w̄m−1
j . . . w̄j 1

)
, l = 0, · · · , k̃ − 1,

are left eigenvectors of w̄i of Φ−1Φ∗2.

Proofs for Theorem 2.1.7 and Corollary 2.1.8 are similar to the previous proofs and will be omitted.

2.1.4 Examples

For all of the numerical examples in this thesis involving Fourier coefficients of spectral density functions,

we use the algorithm developed in Section 5 of [Woerdeman et al. 2003].

Example 2.1.9. Suppose p(z, w) = (z−2)(z−3)(w−2)(w−3). Then←−p (z, w) = (1−2z)(1−3z)(1−2w)(1−

3w). The intersecting zeros are (2, 1/2), (2, 1/3), (3, 1/2), (3, 1/3), (1/2, 2), (1/2, 3), (1/3, 2), and (1/3, 3). We
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then have

Φ =
1

36



0.1225 0.0875 0.0875 0.0625

0.0875 0.1225 0.0625 0.0875

0.0875 0.0625 0.1225 0.0875

0.0625 0.0875 0.0875 0.1225


,Φ1 =

1

36



0.0875 0.0625 0.0525 0.0375

0.0625 0.0875 0.0375 0.0525

0.1225 0.0875 0.0875 0.0625

0.0875 0.1225 0.0625 0.0875


,

and

Φ2 =
1

36



0.0875 0.0525 0.0625 0.0375

0.1225 0.0875 0.0875 0.0625

0.0625 0.0375 0.0875 0.0525

0.0875 0.0625 0.1225 0.0875


.

Therefore,

Φ1Φ−1 =



5/6 0 −1/6 0

0 5/6 0 −1/6

1 0 0 0

0 1 0 0


,Φ∗2Φ−1 =



0 1 0 0

−1/6 5/6 0 0

0 0 0 1

0 0 −1/6 5/6


.

Φ1Φ−1 and Φ∗2Φ−1 both have eigenvalues 1/2 with multiplicity of 2, and 1/3 with multiplicity of 2 with

eigenvectors 

1/2

1/4

1

1/2


,



1/2

1/6

1

1/3


,



1/3

1/6

1

1/2


,



1/3

1/9

1

1/3


.

The following example shows that the two matrices still share an eigenvector of the desired form when

there are repeated intersecting zeros.

Example 2.1.10. Suppose p(z, w) = (z−2)2(w−3)2. Then ←−p (z, w) = (1−2z)2(1−3w)2. The intersecting
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zeros are (2, 1/3) and (1/2, 3), each with multiplicities 4. We then have

Φ1Φ−1 =



1 0 −1/4 0

0 1 0 −1/4

1 0 0 0

0 1 0 0


,Φ∗2Φ−1 =



0 1 0 0

−1/9 2/3 0 0

0 0 0 1

0 0 −1/9 2/3


.

Φ1Φ−1 has eigenvalue 1/2 with multiplicity 4, while Φ∗2Φ−1 has eigenvalue 1/3 with multiplicity 4, as well.

One can show that [1/2, 1/6, 1, 1/3] is an eigenvector for both matrices, while [0, 1/2, 0, 1] is another eigen-

vector of 1/2 of Φ1Φ−1, and [1, 1/3, 0, 0] is another eigenvector of 1/3 of Φ∗2Φ−1.

2.2 Increasing the Degree of the Stable Polynomial and Applications

In [Geronimo and Woerdeman 2004], the following theorem was stated and it provided a formula for calcu-

lating Fourier coefficients of the spectral density function f(z, w) in the given region.

Theorem 2.2.1. Let p(z, w) be a stable polynomial of degree (n,m), and let f(z, w) be its spectral density

function. Then there exists a row vector x ∈ Cnm, a column vector y ∈ Cnm and commuting matrices

S, S̃ ∈ Cnm×nm such that

σ(S) = {z ∈ D : ∃w such that (z, w) is an intersecting zero of p},

σ(S̃) = {w ∈ D : ∃z such that (z, w̄) is an intersecting zero of p}, (2.2.1)

and

f̂(k, l) = xS̃m+l−1Sn−1−ky, k ≤ n− 1, l ≥ −m+ 1. (2.2.2)
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Choose x, y, S and S̃ as follows:

x = row(f̂((n− 1, 0)− u))u∈∆

y = col
(
δu+(0,−m+1)

)
u∈∆

, S = Φ−1Φ1, S̃ = Φ−1Φ∗2, (2.2.3)

where

Φ = (f̂(u− v))u,v∈∆, Φ1 = f̂(u− v − (1, 0)))u,v∈∆, Φ2 = (f̂(u− v + (0, 1))u,v∈∆

and ∆ = {0, . . . , n− 1} × {0, . . . ,m− 1}. In particular the matrix

(f̂(u− v))u∈{...,n−2,n−1}×{0,1,...},v∈{0,1,...}×{...,m−2,m−1} (2.2.4)

has rank equal to nm.

In this section, we examine a method to expand the region of computable coefficients by increasing the

degree of the stable polynomial. In this section (r, s) indicate the degree we add to p.

2.2.1 Increasing the Degree

For any (r, s) ∈ N2
0, let

p(r,s)(z, w) =

n+r∑
k=0

m+s∑
l=0

pklz
kwl,

where pkl = 0 when k > n or l > m. Similarly, we define

←−p (r,s)(z, w) = zn+rwm+sp

(
1

z
,

1

w

)
= zrws←−p (0,0)(z, w).

Since we increased the degree, we introduced new intersecting zeros.

Lemma 2.2.2. Given a stable polynomial p(z, w), the intersecting zeros of p(r,s)(z, w) and ←−p (r,s)(z, w) are:

a) The intersecting zeros of p(z, w) and ←−p (z, w);
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b) (0, w) and
(
∞, 1

w̄

)
such that w ∈ C\D̄ and p̃0(w) = 0, where p(r,s)(z, w) =

n+r∑
k=0

p̃k(w)zk and r ≥ 1;

c) (z, 0) and
(

1
z̄ ,∞

)
such that z ∈ C\D̄ and p0(z) = 0, where p(r,s)(z, w) =

m+s∑
l=0

pl(z)w
l and s ≥ 1; and

d) (0,∞) and (∞, 0).

The proof for this lemma is straightforward.

Proof. a) If p and ←−p are 0, then p(r,s) and ←−p (r,s) are also 0. Therefore, the intersecting zeros of p and ←−p

are intersecting zeros of p(r,s) and ←−p (r,s).

b) Since ←−p (r,s)(z, w) = zrws←−p (0,0)(z, w), if z = 0 and r ≥ 1, ←−p (r,s)(z, w) = 0 and p(r,s)(0, w) = p̃0(w).

c) Since ←−p (r,s)(z, w) = zrws←−p (0,0)(z, w), if w = 0 and s ≥ 1, ←−p (r,s)(z, w) = 0 and p(r,s)(z, 0) = p0(z).

d) Recall that if p(z, w) has degree (n,m), then p(z,∞) = 0 corresponds to the statement pm(z) = 0, while

p(∞, w) = 0 corresponds to p̃n(w) = 0.

2.2.2 Main Result

We now have the following corollary to Theorem 2.2.1.

Corollary 2.2.3. Let p(z, w) be a stable polynomial of degree (n,m), and let f(z, w) be its spectral density

function. Let (r, s) ∈ N2
0. Then there exists a row vector x ∈ C(n+r)(m+s), a column vector y ∈ C(n+r)(m+s)

and commuting matrices S(r,s), S̃(r,s) ∈ C(n+r)(m+s)×(n+r)(m+s) such that

σ(S(r,s)) = {z ∈ D : ∃w such that (z, w) is an intersecting zero of p(r,s)},

σ(S̃(r,s)) = {w ∈ D : ∃z such that (z, w̄) is an intersecting zero of p(r,s)}, (2.2.5)
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and

f̂(k, l) = xS̃(r,s)m+s+l−1

S(r,s)n+r−1−k

y, k ≤ n+ r − 1, l ≥ −m− s+ 1. (2.2.6)

Choose x, y, S(r,s) and S̃(r,s) as follows:

x = row(f̂((n+ r − 1, 0)− u))u∈∆

y = col
(
δu+(0,−m−s+1)

)
u∈∆

, S(r,s) = Φ−1Φ1, S̃
(r,s) = Φ−1Φ∗2, (2.2.7)

where

Φ = (f̂(u− v))u,v∈∆, Φ1 = f̂(u− v − (1, 0)))u,v∈∆, Φ2 = (f̂(u− v + (0, 1))u,v∈∆

and ∆ = {0, . . . , n+ r − 1} × {0, . . . ,m+ s− 1}.

Proof. The proof of the corollary follows the proof of Theorem 2.2.1 by replacing n and m with n + r and

m+ s, respectively, which can be found in [Geronimo and Woerdeman 2004].

2.2.3 Examples

From (2.2.9), (2.2.10) and the statement immediately after in the originally proof, we can see that copies of

the companion matrices

T =



0 · · · 0 −
(
pn0

p00

)
1 · · · 0 −

(
pn−1,0

p00

)
...

. . .
...

...

0 · · · 1 −
(
p10
p00

)


, T̃ =



−
(
p01
p00

)
1 · · · 0

...
...

. . .
...

−
(
p0,m−1

p00

)
0 · · · 1

−
(
p0,m
p00

)
0 · · · 0



are included in −L(m+s−1)
k . By following the permutation throughout the proof carefully we can determine

where are the entries of T and T̃ in S(r,s) and S̃(r,s). We illustrate it with the following example.
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Example 2.2.4. Let p(z, w) = 1− w/4− w2/16− z/4− zw/16− z2w/64. We have that

S =



0 0 −.005 −.017

0 0 −.001 −.0003

1 0 .2924 .1415

0 1 .0093 .2536


, S̃ =



.2503 1 −.001 0

.0626 0 −.0002 0

.1409 0 .2948 1

.0172 0 .0684 0


, T =

[
.25

]
, T̃ =

 .25 1

.0625 0

 .

We then have

S(1,0) =



0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 −0.005 −0.017

0 1 0 0 −0.001 −0.0003

0 0 1 0 0.2924 0.1415

0 0 0 1 0.0093 0.2536



, S̃(1,0) =



.25 1 0 0 0 0

.0625 0 0 0 0 0

∗ ∗ 0.2503 1 −0.001 0

∗ ∗ 0.0626 0 −0.0002 0

∗ ∗ 0.1409 0 0.2948 1

∗ ∗ 0.0172 0 0.0684 0



,

S(0,1) =



0 0 0 S1,3 S1,4 ∗

0 0 0 S2,3 S2,4 ∗

0 0 0 0 0 0

1 0 0 S3,3 S3,4 ∗

0 1 0 S4,3 S4,4 ∗

0 0 1 0 0 .25



, S̃(0,1) =



S̃1,1 S̃1,2 0 S̃1,3 S̃1,4 0

S̃2,1 S̃2,2 1 S̃2,3 S̃2,4 0

0 0 0 0 0 0

S̃3,1 S̃3,2 0 S̃3,3 S̃3,4 0

S̃4,1 S̃4,2 0 S̃4,3 S̃4,4 1

0 0 0 0 0 0



,

and so forth.

Example 2.2.5. In this example, we will demonstrate how to use the corollary. Again, let

p(z, w) = 1− w/4− w2/16− z/4− zw/16− z2w/64.

As the degree is (2, 1), Theorem 2.2.1 gives us a formula for any Fourier coefficients f̂(k, j) if k ≤ 1 and
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j ≥ 0, and consequently we have f̂(−k,−j). Now, suppse (r, s) = (2, 1). The corollary then state we can

calculate coefficients such as f̂(2, 0). Indeed, with

S(2,1) =



0 0 0 0

I2 0 0 0

0 I2 0 S34

0 0 I2 S44


,

where

S34 =

0.0047 0.0170

0.0011 0.0003

 , S44 =

0.2984 0.1433

0.0101 0.2538

 ,
and

S̃(2,1) =



0.25 1 0 0 0 0 0 0

0.0625 0 0 0 0 0 0 0

0.125 0 0.25 1 0 0 0 0

0.0156 0 0.0625 0 0 0 0 0

0.0469 0 0.1251 0 0.2503 1 0.001 0

0.0039 0 0.0156 0 0.0626 0 0.0002 0

0.0127 0 0.0508 0 0.1409 0 0.2948 1

0.0011 0 0.0043 0 0.0172 0 0.0684 0



,

x =

[
0.0391 0.0158 0.1194 0.0455 0.3703 0.1295 1.2214 0.3869

]
, y =

[
0 1 0 0 0 0 0 0

]T
.

Then

f̂(2, 0) = xS̃1+1+0−1S2+2−1−2y = xS̃Sy = 0.1194.

Remark 2.2.6. The shortcoming of the corollary is that we require more coefficients that we started with

since we increased the size of Λ. However, increase the size each time give us infinitely more coefficients.
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2.3 Expanding Polynomials Using Permanent and Applications

In [Grinshpan et al. 2013], it was proved that for every bivariate stable polynomial p(z, w) of degree (n,m)

with p(0) = 1, we can construct a determinantal representation of the form

p(z, w) = det(I −KZ),

where Z is an (n+m)× (n+m) diagonal matrix with coordinate variables z and w on the diagonal and K is

a contraction. In this section, we will demonstrate the possibility of the connection between determinantal

representation and stable polynomial by proving the second statement of Theorem 1.1.1 for p(z, w) of degree

(1, 1).

2.3.1 Permanent and Permanent Expansion

Given a square matrix, we can define its permanent.

Definition 2.3.1. Given a matrix A = (aij) ∈ Cn×n, the permanent of A is defined as

perm(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i),

where Sn is the permutation group of n elements.

Example 2.3.2. perm


a b c

d e f

g h j

 = aej + bfg + cdh+ afh+ bdj + ceg.

We also have the following identity from [Vere-Jones 1984].

Proposition 2.3.3.

det (I −KZ)
−1

=
∑

(k,l)∈N2
0

perm(K(k,l))
znwm

n!m!
,
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where

K(k,l) =

A B

C D

 , A =


a · · · a

...
. . .

...

a · · · a

 ∈ Ck,k, B =


b · · · b

...
. . .

...

b · · · b

 ∈ Ck,l,

and

C =


c · · · c

...
. . .

...

c · · · c

 ∈ Cl,k, D =


d · · · d

...
. . .

...

d · · · d

 ∈ Cl,l.

When K ∈ C(2,2), we have the following identity from [Rubak et al. 2010].

Proposition 2.3.4. (Proposition A.2.1) For K =

a b

c d

 ,

perm
(
K(k,l)

)
= k!l!akdl

min(k,l)∑
i=0

(
n

i

)(
m

i

)
αi, α =

bc

ad
.

2.3.2 Expanding Polynomials Using Permanents

For f(z, w) = 1/|p(z, w)|2, we have that

f(z, w) =
∑

(k,l)∈N2
0

perm(K(k,l))
zkwl

k!l!

∑
(k1,l1)∈N2

0

perm(K
(k1,l1)

)
1

zk1w
l
1k1!l1!

.

From this representation, it is clear that the coefficient c00 is the sum over (k, l) = (k1, l1). By having
(
n
i

)
= 0

when i > n and
(
n
−1

)
= 0, we have that

c00 =
∑

(k,l)∈N2
0

perm(K(k,l))perm(K
(k,l)

)

(k!l!)2
=

∑
(k,l)∈N2

0

(aā)k(dd̄)m
k∑
i=0

(
k

i

)(
l

i

)
αi

k∑
j=0

(
k

j

)(
l

j

)
αj .
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After expressing c−1,0, c0,1, c−1,1 similarly, we have

c00c−1,1 − c0,1c−1,0 =
∑

(k1,l1)∈N2
0

∑
(k2,l2)∈N2

0

ad(aa)k1+k2(dd)l1+l2

k1∑
j1=0

(
k1

j1

)(
l1
j1

)
αj1

k2∑
j2=0

(
k2

j2

)(
l2 + 1

j2

)
αj2

×

[
k1∑
i1=0

(
k1

i1

)(
l1
i1

)
αi1

k2+1∑
i2=0

(
k2 + 1

i2

)(
l2
i2

)
αi2 −

k1+1∑
i1=0

(
k1 + 1

i1

)(
l1
i1

)
αi1

k2∑
i2=0

(
k2

i2

)(
l2
i2

)
αi2

]
.

(2.3.1)

Since for each k = k1 + k2 and l = l1 + l2 the power of a and d differs, there is no overlap. Therefore, to

show (2.3.1) = 0, we can instead show

k∑
k1=0

l∑
l1=0

 k1∑
j1=0

(
k1

j1

)(
l1
j1

)
αj1

k−k1∑
j2=0

(
k − k1

j2

)(
l − l1 + 1

j2

)
αj2


×

[
k1∑
i1=0

(
k1

i1

)(
l1
i1

)
αi1

k−k1+1∑
i2=0

(
k − k1 + 1

i2

)(
l − l1
i2

)
αi2 −

k1+1∑
i1=0

(
k1 + 1

i1

)(
l1
i1

)
αi1

k−k1∑
i2=0

(
k − k1

i2

)(
l − l1
i2

)
αi2

]

(2.3.2)

is equal to 0. By using Pascal’s identity
(
n+1
i

)
=
(
n
i−1

)(
n
i

)
, we have

(2.3.2) =

k∑
k1=0

l∑
l1=0

 k1∑
j1=0

(
k1

j1

)(
l1
j1

)
αj1

k−k1∑
j2=0

(
k − k1

j2

)(
l − l1 + 1

j2

)
αj2



×

[
k1∑
i1=0

(
k1

i1

)(
l1
i1

)
αi1

k−k1∑
i2=0

(
k − k1

i2

)(
l − l1
i2 + 1

)
αi2+1 −

k1∑
i1=0

(
k1

i1

)(
l1

i1 + 1

)
αi1+1

k−k1∑
i2=0

(
k − k1

i2

)(
l − l1
i2

)
αi2

]

=

k∑
k1=0

l∑
l1=0

 k1∑
j1=0

k−k1∑
j2=0

(
k1

j1

)(
l1
j1

)(
k − k1

j2

)(
l − l1 + 1

j2

)
αj1+j2



×

(
k1∑
i1=0

k−k1∑
i2=0

(
k1

i1

)(
k − k1

i2

)[(
l1
i1

)(
l − l1
i2 + 1

)
−
(

l1
i1 + 1

)(
l − l1
i2

)]
αi1+i2+1

)
. (2.3.3)
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Let j = j1 + j2 and i = i1 + i2. We then have the coefficient in front of αi+1αj in (2.3.3) to be

k∑
k1=0

l∑
l1=0

 j∑
j1=0

(
k1

j1

)(
l1
j1

)(
k − k1

j − j1

)(
l − l1 + 1

j − j1

)

×

(
i∑

i1=0

(
k1

i1

)(
k − k1

i− i1

)[(
l1
i1

)(
l − l1

i− i1 + 1

)
−
(

l1
i1 + 1

)(
l − l1
i− i1

)])
. (2.3.4)

Using Pascal’s identity once again, we have

k∑
k1=0

l∑
l1=0

 j∑
j1=0

(
k1

j1

)(
l1
j1

)(
k − k1

j − j1

)(
l − l1

j − j1 − 1

)

×

(
i∑

i1=0

(
k1

i1

)(
k − k1

i− i1

)[(
l1
i1

)(
l − l1

i− i1 + 1

)
−
(

l1
i1 + 1

)(
l − l1
i− i1

)])
. (2.3.5)

Similarly, we can express (2.3.4) in term of k2, l2, i2, and j2.

k∑
k2=0

l∑
l2=0

 j∑
j2=0

(
k2

j2

)(
l2

j2 − 1

)(
k − k2

j − j2

)(
l − l2
j − j2

)

×

(
i∑

i2=0

(
k1

i1

)(
k − k1

i− i1

)[(
l1
i1

)(
l − l1

i− i1 + 1

)
−
(

l1
i1 + 1

)(
l − l1
i− i1

)])
. (2.3.6)

Relabeling k2, l2, i2, j2 by k1, l1, i1, j1 in (2.3.6), respectively, and add (2.3.5) to (2.3.6), we have
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k∑
k1=0

l∑
l1=0

 j∑
j1=0

(
k1

j1

)(
l1
j1

)(
k − k1

j − j1

)(
l − l1

j − j1 − 1

)( i∑
i1=0

(
k1

i1

)(
k − k1

i− i1

)(
l1
i1

)(
l − l1

i− i1 + 1

))
(2.3.7)

−
k∑

k1=0

l∑
l1=0

 j∑
j1=0

(
k1

j1

)(
l1
j1

)(
k − k1

j − j1

)(
l − l1

j − j1 − 1

)( i∑
i1=0

(
k1

i1

)(
k − k1

i− i1

)(
l1

i1 + 1

)(
l − l1
i− i1

))
(2.3.8)

−
k∑

k1=0

l∑
l1=0

 j∑
j1=0

(
k1

j1

)(
l1

j1 − 1

)(
k − k1

j − j1

)(
l − l1
j − j1

)( i∑
i1=0

(
k1

i1

)(
k − k1

i− i1

)(
l1
i1

)(
l − l1

i− i1 + 1

))
(2.3.9)

+

k∑
k1=0

l∑
l1=0

 j∑
j1=0

(
k1

j1

)(
l1

j1 − 1

)(
k − k1

j − j1

)(
l − l1
j − j1

)( i∑
i1=0

(
k1

i1

)(
k − k1

i− i1

)(
l1

i1 + 1

)(
l − l1
i− i1

))
(2.3.10)

= (2.3.5) + (2.3.6). (2.3.11)

If we add (2.3.7) to (2.3.10) and (2.3.8) to (2.3.9), we have that

(2.3.7) + (2.3.10) = −((2.3.8) + (2.3.9)).

Therefore,

(2.3.5) + (2.3.6) = (2.3.7) + (2.3.8) + (2.3.9) + (2.3.10) = 0.

But the sum of two non-negative numbers can only be 0 if both are 0. Therefore, the coefficient in front of

αi+1αj equals 0 for all i, j ≥ 0, and this concludes the proof.

2.4 Asymptotics of the Fourier Coefficients

Recall Theorem 2.2.1, given a stable polynomial p(z, w) of degree (n,m), f(z, w) be its spectral density

function, we can compute the Fourier coefficient f̂(r, s), r ≤ n− 1, s ≥ −m+ 1, with the equation

f̂(r, s) = xS̃m+s−1Sn−1−ry, (2.4.1)
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where x and y are specific row vector and column vector of the correct size, respectively. The eigenvalues of

S and S̃ are given by

σ(S) = {z ∈ D : ∃w such that (z, w) is an intersecting zero of p},

σ(S̃) = {w ∈ D : ∃z such that (z, w̄) is an intersecting zero of p}.

In Section 2.1, we determined the left eigenvectors are in the form

(
1 zj . . . zn−1

j

)⊗ dl

dwl

(
wm−1 . . . w 1

)∣∣∣∣
w̄j

, l = 0, · · · , k − 1,

and

dl

dzl

(
1 z . . . zn−1

)∣∣∣∣
zj

⊗(
w̄m−1
j . . . w̄j 1

)
, l = 0, · · · , k̃ − 1,

for S and S̃, respectively. Furthermore, in Section 2.2, we developed a procedure to compute more coefficients.

In this section, we focus on the asymptotics of these coefficients and determine the decay rate for a given

direction. Unless indicated otherwise, r = (r, s) will indicate the direction of interest.

2.4.1 Second and Fourth Quadrants

Since for any (r, s), f̂(r, s) = f̂(−r,−s), we only need to concern ourselves with the second quadrant, and the

fourth quadrant result will follow. Return to Theorem 2.2.1, if the degree of p(z, w) is (n,m), i.e. pn(z) 6= 0

and p̃m(w) 6= 0, then for k ≤ 0 ≤ n− 1 and l ≥ 0 ≥ −m+ 1,

f̂(r, s) = xS̃m+s−1Sn−1−ry.
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Suppose the intersecting zeros are distinct. Since the eigenvectors of S and S̃ are linearly independent, they

can be expressed as S = QDQ−1 and S̃ = QD̃Q−1, and (2.4.1) can be written as

f̂(r, s) = xS̃m+s−1Sn−1−ry

= xQD̃m+s−1Q−1QDn−1−rQ−1y. (2.4.2)

Let L = xQ and R = Q−1y, where L is a row vector and R is a column vector. Thus, we have

f̂(r, s) = LD̃m+s−1Dn−1−rR

= L


wm+s−1

1

. . .

wm+s−1
nm




zn−1−r

1

. . .

zn−1−r
nm

R

=

(
L1w

m+s−1
1 . . . Lnmw

m+s−1
nm

)(
R1z

n−1−r
1 . . . Rnmz

n−1−r
nm

)T
=

nm∑
`=1

L`w
m+s−1
` zn−1−r

` R`

=

nm∑
`=1

C`w
m+s−1
` zn−1−r

` , (2.4.3)

where C` = L`R`. Without loss of generality, we fix direction (r, s) and assume |ws1z−r1 | ≥ |wsαz−rα | for all

α = 2, . . . , nm. By factoring ws1z
−r
1 , we can then rewrite (2.4.3) as

f̂(r, s) = ws1z
−r
1

nm∑
`=1

C`
wm+s−1
` zn−1−r

`

ws1z
−r
1

. (2.4.4)
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Suppose t > 0, r ≤ 0, and s ≥ 0. We are interested in the asymptotic behavior of |f̂(tr, ts)| as t approaches

infinity. By using (2.4.4),

∣∣∣f̂(tr, ts)
∣∣∣ =

∣∣∣∣∣wts1 z−tr1

nm∑
`=1

C`
wm+ts−1
` zn−1−tr

`

wts1 z
−tr
1

∣∣∣∣∣
≤
∣∣wts1 z−tr1

∣∣ nm∑
`=1

∣∣∣∣C`wts` z−tr`

wts1 z
−tr
1

wm−1
` zn−1

`

∣∣∣∣
≤
∣∣wts1 z−tr1

∣∣C,
where C = nmmax

`

∣∣C`wm−1
` zn−1

`

∣∣. Thus we have the following theorem.

Theorem 2.4.1. Let stable polynomial p(z, w) =

n∑
l1=0

m∑
l2=0

pl1l2z
l1wl2 be given. Suppose the intersecting zeros

of p(z, w) and ←−p (z, w) are (z1, 1/w̄1), . . . , (znm, 1/w̄nm) and their reciprocals, where z, w ∈ D, are distinct.

Let r and s be such that rs ≤ 0, and assume
∣∣∣w|s|1 z

|r|
1

∣∣∣ ≥ ∣∣∣w|s|α z|r|α ∣∣∣. Then

∣∣∣f̂(tr, ts)
∣∣∣ = O

(∣∣∣w|s|1 z
|r|
1

∣∣∣t) , t→∞.
Proof. The proof for r ≤ 0 and s ≥ 0 is given above. Since f̂(r, s) = f̂(−r,−s), the case for r ≥ 0 and s ≤ 0

follows.

Clearly, not every stable polynomial has distinct intersecting zeros. Furthermore, we currently do not

have a clear understanding of the Jordan structures. However, we can still determine the decay rate along

(r, s).

Theorem 2.4.2. Let stable polynomial p(z, w) =

n∑
l1=0

m∑
l2=0

pl1l2z
l1wl2 be given. Suppose the intersecting zeros

of p(z, w) and←−p (z, w) are (z1, 1/w̄1), . . . , (znm, 1/ ¯wnm) and their reciprocals, where z, w ∈ D, not necessarily

distinct. Let r and s be such that rs ≤ 0, and assume
∣∣∣w|s|1 z

|r|
1

∣∣∣ ≥ ∣∣∣w|s|α z|r|α ∣∣∣. Then

∣∣∣f̂(tr, ts)
∣∣∣ = O

((∣∣∣w|s|1 z
|r|
1

∣∣∣+ ε
)t)

, t→∞,

for all ε > 0.
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Proof. Let S = PJP−1 and S̃ = P̃ J̃ P̃−1, where

J =


J1

. . .

Jβ1

 ,where Jα =



zα 1

. . . . . .

. . . 1

zα


is a Jordan block for zα of the correct size l. Notice that

Jn−1−r =


Jn−1−r

1

. . .

Jn−1−r
β1

 ,

where

Jn−1−r
α =



zn−1−r
α

(
n−1−r

1

)
zn−2−r
α . . .

(
n−1−r
l−1

)
zn−l−rα

. . . . . .
...

. . .
(
n−1−r

1

)
zn−2−r
α

zn−1−r
α


,

and similarly for J̃m+s−1. Then

|f̂(tr, ts)| = |xP̃ J̃m+ts−1P̃−1PJn−1−trP−1y|

= |LJ̃m+ts−1MJn−1−trP−1R|

=

∣∣∣∣∣∣
nm∑

j1,j2,k1,k2=1

Cj1j2k1k2 J̃
(m+ts−1)
j1k1

J
(n−1−tr)
j2k2

∣∣∣∣∣∣ (2.4.5)
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where J (n−1−tr)
j2k2

is the (j2, k2) entry of Jn−1−tr. If |ztr1 wts1 | ≥ |ztrα wtsα |,

(2.4.5) ≤ C
(
n− 1− tr
l1 − 1

)(
m+ ts− 1

l2 − 1

) ∣∣ztr1 wts1 ∣∣
≤ C(n− 1− tr)l1−1(m+ ts− 1)l2−1

∣∣ztr1 wts1 ∣∣ ,
which is the desired result for direction (r, s) in the second quadrant.

2.4.2 First and Third Quadrants

Given a rational function F = G/H, let V denoted the variety {z : H(z) = 0} and assume H(0) 6= 0.

Then, the Laurent series of F around 0 is given by F =
∑
r

arz
r, r ∈ Zd. To compute the asymptotic of ar,

r ∈ Nd, we follow the procedure listed in Section 1.3 of [Pemantle and Wilson 2013], which we will include

for completeness. The method is as follow:

Algorithm 2.4.3. (Outline of procedures)

1. Use the multidimensional Cauchy integral to express ar as an integral over a d-dimensional torus T in

Cd.

2. Observe that T may be replaced by any cycle homologous to T in the domain

M := Cd\{z : (z1 . . . zd)H(z) = 0}

of holomorphy of the integrand.

3. Deform the cycle to lower the modulus of the integrand as much as possible; use Morse theoretic meth-

ods to characterize the minimax cycle in terms of critical points(see Appendix B and C in [Pemantle

and Wilson 2013] for background in Morse Theory). The Minimax cycle is a chain of integration,

homologous to T in the domainM, that achieves the least value of maxx∈C h(x).

4. Use algebraic methods to find the critical points; these are points of V that depend on the direction r̂

of the asymptotics, and are saddle points for the magnitude of the integrand.
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5. Use topological methods to locate one or more contributing critical points zj and replace the integral

over T by an integral over quasi-local cycles C(zj) (see Definition C.3.5 in [Pemantle and Wilson 2013])

near each zj .

The crudest level at which nontrivial estimation of ar normally occurs is the exponential level, namely

statements of the form log|ar| = O(g(r)) as r→∞ in some specified way. In particular, for a fixed direction

r̂∗ = r/ |r|, consider the height function

h(z) := hr̂∗(z) = −
d∑
k=1

r̂k log|zk|.

The height function |r|h is a good surrogate for the log magnitude of the integrand z−r−1F (z) because it

captures the part that goes to infinity with r, leaving only the factor z−1F (z) which is bounded on compact

subsets ofM.

The process to determine critical points are listed in Section 8.3 of [Pemantle and Wilson 2013]. If

H(z) =

d−k∏
i=1

pi(z),

the following three formulas are essential:

pi(z) = 0, i = 1, . . . , d− k; (2.4.6)

det(Md−k+i(z)) = 0, i = 1, . . . , k; (2.4.7)

where M is the (d− k + 1)× d matrix whose row 1 through d− k are the gradients

∇logpi(z) := (z1∂pi/∂z1, . . . , zd∂pi/∂zd)

with respect to log z together with r̂∗, and Md−k+i contains the first d − k and the (d − k + i)th columns.
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For example, if H(z1, z2, z3, z4) = p1p2, then we have k = 2, and M is the matrix

M =


z1∂p1/∂z1 z2∂p1/∂z2 z3∂p1/∂z3 z4∂p1/∂z4

z1∂p2/∂z1 z2∂p2/∂z2 z3∂p2/∂z3 z4∂p2/∂z4

r1 r2 r3 r4

 ,

M3 =


z1∂p1/∂z1 z2∂p1/∂z2 z3∂p1/∂z3

z1∂p2/∂z1 z2∂p2/∂z2 z3∂p2/∂z3

r1 r2 r3

 ,M4 =


z1∂p1/∂z1 z2∂p1/∂z2 z4∂p1/∂z4

z1∂p2/∂z1 z2∂p2/∂z2 z4∂p2/∂z4

r1 r2 r4

 .

Condition (2.4.7) ensures the span of the d−k gradients contain r̂∗. These points are called multiple points.

Smooth critical points are the most common case. Being in the span of {∇logpi} means being parallel to

∇logpi, leading to d− 1 equations for vanishing 2× 2 subdeterminants of M :

pi(z) = 0

r1z2
∂pi
∂z2

= r2z1
∂pi
∂z1

(2.4.8)

...

...

r1zd
∂pi
∂zd

= rdz1
∂pi
∂z1

.

For the spectral density function f(z, w) = 1/p(z, w)p(z, w) on T2, we can rewrite it with p and ←−p , so

f(z, w) =
znwm

p(z, w)←−p (z, w)
.

There is a Laurent series for f that is true for T2. The Fourier coefficients equal the Laurent coefficients

through the substitution z = eπiw. With p and ←−p , we have d = 2, so it follows that k = 0 for (2.4.6) and

(2.4.7). Therefore, (2.4.7) is vacuously satisfied for intersecting zeros, so the critical points include smooth
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points, multiple points arise from just p or ←−p , and intersecting zeros. As the number of critical points is

finite, we have a maximum possible decay rate for the coefficients.

Theorem 2.4.4. Let p(z, w) =

n∑
l1=0

m∑
l2=0

pl1l2z
l1wl2 be a stable polynomial where pl1l2 6= 0 for some (l1, l2)

with l1 ≥ 1, l2 ≥ 1. Let (zi, wi) be points that either satisfy (2.4.8) for direction (r, s), multiple points of p or

←−p , or are intersecting zeros of p and ←−p , where rs > 0. Let k be such that h(zk, wk) < 0 and for all j 6= k,

either h(zj , wj) ≥ 0 or h(zj , wj) ≤ h(zk, wk). Then the exponential rate is

∣∣∣f̂(tr, ts)
∣∣∣ = O

(∣∣w−sk z−rk
∣∣t) .

Proof. Since the Laurent series converges, the coefficients must go to 0 in any direction r. Therefore, the

rate must be negative. Condition (2.4.8) gives critical points for when H = p and H =←−p . By the nature of

the condition, the height of these points are negative of each other, these guaranteeing at least one negative

critical value.

While this theorem gives us the greatest possible rate, we want to be able to determine the dominating

critical points and the actual decay rate. One thing we can do is to use Algorithm 9.4.7 from [Pemantle and

Wilson 2013] to compute the dominating smooth points.

Algorithm 2.4.5. (Determination of dominating points in the smooth, bivariate case)

1. List the critical value in order of decreasing height.

2. Set the provisional value of c∗ to the highest critical value.

3. For each critical point at height c∗:

(a) compute the order k of the critical point;

(b) follow each of the k ascent paths until it is clear whether the z-coordinate or the w-coordinate goes

to zero;

(c) add the point to the set E if and only if at least one of the k paths has z-coordinate going to zero

and at least one of the k paths has w-coordinate going to zero.
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4. If E is nonempty then terminate and output c∗ and E.

5. Else, if c∗ is not the least critical value then replace c∗ by the next lower critical value and go to step

3.

6. Else, if no critical values remain then c∗ = −∞, E is empty, and the asymptotics decay super-

exponentially.

Step 3 of the algorithm requires us to compute ascent paths. Given a point z0 with g(z0) 6= 0 6= g′(z0)

for some locally analytic function g, we need to compute another point z1, such that |g| increases on the line

segment from z0 to z1. In order to do so and determining whether they go toward {z = 0} or {w = 0}, we

require the following six propositions from [DeVries et al. 2011].

Let B(c, r) be the closed ball centered at c ∈ C and radius r > 0. Let Sπ/4 be the sector of complex numbers

whose arguments are strictly between π/4 and −π/4, and z = x+yi is a rational point if x and y are rational.

Proposition 2.4.6. Let g be locally analytic such that g and g′ can be evaluated using ball arithmetic. Let

z0 be a rational point at which g(z0) 6= 0 6= g′(z0).

1. For ε > 0 sufficiently small, the function

u 7→
g′
(
z0 + u g(z0)

g′(z0)

)
g′(z0)

(2.4.9)

evaluated at u = B(0, ε) is contained in Sπ/4.

2. For such an ε > 0, the function |g| is strictly increasing on the line segment from z0 to z0 + ε g(z0)
g′(z0) .

Proposition 2.4.7. Let g be locally analytic such that g and its first k derivatives can be evaluated using

ball arithmetic. Let z0 be a rational point at which g(z0) 6= 0 6= g(k)(z0) while g(1)(z0) = · · · = g(k−1)(z0) = 0.

Define

q(u) :=
1

g(z0)
g

(
z0 + u

[
g(z0)

g(k)(z0)

]1/k
)

where any choice of the kth root is allowed. Then when ε > 0 is sufficiently small, q(k)(B(0, ε)) ⊂ Sπ/4 and for

such an ε, the magnitude of |g| will increase strictly on the line segment from z0 to z0 + ε[g(z0)/g(k)(z0)]1/k.
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Furthermore, computing such an ε for each choice of 1/k power and taking the minimum ensures that |g|

increases on all k line segments simultaneously.

Using these propositions, we can compute ascent paths. Let W be the set of points z = (z, w) in the

variety V but not a critical point, z is a rational point, and the partial derivatives of H with respected to z

and w are nonzero.

Proposition 2.4.8. There is a ball-computable function φ : W → W with the following properties. Let

z0 = (z0, w0) ∈W and denote z1 := (z1, w1) := φ(z0). Then the line segment [z0, z1] lifts uniquely to a curve

in V connecting z0 to z1, along which h is strictly increasing. Furthermore, φ may be chosen so that z1 is

not a critical point or a point where ∂H/∂z vanishes.

As the proof for this proposition is constructive, we will include the part essential to the calculation.

Proof. Given z0 ∈ W, let w be the locally analytic function such that w(z0) = w0 and H(z, w(z)) = 0. Apply

Proposition (2.4.6) to g(z) := exp[h(z, w(z))] and z0, obtaining a segment [z0, z1] = [z0, z0 + ε1g(z0)/g′(z0)].

It is easy, computationally, to choose ε1 always to be at least ε0/2. Define φ1(z0) := z1 := (z1, w1). The

lifting of [z0, z1] to V is a path along which h increases.

Similarly, we have the following proposition for when (z0, w0) is a critical point.

Proposition 2.4.9. Let z0 = (z0, w0) be a critical point. Suppose ∂H/∂z does not vanish at z0. Then we

may compute a rational φ(z0) such that the union of the radial line segments

{[z0, z0 + φ(z0)e2πij/k] : 0 ≤ j ≤ k − 1}

lift uniquely to a union of paths from z0 on V on each of which h is strictly increasing.

We need to determine if the path is going toward the z-axis or w-axis. Let V≥c denote the subset of V

consisting of points z with h(z) ≥ c and Z≥c (respectively W≥c) denote the union of those components of

V≥c containing arbitrarily small values of z (respectively w).
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Proposition 2.4.10. Fix r̂ such that r/s is not a direction of a series solution to H(z, w(z)) = 0. Let cmax

denote the greatest critical value of h and cmin denote the least critical value. Let ε be small enough so that

there are no critical points (z, w) with |z| < ε. Then any point (z, w) ∈ V with |z| < ε and h(z, w) > cmin is

in Z>cmax .

The above proposition is true when the roles of z and w are switched. Lastly, we need to allow ascent

paths to terminate when they come sufficiently near a critical point. Otherwise, it may converge to a critical

point along an infinite sequence of ever smaller steps.

Proposition 2.4.11. Let c > c∗ be a critical value of h and let (z0, w0) be a critical point at height c in

Z≥c. Suppose there is an ε > 0 for which the following conditions hold:

1. For each z such the |z − z0| ≤ ε there is at most one solution to H(z, w) = 0 with |w − w0| ≤ ε;

2. (z0, w0) is the unique critical point (z, w) of h on V with |z − z0|, |w − w0| ≤ ε.

Then |z − z0|, |w − w0| ≤ ε and H(z, w) = 0 imply (z, w) ∈ Z≥c∗ .

With Propositions (2.4.8) - (2.4.11), we now have an algorithm to determine if a smooth point contributes.

Algorithm 2.4.12. (Determining the ascent paths)

1. Let ε and ε′ be as in Proposition (2.4.10) for z and w respectively.

2. Order the smooth points by their critical values. Starting with the point with the highest critical value,

apply Proposition (2.4.9) to ascend from the smooth point, then use Proposition (2.4.8) to continue

ascending.

3. If the z-component of zi has modulus less than ε at any iteration, the path approaches the z-axis.

Similarly for w.

4. If z and w-axis both have at least one path ascending to it, this smooth point dominates the other points.

Otherwise, repeat with the next point.

With this result, we can now state a stronger theorem regarding the asymptotic of the Fourier coefficients.
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Theorem 2.4.13. Let p(z, w) =

n∑
l1=0

m∑
l2=0

pl1l2z
l1wl2 be a stable polynomial where pl1l2 6= 0 for some (l1, l2)

with l1 ≥ 1, l2 ≥ 1. Let (zi, wi) be points that satisfy (2.4.8) for direction (r, s), where rs > 0 and ordered

so that h(zi, wi) ≥ h(zl, wl) if i ≥ l. Choose k so that (zk, wk) satisfies the following:

1. h(zk, wk) < 0 and at least one of the ascent paths has z-coordinate going to zero and at least one has

w-coordinate going to zero, and

2. for all j 6= k such that h(zj , wj) ≤ 0, either h(zj , wj) ≥ h(zk, wk) but does not satisfy 1), or h(zj , wj) ≤

h(zk, wk).

Then the exponential rate is

|f̂(tr, ts)| = Ω(|w−si z−ri |
t).

Proof. As per the proof to the previous theorem, we are guaranteed at least one of these critical points has

negative height. We only have to show f̂(tr, ts) are not eventually constant 0. Clearly, if either n or m

equal 0, f is reduced to at most one variable, and the Fourier coefficients equal 0 in any direction not on the

axis. Therefore, as long as pl1l2 6= 0 for some (l1, l2) with l1 ≥ 1, l2 ≥ 1, Algorithim 2.4.5 will terminate and

output the dominating smooth point and critical value.

2.4.3 Examples

In practice, one can bypass calculating the ascent paths in most situations. Since the numbers of critical point

is finite, we can compute the height for each and compare it with the actual coefficients. We demonstrate

two examples, one with the computation for the ascent paths to demonstrate the result. But first, let us

show a result without using ascent paths.

Example 2.4.14. Take stable polynomial p(z, w) = 11
6 zw

2 + z − 11
6 w

2 + 25
3 w − 11 from [Geronimo and

Woerdeman 2006]. Then ←−p (z, w) = 11
6 + w2 − 11

6 z + 25
3 zw − 11zw2 and f(z, w) is

f(z, w) =
zw2

p(z, w)←−p (z, w)

=
zw2

( 11
6 zw

2 + z − 11
6 w

2 + 25
3 w − 11)( 11

6 + w2 − 11
6 z + 25

3 zw − 11zw2)
.
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The intersecting zeros are

z1 =

(
1

5
, 2

)
, z2 =

(
1

7
, 3

)
, z3 =

(
5,

1

2

)
, z4 =

(
7,

1

3

)
.

First, let us consider a direction in the second quadrant. Suppose (r, s) = (−1, 1). The magnitude of zri

are the following:

zi z1 z2 z3 z4

zri 10 21 1
10

1
21

Therefore, the coefficient is exponentially decaying and

f̂(−t, t) = O(1/10t).

Using MATLAB, the first 10 coefficients are

f̂(0, 0) f̂(−1, 1) f̂(−2, 2) f̂(−3, 3) f̂(−4, 4)

0.0191 0.0032 0.00038 0.0000042 4.3× 10−7

f̂(−5, 5) f̂(−6, 6) f̂(−7, 7) f̂(−8, 8) f̂(−9, 9)

4.3× 10−8 4.4× 10−9 4.4× 10−10 4.4× 10−11 4.4× 10−12

which are decaying near a rate of 1/10, as expected. Similarly, for direction such as (−2, 3) or (2,−3), the

dominating rate is 1/200.

Now, let’s consider the first quadrant. Suppose (r, s) = (2, 1). Then we have the following:

h(z, w) = −2 ln|z| − ln|w|,

∂p

∂z
=

11

6
w2 + 1, (2.4.10)

∂p

∂w
=

11

3
zw − 11

3
w +

25

3
.
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Then, the points that satisfy (2.4.8) are

z5 = (1.7957,−6.6599), z6 = (0.1301, 2.5107), z7 = (9.4588,−0.6829), z8 = (7.6155, 0.2866),

and the reciprocal of these points satisfy (2.4.8) with←−p replacing p. Putting zi into h, we have the following:

zi z1 z2 z3 z4 z5 z6 z7 z8

h(zi) 2.5257 2.7932 −2.5257 −2.7932 −3.067 3.1577 −4.1125 −2.8107

Numerically computing the coefficients, we found the decay rate is close to exp(−2.5257) = 0.08, which

indicates the dominating point for direction (2, 1) is z3 = (5, 1/2).

Example 2.4.15. To have an example with Jordan block, consider p(z, w) of the previous example, and let

q(z, w) = p(z, w)2. Clearly, q is stable. Using MATLAB with a tolerence of 5 × 10−13, we find the rank of

the following:

rank
(
S − 1

5
I

)
= rank

(
S − 1

7
I

)
= 6

rank
(
S − 1

5
I

)2

= rank
(
S − 1

7
I

)2

= 5

rank
(
S − 1

5
I

)3

= rank
(
S − 1

7
I

)3

= 4.

Therefore, the matrix J is in the form

J =



1/5 1

1/5 1

1/5

1/5

1/7 1

1/7 1

1/7

1/7



.
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S̃ has the same Jordan structure with 1/2 and 1/3 both with one size 3 block and a size 1 block. Compared

to p(z, w), the rate is converging much slower. The ratio

f̂(−15, 15)

f̂(−14, 14)
= .1156,

is slowly approaching 1/10.

Example 2.4.16. In this example, we will demonstrate the calculation of ascent paths. Let p(z, w) =

1− w/2− z/5− zw/11 and (r, s) = (2, 3). We then have the following:

h(z, w) = −2 ln|z| − 3 ln|w|,

∂p

∂z
= −1

5
− 1

11
w, (2.4.11)

∂p

∂w
= −1

2
− 1

11
z.

Then, the points that satisfy (2.4.8) are

z1 = (1.54535, 1.07876), z2 = (−17.79535,−4.07876) (2.4.12)

and the reciprocal of these points satisfy (2.4.8) with ←−p replacing p. Putting zi into h, we have

h(z1) = −1.0979, h(z2) = −9.97525.

Since z1 has the larger critical value, we begin at that point. Solving p(z, w) = 0 for w, we have

w(z) =
1− z

5
1
2 + z

11

.

Therefore, g(z) := exp[h(z, w(z))] = 1/|z|2|w(z)|3. Taking derivative of g(z), we find that g(1)(z1) = 0 and

g(2)(z1) 6= 0, which means the order for z1 is 2. Let ε0 = 0.05 satisfying Proposition (2.4.7), and ε1 = 0.025.
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Then, the two segments from the critical point z1 are

[
z1, z1 + ε1

[
g(z1)

g(2)(z1)

]1/2
]

= [1.54535, 1.570]

and [
z1, z1 − ε1

[
g(z1)

g(2)(z1)

]1/2
]

= [1.54535, 1.5207].

For path 1, the endpoint is (z, w) = (1.570, 1.067). For path 2, the endpoint is (z, w) = (1.5207, 1.0903).

From Proposition 2.4.10 and the points from 2.4.12, we have ε = 1.54535 and ε′ = 1.07876. Therefore, path

1 approaches the w-axis and path 2 approaches the z-axis, which means z1 contributes to the asymptotic

and

f̂(2t, 3t) = Ω(1.54535−2t1.07876−3t) = Ω(0.3336t).

The intersecting zeros in this case are

z3 = (0.3531, 1.7466), z4 = (2.8317, 0.5725), (2.4.13)

with

h(z3) = 0.4090, h(z4) = −0.4090.

At first glance, it is tempting to believe z4 is the point that dominates. However, after numerically computing

the rate, it is in fact z1 that dominates.

2.4.4 Discussion and Future Work

From our two examples, we can see that, depending on the polynomial and the direction, the intersecting

zeros may or may not be a point that contribute to the asymptotic. The question naturally becomes under

what condition can we determine if it does? While we have not explore into this question due to the time

constrain, the answer to this question will most likely involve topology and Morse theory and is one that

will be pursued in the future.
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The notion of smooth points and multiple points depend on the variety of V = {p = 0} and
←−
V = {←−p = 0}.

We can further decompose the varieties into when they intersect themselves or each other. Multiple points

only occur in the intersection, and smooth points occur in the other part of the varieties. This is why

intersecting zeros are multiple points, since they are in V ∩
←−
V .
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Chapter 3: D-Variable Results

In this chapter, we will state a three-variable conjecture for the simplest type of stable polynomial, p(z1, z2, z3) =

1 − z1+z2+z3
r , where r > 3, which we hope to be able to build upon in the future. Furthermore, we will

provide a theorem for the asymptotics of the coefficients in d variables analogous to Theorem 2.4.4.

3.1 3-Variable

In [Geronimo and Woerdeman 2004], Theorem 1.1.1 was stated and proved, providing the necessary and

sufficient conditions for the Bernstein-Szegő moment problem in two variables. The question remains open

when the number of variables is 3 or more. The following proposition and conjecture hopes to provide a

starting point to answer the question.

Proposition 3.1.1. Let real number r > 3, and complex numbers cj(r), j ∈ Λ = {0, 1} × {0, 1} × {0, 1} be

given. If there exists a stable polynomial of the form

pr(z1, z2, z3) = 1− z1 + z2 + z3

r

so that its spectral density function fr(z1, z2, z3) = 1/|pr(z1, z2, z3)|2 has Fourier coefficients f̂r(j) = cj(r), j ∈

Λ, then the following conditions are satisfied:

1. c000(r) = r2

r2−3 2F1

[
1/3, 2/3; 1; 27(1−r2)

(3−r2)3

]
, where 2F1 is the hypergeometric function;

2. cj(r) = cσ(j)(r), where σ(j) is a permutation of j;

3. c001(r) = r(c000(r)−1)
3 ;

4. c111(r) = 3c011(r)
r ;

5. f̂r(0, 1,−1) = rc001(r)−c000(r)
2 ; and

6. f̂r(1, 1,−1) = rc011(r)− 2c001(r).
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Notice that the polynomials pr only depend on one parameter, namely r. Thus the coefficients cj(r)

should only depend upon one variable as well.

Also notice that the Fourier coefficient f̂r(j, k, l) are in the form of

f̂r(j, k, l) =
∑
n≥0

∑
∑
ni=n

(
n+ j1 + k1 + l1

n1 + j1, n2 + k1, n3 + l1

)(
n+ j2 + k2 + l2

n1 + j2, n2 + k2, n3 + l2

)
r−2n−|j|−|k|−|l|,

where j = j1 − j2, k = k1 − k2, l = l1 − l2. One way to arrive at these coefficients is using the determinantal

representation

pr(z1, z2, z3) = det

(
I3 −

1

r
1Z

)
,

where I3 is the 3 by 3 identity matrix, 1 is the matrix with all entries equals 1, and Z is the diagonal matrix

with diagonal z1, z2,and z3. Using the permanent expansion formula in [Vere-Jones 1984], we have

1

pr(z1, z2, z3)
=
∑
n≥0

(
n

n1, n2, n3

)
r−nzn1

1 zn2
2 zn3

3 ,
1

pr(z1, z2, z3)
=
∑
n≥0

(
n

n1, n2, n3

)
r−nz−n1

1 z−n2
2 z−n3

3 .

Taking the product, we have the desired Fourier expansion.

Proof. To make the notation less cumbersome, let f̂rj = f̂r(j). Statement 1 follows the definition of hyper-

geometric function:

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where

(q)n =


1 n = 0

(q+n−1)!
(q−1)! n > 0

The hypergeometric function in Statement 1 is equal to

1

1− 3/r2

∞∑
n=0

(3n)!1/r4n(1− 1/r2)n

n!3(1− 3/r2)3n
,

which sum equals the series f̂r000 . Statement 2 is required for p to be a symmetric function. Statement 3, 4,
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5 and 6 can be shown by considering the matrix

T = (f̂rj−k)j,k∈Λ.

Then we have



f̂r0,0,0 f̂r0,0,−1 f̂r0,−1,0 f̂r0,−1,−1 f̂r−1,0,0 f̂r−1,0,−1 f̂r−1,−1,0 f̂r−1,−1,−1

f̂r0,0,1 f̂r0,0,0 f̂r0,−1,1 f̂r0,−1,0 f̂r−1,0,1 f̂r−1,0,0 f̂r−1,−1,1 f̂r−1,−1,0

f̂r0,1,0 f̂r0,1,−1 f̂r0,0,0 f̂r0,0,−1 f̂r−1,1,0 f̂r−1,1,−1 f̂r−1,0,0 f̂r−1,0,−1

f̂r0,1,1 f̂r0,1,0 f̂r0,0,1 f̂r0,0,0 f̂r−1,1,1 f̂r−1,1,0 f̂r−1,0,1 f̂r−1,0,0

f̂r1,0,0 f̂r1,0,−1 f̂r1,−1,0 f̂r1,−1,−1 f̂r0,0,0 f̂r0,0,−1 f̂r0,−1,0 f̂r0,−1,−1

f̂r1,0,1 f̂r1,0,0 f̂r1,−1,1 f̂r1,−1,0 f̂r0,0,1 f̂r0,0,0 f̂r0,−1,1 f̂r0,−1,0

f̂r1,1,0 f̂r1,1,−1 f̂r1,0,0 f̂r1,0,−1 f̂r0,1,0 f̂r0,1,−1 f̂r0,0,0 f̂r0,0,−1

f̂r1,1,1 f̂r1,1,0 f̂r1,0,1 f̂r1,0,0 f̂r0,1,1 f̂r0,1,0 f̂r0,0,1 f̂r0,0,0





1

−1/r

−1/r

0

−1/r

0

0

0



=



1

0

0

0

0

0

0

0



.

If cj(r) = f̂r(j), j ∈ Λ, then cj(r) must satisfy this matrix equation. Therefore, statement 3 follows from the

first row, and statement 4 follows from the last row. Notice that we also get the following two equalities:

f̂r0,1,−1 =
rf̂r001 − f̂r000

2
,

from row 2, 3, and 5, and

f̂r1,1,−1 = rf̂r011 − 2f̂r001

from row 4, 6, or 7.

We will now state the conjecture that will give us the opposite direction.

Conjecture 3.1.2. Let real number r > 3, and complex functions cj(r), j ∈ Λ = {0, 1} × {0, 1} × {0, 1} be
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given. There exists a stable polynomial of the form

pr(z1, z2, z3) = 1− z1 + z2 + z3

r

so that its spectral density function fr(z1, z2, z3) = 1/|pr(z1, z2, z3)|2 has Fourier coefficients f̂r(j) = cj(r), j ∈

Λ, if and only if the following conditions are satisfied:

1. c000(r) = r2

r2−3 2F1

[
1/3, 2/3; 1; 27(1−r2)

(3−r2)3

]
, where 2F1 is the hypergeometric function;

2. cj(r) = cσ(j)(r), where σ(j) is a permutation of j;

3. c001(r) = r(c000(r)−1)
3 ;

4. c111(r) = 3c011(r)
r ;

5. let x = 1
r2 and let c011(r) = h(x) and c000(r) = g(x), then treating x as a variable,

3[x(1− x)(1− 9x)h′(x)+(1− 5x)h(x)− (4x+ 6x2)]

= x(1− x)(1− 9x)g′(x) + (2− 7x+ 9x2)g(x)− 2(1 + x+ 9x2),

where h(0) = 0, h′(0) = 2, g(0) = 1, and g′(0) = 3; and

6. there exists complex functions c0,1,−1(r) = rc001(r)−c000(r)
2 , and c1,1,−1(r) = rc011(r)− 2c001(r).

The only difference between the proposition and the conjecture is statement 5. In the conjecture, we do

not yet know what fr(z1, z2, z3) is, so we need a different equation to relate c000(r) and c011(r).

Proof. The first 4 statements follow from the proposition. For statement 5, we need two lemmas and a

conjecture that can be checked numerically .

Lemma 3.1.3. Let f (n)
jkl =

∑
∑
ni=n

(
n+ j1 + k1 + l1

n1 + j1, n2 + k1, n3 + l1

)(
n+ j2 + k2 + l2

n1 + j2, n2 + k2, n3 + l2

)
. Then we have

f
(n)
1,1,−1 = f

(n+1)
011 − 2

3f
(n+2)
000 .
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Proof. Since f̂r1,1,−1 = rf̂r011 − 2f̂r001, we have that

∑
n≥0

∑
∑
ni=n

(
n+ 2

n1 + 1, n2 + 1, n3

)(
n+ 1

n1, n2, n3 + 1

)
r−2n−3

= r
∑
n≥1

∑
∑
ni=n

(
n+ 2

n1 + 1, n2 + 1, n3

)(
n

n1, n2, n3

)
r−2n−2 − 2r

3

∑
n≥2

∑
∑
ni=n

(
n

n1, n2, n3

)(
n

n1, n2, n3

)
r−2n.

Matching the power of r, we get the desired equality.

Lemma 3.1.4. Using the above notation, we have

(n+ 2)2f
(n+2)
000 − (10n2 + 30n+ 23)f

(n+1)
000 + 9(n+ 1)2f

(n)
000 = 0.

Proof. One method to prove the first recurrence is to use the hypergeometric function in Statement 1 and

realize it satisfies the Heun’s equation (see [Heun 1888])

y′′ +

[
1

x
+

1

x− 1
+

1

z − 1/9

]
y′ +

[
x− 1/3

x(x− 1)(x− 1/9)

]
y = 0,

which is equal to

y′′ +
1− 20x+ 27x2

x(1− x)(1− 9x)
y′ +

9x− 3

x(1− x)(1− 9x)
y = 0

with y =

∞∑
n=0

f
(n)
000r

−2n. Using the fact that f (n)
000 > 0 for all n ≥ 0, we match the power of r and arrive at the

recurrence.

To prove the forward direction of Conjecture 3.1.2, we also need the following two recurrence relations,

which we confirmed numerically upto n = 15.

Conjecture 3.1.5. Using the above notation, we have

1. (n+ 3)(n+ 2)f
(n+1)
011 − (10n2 + 40n+ 36)f

(n)
011 + 9n(n+ 3)f

(n−1)
011 = 0, and

2. n(n+ 3)f
(n)
1,1,−1 − (10n2 + 20n+ 6)f

(n−1)
1,1,−1 + 9n(n+ 1)f

(n−2)
1,1,−1 = 0.
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For statement 5, assuming the conjecture, combining with the above lemma, for n ≥ 1, we have the

equality

3
[
(n+ 3)f

(n+1)
011 − (10 + 15)f

(n)
011 + 9nf

(n−1)
011

]
= (n+ 4)f

(n+2)
000 − (10n+ 17)f

(n+1)
000 + 9(n+ 1)f

(n)
000. (3.1.1)

Since h(x) =

∞∑
n=0

f
(n)
011x

n+1 and g(x) =

∞∑
n=0

f
(n)
000x

n, we need to multiply (3.1.1) by xn+1 and sum it from 1 to

infinity. We then have the equality

∞∑
n=1

3
[
(n+ 3)f

(n+1)
011 − (10n+ 15)f

(n)
011 + 9nf

(n−1)
011

]
xn+1 (3.1.2)

= x

∞∑
n=1

[
(n+ 4)f

(n+2)
000 − (10n+ 17)f

(n+1)
000 + 9(n+ 1)f

(n)
000

]
xn. (3.1.3)

By manipulating the index, we have the following equations:

h(x) =

∞∑
n=0

f
(n)
011x

n+1, h(x) =

∞∑
n=0

f
(n+1)
011 xn+2 + f

(0)
011x,

h′(x) =

∞∑
n=0

(n+ 1)f
(n)
011x

n, h′(x) =

∞∑
n=0

(n+ 2)f
(n+1)
011 xn+1 + f

(0)
011,

xh′(x) =

∞∑
n=0

(n+ 1)f
(n)
011x

n+1, x2h′(x) =

∞∑
n=1

nf
(n−1)
011 xn+1.

Using these 6 equations, (3.1.2) becomes

∞∑
n=1

3
[
(n+ 2)f

(n+1)
011 + f

(n+1)
011 − (10n+ 10)f

(n)
011 − 5f

(n)
011 + 9nf

(n−1)
011

]
xn+1

= 3

[
h′(x)− f (0)

011 − 2f
(1)
011x+

h(x)− f (0)
011x− f

(1)
011x

2

x
− 10(xh′(x)− f (0)

011x)− 5(h(x)− f (0)
011x) + 9x2h′(x)

]

= 3

[
(1− 10x+ 9x2)h′(x) +

(
1

x
− 5

)
h(x)− 2f

(0)
011 − 3f

(1)
011x+ 15f

(0)
011x

]
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Since f (0)
011 = 2 and f (1)

011 = 12, we have, after factoring 1/x,

3

x

[
x(1− 10x+ 9x2)h′(x) + (1− 5x)h(x)− 4x− 36x2 + 30x2

]
=

3

x

[
x(1− 10x+ 9x2)h′(x) + (1− 5x)h(x)− (4x+ 6x2)

]
.

Similarly we have the following for g(x), with f (0)
000 = 1, f

(1)
000 = 3, and f (2)

000 = 15:

g(x) =

∞∑
n=0

f
(n)
000x

n =

∞∑
n=1

f
(n)
000x

n + 1 =

∞∑
n=1

f
(n+1)
000 xn+1 + 1 + 3x =

∞∑
n=1

f
(n+2)
000 xn+2 + 1 + 3x+ 15x2,

g′(x) =

∞∑
n=1

nf
(n)
000x

n−1 =

∞∑
n=1

(n+ 1)f
(n+1)
000 xn + 3 =

∞∑
n=1

(n+ 2)f
(n+2)
000 xn+1 + 3 + 30x.

Using these, (3.1.3) becomes

x

∞∑
n=1

[
(n+ 2)f

(n+2)
000 + 2f

(n+2)
000 − (10n+ 10)f

(n+1)
000 − 7f

(n+1)
000 + 9nf

(n)
000 + 9f

(n)
000

]
xn

= x

[
g′(x)− 3− 30x

x
+ 2

g(x)− 1− 3x− 15x2

x2
−
(

10(g′(x)− 3) + 7
g(x)− 1− 3x

x

)
+ 9xg′(x) + 9(g(x)− 1)

]
= x

[(
1

x
− 10 + 9x

)
g′(x) +

(
2

x2
− 7

x
+ 9

)
g(x)−

(
3 + 30x

x
+

2 + 6x+ 30x2

x2
−
(

30 +
7 + 21x

x

)
+ 9

)]
.

Factoring 1/x2 from each term and simplifying, we have

1

x

[
x(1− 10x+ 9x2)g′(x) + (2− 7x+ 9x2)g(x)− 2(9x2 + x+ 1)

]
.

Combining them, we now have statement 5, which conclude the proof for the forward direction.

For the backward direction, statement 2 gives us symmetry in the variables. Statement 1 gives c000(r)

that statements 3, 4, 5, and 6 used to define the other Fourier functions. If all statemnts are satisfied,

then these values will satisfy the matrix equation in the original proposition and gives the coefficients of

pr(z1, z2, z3).

In the next chapter, we will see how the study of these polynomials led to a combinatorial application of
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spectral density function.

3.2 Asymptotics in d Variables

In Section 2.4.2 we derive Theorem 2.4.13, which gave us a range for the asymptotics of the Fourier coefficients

for directions in the first and third quadrants. However, the method of ascent paths is only applicable to

2 variables. However, we can still state an analog to Theorem 2.4.4. In this section, let z = (z1, . . . , zd),

` = (`1, . . . , `d), n = (n1, . . . , nd), r = (r1, . . . , rd), and z` = z`11 . . . z`dd .

Theorem 3.2.1. Let p(z) =
∑
`

p`z
`, ni 6= 0 be given. Let zi be points that satisfy either (2.4.6) and (2.4.7)

or (2.4.8) for direction r, and rj are either all positive or all negative. Let k be such that h(zk) < 0 and for

all j 6= k, either h(zj) ≥ 0 or h(zj) ≤ h(zk). Then

∣∣∣f̂(tr)
∣∣∣ = O

(∣∣z−rk ∣∣t) .
Proof. The proof is identical to Theorem 2.4.4.

Example 3.2.2. For simplicity, we use x, y, z in place of z1, z2, z3. Let p(x, y, z) = 10 − x − 2y − 3z. If

r = (a, b, c), then the matrix M for (2.4.7) is

M =


x 2y 3z

x(10yz − 2z − 3y) y(10xz − z − 3x) z(10xy − y − 2x)

a b c

 ,

and

det(M) = 20axy2z − 2ay2z + 5axyz − 30axyz2 + 3ayz2 + 10cx2yz + 3cxyz

− 3cx2y − 10bx2yz − 8bxyz + 2bx2z + 30bxyz2 − 20cxy2z − 6bxz2 + 6cxy2.
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Suppose r = (1, 1, 1), then the six points that satisfy (2.4.6) and (2.4.7) are

z1 = (.21552, 3.8022, .726690), z2 = (.14245, 2.7368, 1.461318), z3 = (4.643321, 2.1723, .337359),

and z4, z5, z6 equal 1/z1, 1/z2, 1/z3, respectively. With h(x, y, z) = − ln(|x|)− ln(|y|)− ln(|z|), we have

h(z1) = 0.5184, h(z2) = 0.5626, h(z3) = −1.2246,

h(z4) = −0.5184, h(z5) = −0.5626, h(z6) = 1.2246.

The two points that satisfy (2.4.8) are

z7 = (10/3, 5/3, 10/9), z8 = (3/10, 3/5, 9/10),

with h(z7) = −1.8202, h(z8) = 1.8202. Therefore, according to the theorem,

∣∣∣f̂(t, t, t)
∣∣∣ ≤ O(∣∣∣∣ 1

(5.402)(0.2630)(1.3573)

∣∣∣∣t
)

= O(0.5186t).

Similar to the result in two variables, we have not been able to determine a sharp estimate. For example,

using MATLAB and the 3 variable extension of the algorithm from Section 5 of [Woerdeman et al. 2003],

we found that

f̂(19, 19, 19)

f̂(18, 18, 18)
= 0.1543.
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Chapter 4: Abelian Squares and Their Progenies

While searching for a method to prove the conjecture in Section 3.1, we come across the combinatorial object

abelian squares. This chapter is the result of the joint work with Charles Burnette, Jr., and it is devoted to

the study of abelian squares and offset words and it connections with spectral density function. Due to the

nature of this chapter, it is convenient to use somewhat different notations from previous chapters.

4.1 Introduction

For r = 1, 2, . . . , the rth power sum symmetric polynomial in d variables is

pr,d(x1, . . . , xd) =

d∑
k=1

xrk.

Power sum symmetric polynomials fall within the scope of the theory of symmetric functions and are ex-

posited in various textbooks, for instance, those of [Stanley 1999] and [Macdonald 2015]. Although power sum

symmetric polynomials habitually surface in commutative algebra and representation theory, the approach

adopted here is purely analytic.

In Section 3.1, we studied the stable polynomial p[x]∗1,3(z1, z2, z3) = 1− xp1,3(z1, z2, z3), |x| < 1/3, along

with their spectral density functions Sp[x]∗1,3
. Treating each Sp[x]∗1,3

as a function of x, one can calculate the

Maclaurin series expansions of the Fourier coefficients Ŝp[x]∗1,3
(j, k, l). This approach lead us to the notion of

abelian squares of length 2n over a 3-letter alphabet.

Given a nonempty, finite set of characters Σ, an abelian square over Σ is a string in the free monoid Σ∗

(the set of finite-length strings that can be generated by concatenating arbitrary elements of Σ allowing the

use of the same characters multiple times) of the form ww′ where w ∈ Σ∗ and w′ is a rearrangement of w. Six

examples of English abelian squares are sheesh, intestines, redder, beriberi, reappear, and aa, the last

being both the shortest and alphabetically first abelian square in the English language. The concept of an

abelian square was introduced by Erdős in [Erdős 1961]. Richmond and Shallit expound the combinatorics of
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abelian squares in [Richmond and Shallit 2009]. Callan vividly describes several enumerative interpretations

of the number of abelian squares in [Callan 2008].

It turns out that every Fourier coefficient Ŝp[x]∗r,3
is encoded with combinatorial data. In this chapter,

we exhibit multidimensional generalizations of p[x]∗r,3, which we shall call stabilized power sum symmetric

polynomials, whose spectral density functions are essentially the only L2(Td) functions with Fourier coeffi-

cients that are all generating functions for a class of strings satisfying certain constraints. Multiple properties

of the coefficients of these generating functions, including recurrent and asymptotic behavior, are deduced

afterward. Towards the end of chapter, we show that the rudimentary harmonic analysis underlying our

generalization appends a combinatorial counterpart to Parseval’s equation.

4.1.1 Notational Conventions

Taking a page from measure theory, we present the following decomposition of integers. If a ∈ Z, we define

a+ = max(a, 0) and a− = max(−a, 0). Much like other such decompositions, a = a+−a− and |a| = a+ +a−.

Also, for any two integers a and b, there is exactly one integer c such that a− c+ = b− c−, namely c = a− b.

This follows easily from the fact that a− b = (a− b)+ − (a− b)−.

If α ∈ Zd, then we set

α+ = (α+
1 , . . . , α

+
d ), α− = (α−1 , . . . , α

−
d ), abs(α) = (|α1| , . . . , |αd|)

and if α ∈ Nd0,

|α| =
d∑
k=1

αk, α! =

d∏
k=1

αk!,

(
|α|
α

)
=
|α|!
α!

.

It will also be convenient to have a notion of divisibility for integer vectors. We say that a | α if a | αk for

k = 1, . . . , d. Lastly ‖ • ‖p symbolizes the p-norm.

We shall let [a : b] denote the set of integers between a and b, inclusive. Because the precise lettering of an

alphabet is immaterial for our purposes, we will set Σd = [1 : d] throughout the rest of this document. The

length of a string w is the number of characters in the string and is denoted by |w| . The Parikh vector of a

string w ∈ Σ∗d is given by ρ(w) = (ρ1(w), . . . , ρd(w)) , where ρj(w) denotes the multiplicity of j in w. Clearly
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|w| = ρ1(w) + · · ·+ ρd(w). (Rohit Parikh, the namesake of this signature for strings, first implemented these

vectors in his work on context-free languages in [Parikh 1961].) Lastly, unless stated otherwise, d represents

the number of letters in the alphabet and the length of any given vectors.

4.2 Fourier Analysis of the Spectral Density Functions of Stabilized Power Sum
Symmetric Polynomials

Definition 4.2.1. The rth stabilized power sum symmetric polynomial in d variables is

p[x]∗r,d(z1, . . . , zd) = 1− xpr,d(z1, . . . , zd),

where x is an indeterminate.

In this section, we give a combinatorial interpretation of the Fourier coefficients of Sp[x]∗r,d
and show that

some harmonic analytic aspects of Sp[x]∗r,d
are intertwined with combinatorics on words.

Offset Words

Definition 4.2.2. For (n, ξ) ∈ N0 × Zd, an nth order word offset by ξ is a string in Σ∗d of length 2n+ ‖ξ‖1

of the form ww′ where w,w′ ∈ Σ∗d and ρ(w)− ρ(w′) = ξ. We denote the set of nth order words offset by ξ by

W(n,ξ), the set of all words offset by ξ (regardless of order) by Wξ, and set w(n,ξ) =
∣∣W(n,ξ)

∣∣ .
Intuitively ξ is a measurement of how removed ww′ is from being an abelian square. Evidently an nth

order word offset by 0 is an abelian square of length 2n since a string ww′ is an abelian square if and only

if ρ(w) = ρ(w′).

Example 4.2.3. Consider the alphabet Σ3 = {1, 2, 3}. Let w = 13 and w′ = 12. Then ww′ = 1312 is a first

order word offset by (0,−1, 1). The string 1312 is also

• a zeroth order word offset by (−2,−1,−1) with w = ε, the empty string, and w′ = 1312,

• a first order word offset by (0,−1,−1) with w = 1 and w′ = 312,

• a zeroth order word offset by (2,−1, 1) with w = 131 and w′ = 2,
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• a zeroth order word offset by (2, 1, 1) with w = 1312 and w′ = ε.

Proposition 4.2.4. Every string w ∈ Σ∗d is in |w|+ 1 of the sets W(n,ξ).

Proof. Suppose |w| = N and let k ∈ [0 : N ]. Write w as the concatenation of two strings wk and w′N−k such

that |wk| = k and
∣∣w′N−k∣∣ = N − k. In setting ξ = ρ(wk)− ρ(w′N−k), we note that N −‖ξ‖1 is even, because

N − ‖ξ‖1 = N −
d∑
j=1

∣∣ρj(wk)− ρj(w′N−k)
∣∣

≡ N −
d∑
j=1

(
ρj(wk)− ρj(w′N−k)

)
(mod 2) = 2

d∑
j=1

ρj(w
′
N−k) (mod 2).

Therefore w ∈ W(n,ξ) with ξ = (ρ1(wk)− ρ1(w′N−k), . . . , ρd(wk)− ρd(w′N−k)) and n = 1
2 (N − ‖ξ‖1).

Except for the empty string, which is solely an abelian square, every string in Σ∗d can be classified as an

offset word, in exactly |w| + 1 way. This may seem to undermine the utility of Definition 4.2.2, but offset

words are a natural generalization of abelian squares in the following sense: the generating functions for

w(n,ξ) are the Fourier coefficients of one, and essentially only one, function in L2(Td). We will demonstrate

this later in the section. First, we have a theorem that gives a formula for w(n,ξ).

Theorem 4.2.5.

w(n,ξ) =
∑
ν∈Nd

0 ,
|ν|=n

(
|ν + ξ+|
ν + ξ+

)(
|ν + ξ−|
ν + ξ−

)
. (4.2.1)

Proof. Set ν(ww′) := ρ(w)−ξ+ for a string ww′ ∈ W(n,ξ). Since ρ(w)−ρ(w′) = ξ, we must have ρ(w)−ξ+ =

ρ(w′)− ξ−. Observe that

d∑
j=1

νj(ww
′) =

1

2

d∑
j=1

[(ρj(w)− ξ+
j )− (ρj(w

′)− ξ−j )] =
1

2

d∑
j=1

[ρj(ww
′)− |ξj |] = n.

This together with the fact that ρ(w) = ν(ww′) + ξ+ and ρ(w′) = ν(ww′) + ξ− means that w(n,ξ) is the

number of ways to choose the Parikh vectors of w and w′ so that ρ(w) and ρ(w′) are weak compositions of

n+ |ξ+| and n+ |ξ−| , respectively, with ρ(w)− ξ+ = ρ(w′)− ξ−.
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Fourier Coefficients as Generating Functions

We now shift our focus to the polynomial p[x]∗1,d(z1, . . . , zd), which is stable precisely when |x| < 1/d. Under

the additional assumptions that x ∈ R and (z1, . . . , zd) ∈ Td, we can express (p[x]∗1,d)
−1 and its conjugate as

geometric sums:

1

p[x]∗1,d(z1, . . . , zd)
=

∞∑
n=0

[xp1,d(z1, . . . , zd)]
n, (4.2.2)

1

p[x]∗1,d(z1, . . . , zd)
=

∞∑
n=0

[xp1,d(z1, . . . , zd)]
n. (4.2.3)

Both series in (4.2.2) and (4.2.3) converge absolutely on the assumed domain. Thus, according to Mertens’

theorem on the convergence of Cauchy products of series, the restriction of the spectral density function

Sp[x]∗1,d
to Td equals

1∣∣∣p[x]∗1,d(z1, . . . , zd)
∣∣∣2 =

∞∑
n=0

[
n∑
k=0

(p1,d(z1, . . . , zd))
k

(p1,d(z1, . . . , zd))
n−k

]
xn (4.2.4)

for |x| < 1/d. Furthermore, since Sp[x]∗1,d

∣∣∣
Td

can be presented as a power series in each variable, it converges

uniformly on every compact subset of (−1/d, 1/d)× Td. (Of course, expressing Sp[x]∗1,d

∣∣∣
Td

as a power series

in the zj requires rearrangement of the terms. This is justified since (4.2.4) holds on all of (−1/d, 1/d)×Td,

thus rendering that series absolutely convergent.)

We now state the theorem describing the ordinary generating function for w(n,ξ).

Theorem 4.2.6. The ordinary generating function for w(n,ξ), counted according to the order n, is

Wξ(x) =
1

(2π)dx
1
2‖ξ‖1

̂Sp[√x]∗1,d
(ξ) (4.2.5)

and has a radius of convergence of 1/d2.
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Proof. To prove the theorem, we need to compute the Fourier coefficients of Sp[x]∗1,d
:

Ŝp[x]∗1,d
(ξ) =

1

(2π)d

∫
[0,2π]d

e−iξ
TθSp[x]∗1,d

(eiθ1 , . . . , eiθd) dθ. (4.2.6)

Here ξT is the transpose of ξ, θ = (θ1, . . . , θd), and the integral is relative to the completion of the d-fold

product of the Lebesgue measure on R. By (4.2.4) and the multinomial theorem, Ŝp[x]∗1,d
(ξ) can be written

as

1

(2π)d

∞∑
n=0

 ∫
[0,2π]d

e−iξ
Tθ

n∑
k=0

(
(p1,d(e

iθ1 , . . . , eiθd)
)k(

(p1,d(e
−iθ1 , . . . , e−iθd)

)n−k
dθ

xn

=
1

(2π)d

∞∑
n=0


∫

[0,2π]d

n∑
k=0

∑
κ,κ′∈Nd

0 ,
|κ|=k,
|κ′|=n−k

(
|κ|
κ

)(
|κ′|
κ′

) d∏
j=1

ei(κ−κ
′−ξ)Tθ

 dθ

x
n. (4.2.7)

where the uniform convergence of Sp[x]∗1,d
allows us to interchange the summation and the multiple integral

with impunity. Fubini’s theorem also grants us treatment of these Fourier coefficients as iterated integrals.

So since
∫ 2π

0
eiaθ dθ = 2π when a = 0 and 0 if a ∈ Z − {0}, the only terms in the integrand of (4.2.7) that

contribute to the sum are those for which κ − κ′ − ξ = 0, which implies that κ − ξ+ = κ′ − ξ−. Hence, we

can simplify the power series for Ŝp[x]∗1,d
(ξ) to

∞∑
n=0

 ∑
ν∈Nd

0 ,
|ν|=n

(
|ν + ξ+|
ν + ξ+

)(
|ν + ξ−|
ν + ξ−

)x2n+‖ξ‖1 .

Replace x with
√
x in the above power series and then normalize it, we have the desire generating function.

The Fourier coefficients of Sp[x]∗r,d
can be calculated in the same manner by noticing that p[x]∗r,d(z1, . . . , zd) =
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p[x]∗1,d(z
r
1 , . . . , z

r
d). Hence

Ŝp[x]∗r,d
(ξ) =

1

(2π)d

∫
[0,2π]d

e−iξ
TθSp[x]∗1,d

(eirθ1 , . . . , eirθd) dθ

=
1

(2π)d

∞∑
n=0


∫

[0,2π]d

n∑
k=0

∑
κ,κ′∈Nd

0 ,
|κ|=k,
|κ′|=n−k

(
|κ|
κ

)(
|κ′|
κ′

) d∏
j=1

ei(rκ−rκ
′−ξ)Tθ

dθ

x
n. (4.2.8)

Like before, the only terms in the integrand of (4.2.8) that contribute to the sum are those for which

rκ− rκ′− ξ = 0. So Ŝp[x]∗r,d
(ξ) = 0 unless r | ξ, in which case we then require κ−κ′− r−1ξ = 0. The analysis

now reduces to that of Ŝp[x]∗1,d
(r−1ξ).

Corollary 4.2.7. For ξ ∈ Zd,

Ŝp[x]∗r,d
(ξ) = Ŝp[x]∗1,d

(r−1ξ)1r | ξ, (4.2.9)

where

1r | ξ =


1 if r | ξ,

0 otherwise.

The next theorem shows the spectral density function Sp[x]∗1,d
is essentially the only L2(Td) function with

Fourier coefficients that are all generating functions for Wξ(x).

Theorem 4.2.8. The spectral density function Sp[√x]∗1,d
, with |x| < 1/d2, is, up to sets of measure zero, the

only parametrized L2(Td) function f(· ;x), x ∈ R, that satisfies

x
1
2‖ξ‖1Wξ(x) = f̂(· ;x)(ξ)

for all x ∈ (−1/d2, 1/d2).

Proof. Sp[√x]∗1,d
∈ L2(Td) due to the stability of p[

√
x]∗1,d for |x| < 1/d2. Parseval’s equation thus dictates
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that ∑
ξ∈Zd

x‖ξ‖1 [Wξ(x)]2 =
1

(2π)d

∫
[0,2π]d

∣∣∣Sp[√x]∗1,d
(eiθ1 , . . . , eiθd)

∣∣∣2 dθ <∞, (4.2.10)

for all x ∈ (−1/d2, 1/d2). Uniqueness now follows from Plancherel’s theorem.

4.3 Basic Properties of w(n,ξ)

We begin this section by deriving a multiple integral representation of w(n,ξ).

Corollary 4.3.1.

w(n,ξ) =
1

(2π)d

∫
[0,2π]d

e−iξ
Tθ
(
p1,d(e

iθ1 , . . . , eiθd)
)|ξ+| (4.3.1)

×
(
p1,d(e

−iθ1 , . . . , e−iθd)
)|ξ−|∣∣p1,d(e

iθ1 , . . . , eiθd)
∣∣2n dθ.

Proof. Per the discussion preceding Theorem 4.2.6,

w(n,ξ) = [x2n+‖ξ‖1 ]Ŝp[x]∗1,d
(ξ). (4.3.2)

Now work backwards from (4.2.7). Bearing in mind that the k = n+ |ξ+| term of the sum on the left-hand

side of (4.2.7) is the only one that contributes to the integral, we see that

w(n,ξ) =
1

(2π)d

∫
[0,2π]d

e−iξ
Tθ
(
p1,d(e

iθ1 , . . . , eiθd)
)n+|ξ+|(

p1,d(e
−iθ1 , . . . , e−iθd)

)n+|ξ−|
dθ.

Formula (4.3.1) now follows since p1,d(e
−iθ1 , . . . , e−iθd) = p1,d(eiθ1 , . . . , eiθd).

We naturally wish to find a closed-form expression for w(n,ξ). Unfortunately, the sum in (4.2.1) and the

integral in (4.3.1) look wholly intractable. At the time of writing, w(n,0) has defied evaluation for nearly

three decades. Richards and Cambanis in [Cambanis and Richards 1987] proposed the problem of calculating

what they call S(n, k) =
∑

[ k!
k1!k2!···kn! ]

2, where the sum is over all nonnegative integers k1, . . . , kn, such that

k1 + · · · + kn = k. Andrews in [Andrews et al. 1988] remarked that the presence of large primes in S(n, k)
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makes obtaining a closed form finite product representation of S(n, k) implausible. These same heuristic

barriers seem to persist in enumerating the nth order words offset by ξ. There is, however, a recursive trait

attributable to the w(n,ξ) that we can glean.

Theorem 4.3.2. The number of nth order words offset by ξ satisfies the recurrence

w(n,ξ) =

n∑
j=0

(
n+ |ξ+|

j + ξ+
s1 + · · ·+ ξ+

st

)(
n+ |ξ−|

j + ξ−s1 + · · ·+ ξ−st

)
(4.3.3)

× w(j,(ξs1 ,...,ξst ))w(n−j,(ξ1,...,ξ̂s1 ,...,ξ̂st ,...,ξd))
, for d ≥ 2

where t ∈ [1 : d − 1], s1 < · · · < st are t natural numbers selected from Σd, and ξ̂s1 , . . . , ξ̂st means that the

indices ξs1 , . . . , ξst are removed from the list ξ1, . . . , ξd.

Proof. Partition Σd into two disjoint subsets S and T containing t and d − t characters, respectively. Let

s1 < · · · < st be the elements of S. We now count the number of offset words ww′ by conditioning on

the value of ρs1(w) + · · · + ρst(w), keeping in mind that w must have at least ξ+
s1 + · · · + ξ+

st charac-

ters from S and at least ξ+
1 + · · · + ξ+

d − (ξ+
s1 + · · · + ξ+

st) characters from T, and that w′ must adhere

to the same requirements except with the ξ+
s replaced by ξ−s . So ρs1(w) + · · · + ρst(w) can range from

ξ+
s1 + · · ·+ξ+

st to n+ξ+
s1 + · · ·+ξ+

st , inclusive. Choose which j+ξ+
s1 + · · ·+ξ+

st of the characters in w and which

j+ξ−s1 +· · ·+ξ−st of the characters in w
′ come from S. Once the spots designated for S have been selected, they

can be filled in w(j,(ξs1 ,...,ξst )) ways. The remaining spots can be filled in w
(n−j,(ξ1,...,ξ̂s1 ,...,ξ̂st ,...,ξd))

. Sum-

ming
(
n+ ξ+

1 + · · ·+ ξ+
d

j + ξ+
s1 + · · ·+ ξ+

st

)(
n+ ξ−1 + · · ·+ ξ−d
j + ξ−s1 + · · ·+ ξ−st

)
w(j,(ξs1 ,...,ξst ))w(n−j,(ξ1,...,ξ̂s1 ,...,ξ̂st ,...,ξd))

over j completes the

argument.

We now prove a divisibility property of w(n,ξ) that generalizes a fact about abelian squares conjectured

by Andrews and proven by Kolitsch in [Andrews et al. 1988].

Lemma 4.3.3.

w(n,(m,...,m)) ≡ 0 (mod d), for n and m not both 0.

Proof. Set µ = (m, . . . ,m). Let the cyclic group Zd act on the set C of weak compositions of n into exactly d
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parts by cyclically permuting the parts of a composition. Pick a representative πO from each orbit O ∈ C/Zd.

Then

w(n,µ) =
∑

O∈C/Zd

|O|
(∣∣πO + µ+

∣∣
πO + µ+

)(∣∣πO + µ−
∣∣

πO + µ−

)
(4.3.4)

=
∑

O∈C/Zd

|O|
(∣∣πO∣∣
πO

)(∣∣πO + abs(µ)
∣∣

πO + abs(µ)

)

since one of m+ and m− is 0 while the other is |m| .

Now let O ∈ C/Zd be arbitrary. By the orbit-stabilizer theorem, together with Lagrange’s theorem, the

size of the orbits divide d, and so

πO = ( πO1 , . . . , π
O
|O|︸ ︷︷ ︸

written d/|O|times

).

Since πO1 + |m| , . . . , πO|O| + |m| are not all 0, their greatest common divisor is nonzero. As a result,

(∣∣πO + abs(µ)
∣∣

πO + abs(µ)

)
=

(
(d/ |O|)(πO1 + · · ·+ πO|O| + |O| |m|)

πO1 + |m| , . . . , πO|O| + |m|︸ ︷︷ ︸
written d/|O| times

)
(4.3.5)

≡ 0

(
mod

(d/ |O|)(πO1 + · · ·+ πO|O| + |O| |m|)
gcd(πO1 + |m| , . . . , πO|O| + |m|)

)
,

in which we have applied Theorem 1 in [Gould 1974]. Yet gcd(πO1 + |m| , . . . , πO|O| + |m|) divides πO1 + · · ·+

πO|O| + |O| |m| so that
(d/ |O|)(πO1 + · · ·+ πO|O| + |O| |m|)

gcd(πO1 + |m| , · · · , πO|O| + |m|)
≡ 0 (mod d/ |O|). (4.3.6)

Therefore (∣∣πO + abs(µ)
∣∣

πO + abs(µ)

)
≡ 0 (mod d/ |O|), (4.3.7)

and so

|O|
(∣∣πO∣∣
πO

)(∣∣πO + abs(µ)
∣∣

πO + abs(µ)

)
≡ 0 (mod d), (4.3.8)

which indicates that w(n,µ) ≡ 0 (mod d).
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Theorem 4.3.4. Let d ≥ 2 and ξ ∈ Zd −{0}, and for each a ∈ Z, let oa(ξ) be the number of occurrences of

a in ξ. Then

w(n,ξ) ≡ 0

(
mod lcm(1, 2, . . . ,max

a6=0
oa(ξ))

)
. (4.3.9)

Proof. Note that maxa6=0 oa(ξ) ≥ 1. By letting a0 be a nonzero integer with the maximal number of occur-

rences, we can apply Theorem 4.3.2 to get

w(n,ξ) =

n∑
j=0

(
n+ |ξ+|
j + ta+

0

)(
n+ |ξ−|
j + ta−0

)
w(j,(a0,...,a0))w(n−j,(ξ1,...,â0,...,â0,...,ξd)) (4.3.10)

for each t ∈ [1 : maxa6=0 oa(ξ)]. It follows from Lemma 4.3.3 that every summand is divisible by t, as

desired.

4.4 Asymptotics

This section considers the asymptotic behavior of w(n,ξ), first as n→∞ with ξ and d fixed, then as ‖ξ‖1 →∞

in a fixed direction in Zd with n and d fixed, and then finally as the dimension d→∞ with n fixed and the

components of ξ fixed and all equal.

Coefficient Asymptotics of Wξ

Recall that w(n,ξ) is defined in Definition 4.2.2. We then have the following asymptotic result when n→∞.

Theorem 4.4.1.

w(n,ξ) ∼ d2n+d/2+‖ξ‖1(4πn)(1−d)/2 (4.4.1)

as n→∞ with ξ and d fixed.

To prove this result, we need to extract the coefficient asymptotics of Wξ by using Laplace’s method on

(4.2.1). Such a summation is well suited for the following version of Laplace’s method for sums over lattice

point translates as described in [Greenhill et al. 2010].

Theorem 4.4.2 (Greenhill, Janson, Ruciński). Suppose the following:
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(i) L ⊂ RN is a lattice with rank r ≤ N.

(ii) V ⊂ RN is the r-dimensional subspace spanned by L.

(iii) W = V + w is an affine subspace parallel to V for some w ∈ RN .

(iv) K ⊂ RN is a compact convex set with nonempty interior K◦.

(v) φ : K → R is a continuous function and the restriction of φ to K ∩W has a unique maximum at some

point x0 ∈ K◦ ∩W.

(vi) φ is twice continuously differentiable in a neighborhood of x0 and Hφ(x0) is its Hessian at x0.

(vii) ψ : K1 → R is a continuous function on some neighborhood K1 ⊂ K of x0 with ψ(x0) > 0.

(viii) For each positive integer n there is a vector `n ∈ RN with `n/n ∈W.

(ix) For each positive integer n there is a positive real number bn and a function an : (L + `n) ∩ nK → R

such that, as n→∞,

an(`) = O
(
bne

nφ(`/n)+o(n)
)
, ` ∈ (L+ `n) ∩ nK,

and

an(`) = bn(φ(`/n) + o(1)) enπ(`/n), ` ∈ (L+ `n) ∩ nK1,
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uniformly for ` in the indicated sets.

Then, regarding −Hφ as a bilinear form on V and provided det(−Hφ|V
)
6= 0, as n→∞,

∑
`∈(L+`n)∩nK

an(`) ∼ (2π)r/2ψ(x0)

det(L)
√

det (−Hφ|V (x0)
)bnnr/2enφ(x0),

where det(L) is the square root of the discriminant of L.

Proof for Theorem 4.4.1. Write (n1, n2, . . . , nd) as (n1−n, n2, . . . , nd)+n(1, 0, . . . , 0) so that if (n1, . . . , nd) ∈

Zd and n1 + · · ·+ nd = n, then (n1 − n, n2, . . . , nd) is an integer vector whose components sum to 0. Thus,

we let L be the root lattice Ad−1, V be the linear span of Ad−1, w = (1, 0, . . . , 0), W = V +w, and `n = nw.

Letting K be the unit hypercube [0, 1]d, we have

w(n,ξ) = (n+
∣∣ξ+
∣∣)!(n+

∣∣ξ−∣∣)! ∑
`∈(Ad−1+nw)∩nK

an(`) (4.4.2)

where

an(`) =

d∏
j=1

1

`j !(`j + |ξj |)!
. (4.4.3)

Let xj = `j/n for all j ∈ [1 : d]. Applying Stirling’s approximation in the form

log(n!) = n log n− n+
1

2
log(max{n, 1}) +

1

2
log 2π +O

(
1

n+ 1

)
, for n ≥ 0 (4.4.4)
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we obtain, uniformly for ` ∈ (Ad−1 + nw) ∩ nK with n sufficiently large,

log(an(`)) = −
d∑
j=1

(log(`j !) + log((`j + |ξj |)!))

= −
d∑
j=1

((2`j + |ξj |+ 1) log n− (2`j + |ξj |) + log 2π)

− n
d∑
j=1

(xj log xj + (xj + |ξj | /n) log(xj + |ξj | /n))

− 1

2

d∑
j=1

(log(max{xj , 1/n}) + log(max{xj + |ξj | /n, 1/n}))

−
d∑
j=1

(
O

(
1

`j + 1

)
+O

(
1

`j + |ξj |+ 1

))

= −(2n+ ‖ξ‖1 + d) log n+ 2n+ ‖ξ‖1 − d log 2π

− n
∑

j, xj 6=0

(
xj log xj + (xj + |ξj | /n)(log xj + |ξj | /`j −O(ξ2

j /`
2
j ))
)

− n
∑

j, xj=0

(xj log xj + (|ξj | /n) log(|ξj | /n))−
∑

j, xj=ξj=0

log(1/n)

− 1

2

∑
j, xj=0,ξj 6=0

(2 log(1/n) + log |ξj |)−
1

2

∑
j, xj 6=0

(2 log xj +O(|ξj | /`j))

−
d∑
j=1

(
O

(
1

`j + 1

)
+O

(
1

`j + |ξj |+ 1

))

= −(2n+ ‖ξ‖1 + d) log n+ 2n− d log 2π

+
∑

j, xj=0

(
|ξj | − |ξj | log |ξj | −

1

2
(log |ξj |)1ξj 6=0

)
− n

d∑
j=1

2xj log xj

−
d∑
j=1

(log(max{xj , 1/n}) + |ξj | log(max{xj , 1/n}))

−
d∑
j=1

(
O

(
1

`j + 1

)
+O

(
1

`j + |ξj |+ 1

))
+
∑

j, xj 6=0

(
O

(
1

`j

)
+O

(
1

`2j

))
.
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We can therefore write

an(`) = bnψ(`/n) exp

nφ(`/n) +
∑

j, xj=0

(
|ξj | −

(
|ξj |+

1

2
1ξj 6=0

)
log |ξj |

)
×
(

1 +O

(
1

minj `j + 1

)
+O

(
1

minj(`j + |ξj |) + 1

))
,

where, for x ∈ Rd,

bn =
e2n

(2π)dn2n+‖ξ‖1+d
, ψ(x) =

d∏
j=1

1

x
|ξj |+1
j

, φ(x) = −
d∑
j=1

2xj log xj ,

unless if some xj is 0, in which case we replace it by 1/n in the formula for ψ. This indicates that an(`) =

O(bne
nφ(`/n)+o(n)) for ` ∈ (Ad−1 + nw) ∩ nK. On K◦,

∑
j, xj=0

(
|ξj | −

(
|ξj |+

1

2
1ξj 6=0

))
= 0

and 1
min `j+1 ,

1
min(`j+|ξj |)+1 → 0 as n→∞ so that an(`) = bn(ψ(`/n)+o(1))enφ(`/n) for ` ∈ (Ad−1+nw)∩nK◦.

Also, observe that ψ is continuous and strictly positive on K◦ and therefore conditions (vii) and (ix) of

Theorem 4.4.2 are satisfied, provided that φ|K∩W has a unique maximum located in K◦ ∩W.

By Jensen’s inequality,

φ(x) = 2

d∑
j=1

xj log

(
1

xj

)
≤ 2 log d, (4.4.5)

for all x ∈ K ∩W = {x ∈ K : x1 + · · · + xd = 1}. Since inequality holds if and only if x1 = x2 = · · · = xd,

we see that φK∩W attains its maximum value of 2 log d at the point x0 = (1/d, . . . , 1/d) only. Finally, the

Hessian Hφ(x) is diagonal with entries −2/xj . Hence Hφ(x0) = −2dId, where Id is the d×d identity matrix.

All the assumptions of Theorem 4.4.2 have now been verified.

It is well known that Ad−1 has rank d − 1 and discriminant d, so all that remains is to calculate
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det (−Hφ|V (x0)
)
. Let {ek}d−1

k=1 be a basis for V. Then

det (−Hφ|V (x0)
)

=
det([eTi (2dId)ej ]

d−1
i,j=1)

det([eTi ej ]
d−1
i,j=1)

= (2d)d−1. (4.4.6)

Hence

∑
`∈(Ad−1+nw)∩nK

an(`) ∼ (2π)(d−1)/2dd+‖ξ‖1

d1/2(2d)(d−1)/2

e2n

(2π)dn2n+‖ξ‖1+d
n(d−1)/2e2n log d

=
d2n+d/2+‖ξ‖1e2n

2dπ(d+1)/2n2n+‖ξ‖1+(d+1)/2

and thus

w(n,ξ) ∼
√

2π(n+ |ξ+|)
(
n+ |ξ+|

e

)n+|ξ+|
×
√

2π(n+ |ξ−|)
(
n+ |ξ−|

e

)n+|ξ−|

× d2n+d/2+‖ξ‖1e2n

2dπ(d+1)/2n2n+‖ξ‖1+(d+1)/2
. (4.4.7)

Simplification of (4.4.7) reveals the desired result.

Stationary Phase Approximation of w(n,ξ)

We now seek a leading order estimate of w(n,ξ) as ‖ξ‖1 → ∞ in a fixed direction in Zd with n fixed. To

accomplish this, we will work with

w(n,λξ) =
1

(2π)d

∫
[−π,π]d

e−iλξ
Tθ
(
p1,d(e

iθ1 , . . . , eiθd)
)λ|ξ+| (4.4.8)

×
(
p1,d(e

−iθ1 , . . . , e−iθd)
)λ|ξ−|∣∣p1,d(e

iθ1 , . . . , eiθd)
∣∣2n dθ.

as the positive real parameter λ tends to∞. Such an oscillatory integral is amenable to the following variation

of stationary phase method described in [Pemantle and Wilson 2010].

Theorem 4.4.3 (Pemantle, Wilson). Let A and ϕ be complex-valued analytic functions on a compact neigh-

borhood N of the origin Rd and suppose that the real part of ϕ is nonnegative, vanishing only at the origin.
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Suppose that the Hessian matrix Hϕ of ϕ at the origin is nonsingular. Denoting I(λ) :=
∫
N A(x)e−λϕ(x) dx,

there is an asymptotic expansion

I(λ) ∼
∑
`≥0

c`λ
−d/2−`

where

c0 = A(0)
(2π)−d/2√
det(Hϕ(0))

and the choice of sign is defined by taking the product of the principal square roots of the eigenvalues of

Hϕ(0).

We also have the following corollary.

Corollary 4.4.4. Let A be a real-valued continuous function and ϕ a complex-valued analytic function on a

compact neighborhood N of the origin Rd and suppose that A(0) 6= 0 and that the real part of ϕ is nonnegative,

vanishing only at the origin. Suppose that the Hessian matrix Hϕ of ϕ at the origin is nonsingular. Denoting

I(λ) :=
∫
N A(x)e−λϕ(x) dx,

I(λ) = A(0)
(2πλ)−d/2√
det(Hϕ(0))

(1 + o(1))

as λ→∞. The choice of sign of the square root is defined by taking the product of the principal square roots

of the eigenvalues of Hϕ(0).

Proof. By the Stone-Weierstrass Theorem, there exists a sequence {Pn}∞n=1 of polynomials in R[x1, . . . , xd]

that converges uniformly to A over N . Now for each n ∈ N, define

In(λ) :=

∫
N

Pn(x)e−λϕ(x) dx.

Then for every λ ∈ [0,∞),

|In(λ)− I(λ)| ≤
∫
N

∣∣∣(Pn(x)−A(x))e−λϕ(x)
∣∣∣ dx ≤ sup

x∈N
|Pn(x)−A(x)|

∫
N

dx→ 0
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as n→∞. Therefore In converges uniformly to I. Since each Pn is analytic, Theorem 4.4.3 tells us that

In(λ) = Pn(0)
(2πλ)−d/2√
det(Hϕ(0))

(1 + o(1))

as λ→∞. We now use the Moore-Osgood Theorem (See Theorem 7.11 in [Rudin 1976]) to conclude that

lim
λ→∞

I(λ)
A(0)(2πλ)−d/2√

det(Hϕ(0))

= lim
λ→∞

lim
n→∞

In(λ)
Pn(0)(2πλ)−d/2√

det(Hϕ(0))

= lim
n→∞

lim
λ→∞

In(λ)
Pn(0)(2πλ)−d/2√

det(Hϕ(0))

= 1,

as required.

Corollary 4.4.4 is essential to the main result of this section.

Theorem 4.4.5.

w(n,λξ) =
(2π)1−3d/2√
‖ξ‖d1(d+ 1)

dλ‖ξ‖1+2n+d/2+1λ−d/2(1 + o(1)) (4.4.9)

as λ→∞ with ξ and n fixed.

Proof. First we invoke the change of variables given by the function fd : Rd → Rd with components

θj = −τj−1 + τj + δ, for 1 ≤ j ≤ d

where we have introduced the placeholders τ0 ≡ τd ≡ 0 in order to avoid messy casework later. (One may

envision this as a transformation from the Cartesian coordinate system to a sort-of “signed distance from

Ad−1” coordinate system where, given a point θ0 ∈ Rd, −δ gives the value of t for which the hyperplane

θ1 + · · ·+ θd = 0 intersects with the normal line `(t) = θ0 + t(1, . . . , 1) and (τ1, . . . , τd−1) are the coordinates
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of this intersection point relative to the standard basis of Ad−1.) The Jacobian matrix of fd is

Jfd(τ1, . . . , τd−1, δ) =



∂θ1
∂τ1

∂θ1
∂τ2

· · · ∂θ1
∂τd−1

∂θ1
∂δ

∂θ2
∂τ1

∂θ2
∂τ2

· · · ∂θ2
∂τd−1

∂θ2
∂δ

∂θ3
∂τ1

∂θ3
∂τ2

· · · ∂θ3
∂ψd−1

∂θ3
∂δ

...
...

. . .
...

...

∂θd
∂τ1

∂θd
∂τ2

· · · ∂θd
∂τd−1

∂θd
∂δ


=



1 0 · · · 0 1

−1 1
. . . 0 1

0 −1
. . . 0 1

...
...

. . . . . .
...

0 0 · · · −1 1


,

a d×d matrix with 1s on the main diagonal, 1s in the last column, −1s on the subdiagonal, and 0s everywhere

else.

We use induction to show that the Jacobian determinant is equal to d. For the base case d = 1, f1(θ1) = δ

which trivially has a Jacobian determinant of 1. Now assume the induction hypothesis holds for some integer

k, that is, det(Jfk) = k. Laplace expansion along the first row of Jfk+1
yields

det(Jfk+1
) = det(Jfk) + (−1)k+2 det(J−1,k)

where J−1,k is the k × k Jordan block with eigenvalue −1. We thus have

det(Jfk+1
) =︸︷︷︸

ind. hyp.

k + (−1)k+2(−1)k = k + 1.

Since the Jacobian determinant is a nonzero constant, fd is invertible and f−1
d is differentiable. The

transformation produces the following integral representation:

w(n,λξ) =
d

(2π)d

∫
f−1
d ([−π,π]d)

e−iλξ
Tf−1

d (θ)
(
p1,d(e

i(−τ0+τ1+δ), . . . , ei(−τd−1+τdδ))
)λ|ξ+|

×
(
p1,d(e

−i(−τ0+τ1+δ), . . . , e−i(−τd−1+τd+δ))
)λ|ξ−|

×
∣∣∣p1,d(e

i(−τ0+τ1+δ), . . . , ei(−τd−1+τd+δ))
∣∣∣2ndδdτ1 · · · dτd−1.
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Note eiδ and e−iδ can be factored out of

(
p1,d(e

i(−τ0+τ1+δ), . . . , ei(−τd−1+τd+δ)
)λ|ξ+|

and (
p1,d(e

−i(−τ0+τ1+δ), . . . , e−i(−τd−1+τd+δ))
)λ|ξ−|

,

respectively, to get

w(n,λξ) =
d

(2π)d

∫
f−1
d ([−π,π]d)

e−iλξ
Tf−1

d (θ)eiδλ|ξ
+|
(
p1,d(e

i(−τ0+τ1), . . . , ei(−τd−1+τd))
)λ|ξ+|

× e−iδλ|ξ
−|
(
p1,d(e

−i(−τ0+τ1), . . . , e−i(−τd−1+τd))
)λ|ξ−|

×
∣∣∣p1,d(e

i(−τ0+τ1), . . . , ei(−τd−1+τd))
∣∣∣2ndδdτ1 · · · dτd−1.

Yet

e−iλξ
Tf−1

d (θ) = e−iλ(ξ1(−τ0+τ1+δ)+···+ξd(−τd−1+τd+δ))

= e−iλ(ξ1(−τ0+τ1)+···+ξd(−τd−1+τd))e−iλδ(ξ1+···+ξd)

and

eiδλ|ξ
+|e−iδλ|ξ

−| = eiδλ(ξ1+···+ξd)
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so that every instance of δ in the integrand cancels out, thus yielding

w(n,λξ) =
d

(2π)d

∫
f−1
d ([−π,π]d)

e−iλ(ξ1(−τ0+τ1)+···+ξd(−τd−1+τd))

×
(
p1,d(e

i(−τ0+τ1), . . . , ei(−τd−1+τd))
)λ|ξ+|

×
(
p1,d(e

−i(−τ0+τ1), . . . , e−i(−τd−1+τd))
)λ|ξ−|

×
∣∣∣p1,d(e

i(−τ0+τ1), . . . , ei(−τd−1+τd))
∣∣∣2ndδdτ1 · · · dτd−1.

Integrate with respect to δ first to get

w(n,λξ) =
d

(2π)d

∫
N

(2π +m(τ)−M(τ))e−iλ(ξ1(−τ0+τ1)+···+ξd(−τd−1+τd))

×
(
p1,d(e

i(−τ0+τ1), . . . , ei(−τd−1+τd))
)λ|ξ+|

×
(
p1,d(e

−i(−τ0+τ1), . . . , e−i(−τd−1+τd))
)λ|ξ−|

×
∣∣∣p1,d(e

i(−τ0+τ1), . . . , ei(−τd−1+τd))
∣∣∣2n dτ

=
d

(2π)d

∫
N

A(τ)e−λϕ(τ) dτ (4.4.10)

where τ = (τ1, . . . , τd−1), dτ = dτ1 ∧ · · · ∧ dτd−1, N = f−1
d (spanR(Ad−1) ∩ [−π, π]d),

m(τ) = min{−τ0 + τ1, . . . ,−τd−1 + τd}, M(τ) = max{−τ0 + τ1, . . . ,−τd−1 + τd},

A(τ) = (2π +m(τ)−M(τ))
∣∣∣p1,d(e

i(−τ0+τ1), . . . , ei(−τd−1+τd))
∣∣∣2n

ϕ(τ) = −
∣∣ξ+
∣∣ log(E(τ))−

∣∣ξ−∣∣ log(E(τ)) + i(ξ1(−τ0 + τ1) + · · ·+ ξd(−τd−1 + τd))

and

E(τ) = p1,d(e
i(−τ0+τ1), . . . , ei(−τd−1+τd))

where the principal branch of the logarithm is taken.
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By the triangle inequality,

∣∣∣p1,d(e
i(−τ0+τ1), . . . , ei(−τd−1+τd))

∣∣∣ ≤ p1,d(
∣∣∣ei(−τ0+τ1)

∣∣∣ , . . . , ∣∣∣ei(−τd−1+τd)
∣∣∣)

= p1,d(1, . . . , 1) = d,

and equality occurs if and only if

ei(−τ0+τ1) = · · · = ei(−τd−1+τd).

Referring back to our change of variables, this means that all of the eiθj are equal to each other. But since

our region of integration in (4.4.10) demands that we have θ ∈ spanR(Ad−1)∩ [−π, π]d, θj = 0 for all j. Hence

−τ0 + τ1 = · · · = −τd−1 + τd = 0

so that each τj = 0 in order for
∣∣p1,d(e

iτ1 , . . . , e−iτd−1)
∣∣ = d. The same is true for p1,d(e

−iτ1 , . . . , eiτd−1) =

p1,d(eiτ1 , . . . , e−iτd−1). Therefore

<ϕ(τ) =
∣∣ξ+
∣∣ log

∣∣∣p1,d(e
i(−τ0+τ1), . . . , ei(−τd−1+τd))

∣∣∣−1

+
∣∣ξ−∣∣ log

∣∣∣p1,d(e
−i(−τ0+τ1), . . . , e−i(−τd−1+τd))

∣∣∣−1

≥
∣∣ξ+
∣∣ log d−1 +

∣∣ξ−∣∣ log d−1 = −‖ξ‖1 log d

for every τ ∈ N for which p1,d(e
i(−τ0+τ1), . . . , ei(−τd−1+τd)) 6= 0 with equality occurring precisely when τ = 0.

Also, since plugging in τ = 0 begets p1,d(1, . . . , 1)) 6= 0, the phase function ϕ is analytic on every compact

neighborhood of 0 contained in N for which p1,d(e
i(−τ0+τ1), . . . , ei(−τd−1+τd)) 6= 0. (Two things are worth

pointing out here. First, N , as the inverse image of a compact set under a continuous map, is itself compact,

and since p1,d is continuous, such nonempty compact neighborhoods exist. Second, points τ for which p1,d

happens to equal 0 contribute nothing to the integral.) Provided that Hϕ(0) is invertible, we can apply
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Corollary 4.4.4 to

w(n,λξ) =
dλ‖ξ‖1+1

(2π)d

∫
N

A(τ)e−λ(ϕ(τ)+‖ξ‖1log d) dτ. (4.4.11)

All that remains is to calculate Hϕ. We find that, for 1 ≤ j ≤ d− 1,

ϕτj =
− |ξ+| (iei(τj−τj−1) − iei(τj+1−τj))

E(τ)
− |ξ

−| (iei(τj−τj+1) − iei(τj−1−τj))

E(τ)
+ i(ξj − ξj+1),

and so for all j, k with 1 ≤ j ≤ k ≤ d− 1 and k − j > 1

ϕτjτj = −
∣∣ξ+
∣∣ (−ei(τj−τj−1) − ei(τj+1−τj))E(τ)− (iei(τj−τj−1) − iei(τj+1−τj))2

[E(τ)]2

−
∣∣ξ−∣∣ (−ei(τj−τj+1) − ei(τj−1−τj))E(τ)− (iei(τj−τj+1) − iei(τj−1−τj))2[

E(τ)
]2 ,

ϕτj+1τj = −
∣∣ξ+
∣∣ ei(τj+1−τj)E(τ)− (iei(τj−τj−1) − iei(τj+1−τj))(iei(τj+1−τj) − iei(τj+2−τj+1))

[E(τ)]2

−
∣∣ξ−∣∣ ei(τj−τj+1)E(τ)− (iei(τj−τj+1) − iei(τj−1−τj))(iei(τj+1−τj+2) − iei(τj−τj+1))[

E(τ)
]2 ,

ϕτkτj =
∣∣ξ+
∣∣ (iei(τj−τj−1) − iei(τj+1−τj))(iei(τk−τk−1) − iei(τk+1−τk))

[E(τ)]2

+
∣∣ξ−∣∣ (iei(τj−τj+1) − iei(τj−1−τj))(iei(τk−τk+1) − iei(τk−1−τk))[

E(τ)
]2 .

The remaining mixed partial derivatives follow from Clairaut’s theorem. Thus

ϕτjτj (0) = −
∣∣ξ+
∣∣ −2d

d2
−
∣∣ξ−∣∣ −2d

d2
=

2‖ξ‖1
d

ϕτjτj+1
(0) = ϕτj+1τj (0) = −

∣∣ξ+
∣∣ d
d2
−
∣∣ξ−∣∣ d

d2
= −‖ξ‖1

d

ϕτjτk(0) = ϕτkτj (0) = 0,
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and so

Hϕ(0) = −‖ξ‖1
d



−2 1 0 · · · 0

1 −2 1 · · · 0

0 1
. . . . . . 0

0 0
. . . . . . 1

0 0 · · · 1 −2


,

which is a d× d symmetric tridiagonal Toeplitz matrix. Using a formula from [Hu and O’Connell 1996]

det(Hϕ(0)) =

(
−‖ξ‖1

d

)d
lim

D→−2−

(−1)d sinh
(
(d+ 1) cosh−1(−D/2)

)
sinh

(
cosh−1(−D/2)

)
=

(
‖ξ‖1
d

)d
(d+ 1).

By Proposition 2.1 of [Kulkarni et al. 1999], the eigenvalues of detHϕ(0) are

−‖ξ‖1
d

(
−2− 2 cos

kπ

d+ 1

)
=

4‖ξ‖1
d

cos2

(
kπ

2(d+ 1)

)
, for k = 1, 2, . . . , d,

and so the product of the principal square roots of the eigenvalues of Hϕ(0) is a nonnegative real number. We

thus take the positive square root of Hϕ(0) and apply Corollary 4.4.4 to get that w(n,λξ) has an asymptotic

series expansion of the form

w(n,λξ) =
dλ‖ξ‖1+1

(2π)d
c0λ
−d/2(1 + o(1)) (4.4.12)

where

c0 = 2πd2n (2π)−d/2√
(‖ξ‖1/d)d(d+ 1)

=
(2π)1−d/2√
‖ξ‖d1(d+ 1)

d2n+d/2, (4.4.13)

which is the desired result.
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The Association Between w(n,ξ) and Modified Bessel Functions of the First Kind

The cardinalities w(n,ξ) can be linked to products of modified Bessel functions of the first kind, which are

functions given by the Taylor series

Iν(z) =

∞∑
n=0

1

n!Γ(n+ ν + 1)

(z
2

)2n+ν

, for ν ∈ C− Z<0. (4.4.14)

It is customary to keep to the principal branch of (z/2)ν so that Iν is analytic on C−(−∞, 0] and two-valued

and discontinuous on the cut Argz = ±π (if ν 6∈ N0). To facilitate the asymptotic analysis of w(n,(m,...,m)),

we will instead work with the normalized Bessel function

Ĩν(z) =

∞∑
n=0

Γ(ν + 1)

n!Γ(n+ ν + 1)

(z
2

)2n

, for ν ∈ C− Z<0, (4.4.15)

which is entire on C.

Set µ = (m, . . . ,m) = m · 1d, where 1d = (1, . . . , 1)︸ ︷︷ ︸
d

. Observe that

w(n,ξ) = (n+
∣∣ξ+
∣∣)!(n+

∣∣ξ−∣∣)![xn]

d∏
j=1

(
Ĩ|ξj |(2

√
x)

|ξj |!

)
. (4.4.16)

In particular,

w(n,µ) =
n!(n+ d |m|)!

(|m|!)d
[xn]

(
Ĩ|m|(2

√
x)
)d
. (4.4.17)

Bender, Brody, and Meister proved in [Bender et al. 2003] that

(
Ĩν(z)

)d
=

∞∑
n=0

Γ(ν + 1)

n!Γ(n+ ν + 1)
B(ν)
n (d)

(z
2

)2n

, (4.4.18)

where B(ν)
n (d) is a polynomial defined recursively by

B(ν)
n (d) = d

ν + n

ν + 1
B

(ν)
n−1(d) +

n∑
j=1

bj(ν)

n

Γ(ν + 2)

Γ(j + ν + 2)

(
ν + n

j

)
B

(ν)
n−1(d). (4.4.19)
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with initial condition b(ν)
0 (d) = 1. The sequence {bn(ν)}∞n=1 is identified by the generating function

∞∑
n=1

bn(ν)

(n− 1)!Γ(n+ ν + 1)
xn =

x

Γ(ν + 2)

( √
x

ν + 1

Iν(2
√
x)

Iν+1(2
√
x)
− 2

)
. (4.4.20)

However, in [Moll and Vignat 2014], Moll and Vignat found an alternative characterization of B(ν)
n (d) in

terms of the exponent d. To start, they employ the Hadamard factorization

Ĩν(z) =

∞∏
k=1

(
1 +

z2

j2
ν,k

)
, (4.4.21)

where {jν,k}∞k=1 is an enumeration of the zeros of Ĩν(iz), from which it follows that

log Ĩν(z) =

∞∑
n=1

(−1)n+1

n
ζn(2n)z2n, (4.4.22)

where ζν is the Bessel zeta function

ζν(p) =

∞∑
k=1

1

jpν,k
, for p > 1. (4.4.23)

They then cite the fact that the exponential of a power series is computed via

exp

[ ∞∑
n=1

an
zn

n!

]
=

∞∑
n=0

Bn(a1, . . . , an)
zn

n!
, (4.4.24)

where Bn(a1, . . . , an) is the nth complete Bell polynomial. (Read [Riordan 1968], section 5.2, for details.)

Multiplying (4.4.22) by d and then plugging it into (4.4.24) leads to the following theorem.

Theorem 4.4.6 (Moll, Vignat). Define

an = a(ν)
n (d) = (−1)n−1(n− 1)!ζν(2n)d. (4.4.25)
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Then B(ν)
n (d) is given by

B(ν)
n (d) = 4n

Γ(n+ ν + 1)

Γ(ν + 1)
Bn(a

(ν)
1 (d), . . . , a(ν)

n (d)). (4.4.26)

We are now ready to derive the following asymptotic formula.

Theorem 4.4.7. Given n ∈ N and m ∈ Z\{0} fixed,

w(n,µ) =

√
2π |m| d

(|m|!)d

(
|m| d2

e(|m|+ 1)

)n(
n+ |m| d

e

)|m|d
+O(dn−1) (4.4.27)

as d→∞ with n and m 6= 0 fixed. If m = 0, then

w(n,0) = n!dn −O(dn−1). (4.4.28)

In this theorem and the subsequent proof, we restrict O(dn−1) to be strictly positive.

Proof. Since Bn(a
|m|
1 (d), . . . , a

|m|
n (d)) is a polynomial in d, it suffices to find its degree and leading coefficient.

This is achieved by invoking the Bell polynomial’s determinantal representation

Bn(a1, . . . , an) = det



a1 −1 0 0 · · · 0

a2 a1 −1 0 · · · 0

a3

(
2
1

)
a2 a1 −1

. . . 0

...
...

...
. . . . . .

...

an−1

(
n−2

1

)
an−2

(
n−2

2

)
an−3

(
n−2

3

)
an−4

. . . −1

an
(
n−1

1

)
an−1

(
n−1

2

)
an−2

(
n−1

3

)
an−3 · · · a1



. (4.4.29)

(This determinantal representation is explained in [Collins 2001], albeit with a typographical error.) Each ai

includes exactly one factor of d, and so, because the above matrix is lower triangular save for the superdiagonal

comprised of -1s, Bn(a
|m|
1 (d), . . . , a

|m|
n (d)) is an nth degree polynomial in d with leading coefficient given by
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the product of the diagonal entries of (4.4.29), which is

(
a
|m|
1 (d)

)n
= (dζ|m|(2))n =

(
d

4(|m|+ 1)

)n
. (4.4.30)

(Here we have used the fact that ζν(2) = 1
4(ν+1) which is elaborated on page 502 of [Watson 1995].) Hence

w(n,µ) =
4n(n+ d |m|)!

(|m|!)d

((
d

4(|m|+ 1)

)n
+O(dn−1)

)
. (4.4.31)

Applying Stirling’s approximation on (n+ d |m|)! completes the proof.

Formula (4.4.31) suggests that w(n,µ) is roughly equal to

(
n+ d |m|

|m| , . . . , |m| , n

)(
d

|m|+ 1

)n
n!

when d is substantially large. In the case that m = 0, we get dnn!, which is the number of ways to construct

an n-string w and a permutation w′ of w provided that every character in w always differ. This, of course,

is untrue, and so dnn! is a bit of an overestimate for the number of abelian squares of length 2n. However, if

one chooses a character from Σd uniform randomly for each letter of w, then the probability that w has no

repeated characters is

d(d− 1) · · · (d− n+ 1)

dn
= 1−O

(
1

dn−1

)
.

The characters of w are therefore asymptotically almost surely different, and so dnn! is a satisfactory estimate

for w(n,0).

4.5 Discussion and Future Work

A Combinatorial Analogue of Parseval’s Equation

Observe that the proof of Theorem 4.2.8 relies only on the quadratic integrability of Sp[x]∗1,d
and nothing

else. Parseval’s equation and Plancherel’s theorem handle the rest. The punchline to Theorem 4.2.8 holds

generally in any compact abelian group, as we explain next. Details behind the vocabulary and analysis
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involved herein can be found in [Folland 1995].

Lemma 4.5.1. Let G be a compact abelian group with Haar measure µ and let Ĝ and µ̂ be the Pontrjagin

duals of G and µ, respectively. Let F be the Fourier transform on L2
µ(G), let B be an orthonormal basis of

L2
µ̂(Ĝ), and let G be a family of power series in C[[x]] that share a common radius of convergence R > 0. If

there is a parametrized L2
µ(G) function f(·; z), z ∈ C, such that Ff(· ; z) is a bijection from B onto G for

|z| < R, then ∑
g∈G

|g(z)|2 = ‖Ff(· ; z)‖22. (4.5.1)

Furthermore, if h(· ; z) ∈ L2
µ(G) and Fh(· ; z)|B = Ff(· ; z)|B for |z| < R, then h(· ; z) = f(· ; z).

Lemma 4.5.1 is an immediate consequence of the fact that F is a unitary isometric isomorphism from

L2
µ(G) onto L2

µ̂(Ĝ). Although G need only be a locally compact abelian group to possess a Fourier transform,

compactness means that the Peter-Weyl theorem holds. This equips L2
µ̂(Ĝ) with the inner product necessary

to even discuss an orthonormal basis B. If the binary operation on G is weakened to be noncommutative,

then F takes values as Hilbert space operators, which strikes us as unhelpful; we are dealing with just

generating functions after all. Lemma 4.5.1 also suggests that such a family G can be “canonically” indexed:

simply set ge(z) := Ff(· ; z)(e) for each e ∈ B.

One may wonder whether there is any combinatorial significance to (4.5.1). There is, but only under

careful circumstances. If G is a family of generating functions for unlabeled combinatorial classes, then the

L2 norm on Ĝ inherits enumerative meaning, which we illustrate next. Here we incorporate the nomenclature

of Theorem I.1 in [Flajolet and Sedgewick 2009].

Theorem 4.5.2. Let A be a family of unlabeled combinatorial classes and let G be the corresponding family

of ordinary generating functions. If there is a compact abelian group G and a parametrized L2(G) function

f(·; z), z ∈ C, satisfying the conditions of Lemma (4.5.1), then, for x ∈ R, ‖Ff(· ;x)‖22 is the ordinary

generating function for the disjoint union
⊔
A∈A
A×A.

Proof. If g(x) is the OGF of an unlabeled class A, then g2(x) is the OGF of A×A. Since the sum in (4.5.1)

converges for |x| < R and the disjoint union of combinatorial classes translates as the sum of their generating
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functions, we see that
∑
g∈G

g2(x) is the OGF for
⊔
A∈A
A×A.

Example 4.5.3. If A = {Wξ : ξ ∈ Z2}, G = {gξ : gξ(x) = x
1
2‖ξ‖1Wξ(x), ξ ∈ Z2}, and G = T2, we

recover the context for offset words over a two-letter alphabet. As shown in the proof of Theorem 4.2.6,

FSp[√x]∗1,d
(ξ) = x

1
2‖ξ‖1Wξ(x) for all ξ ∈ Z2, and so, by Theorem 4.5.2, ‖Sp[√x]∗1,d(ξ)‖22 is the OGF for⊔

ξ∈Z2

W ×W. Table 1 displays the correspondence between the first couple Taylor coefficients of ‖Sp[√x]∗1,2
‖22

and ordered pairs of strings in
⊔
ξ∈Z2

Wξ ×Wξ.

In light of Theorem 4.5.2, it is compelling to regard

1

(2π)d

∫
[0,2π]d

1

|1− xp1,d(eiθ1 , . . . , eiθd)|4
dθ

as the ordinary generating function for the number of strings in Σ∗d that can be written as the concatenation

of two words offset by the same integer vector, counted according to the length of the string, by associating

an ordered pair of strings (w,w′) with ww′. This interpretation is flawed however. For instance, every abelian

square w is the concatenation of two abelian squares in at least two ways, namely εw and wε, which are

counted as different in the preceding framework. (Table 1 even concretely shows that copies of the same

ordered pair can emerge in the disjoint union.) Another challenge emanates from the fact that the various

classes of offset words are neither counted according to the length of the word nor are they pairwise disjoint

as shown in Proposition 4.2.4. We do believe, however, that the above integral still enumerates something

involving string concatenations in spite of the aforementioned shortcomings.

Theorem 4.5.2 holds more generally in any inner product space. Indeed, if there is a complex inner

product space H, an orthonormal basis B of H, and a parametrized H-vector vz, z ∈ C, such that 〈vz, ·〉 is

a bijection from B onto a family G of power series in C[[x]] sharing a common radius of convergence R > 0,

then

‖vz‖2 =
∑
g∈G

|g(z)|2

due to the Pythagorean theorem. We prefer the backdrop of compact abelian groups, however, for two
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Table 4.1: Connection between ‖Sp[√x]∗1,2
‖22 and

⊔
ξ∈Z2

Wξ ×Wξ.

n [xn]‖Sp[√x]∗1,2
‖22 length n elements of

⊔
ξ∈Z2

Wξ ×Wξ

0 1 (ε, ε)
(ε, 11), (11, ε), (ε, 22), (22, ε),

2 8 (1, 1) ∈ W2
(1,0), (1, 1) ∈ W2

(−1,0),

(2, 2) ∈ W2
(0,1), (2, 2) ∈ W2

(0,−1)

(ε, 1111), (1111, ε), (ε, 2222), (2222, ε),
(ε, 1212), (1212, ε), (ε, 1221), (1221, ε),
(ε, 2112), (2112, ε), (ε, 2121), (2121, ε),

(1, 111) ∈ W2
(1,0), (111, 1) ∈ W2

(1,0),

(1, 111) ∈ W2
(−1,0), (111, 1) ∈ W2

(−1,0),

(1, 122), (122, 1), (1, 221), (221, 1),
(1, 212) ∈ W2

(1,0), (212, 1) ∈ W2
(1,0),

(1, 212) ∈ W2
(−1,0), (212, 1) ∈ W2

(−1,0),

(2, 222) ∈ W2
(0,1), (222, 2) ∈ W2

(0,1),

4 54 (2, 222) ∈ W2
(0,−1), (222, 2) ∈ W2

(0,−1),

(2, 112), (112, 2), (2, 211), (211, 2),
(2, 121) ∈ W2

(0,1), (121, 2) ∈ W2
(0,1),

(2, 121) ∈ W2
(0,−1), (121, 2) ∈ W2

(0,−1),

(11, 11) ∈ W2
(0,0), (11, 11) ∈ W2

(2,0), (11, 11) ∈ W2
(−2,0),

(22, 22) ∈ W2
(0,0), (22, 22) ∈ W2

(0,2), (22, 22) ∈ W2
(0,−2),

(11, 22), (22, 11),
(12, 12) ∈ W2

(1,1), (12, 12) ∈ W2
(1,−1), (12, 12) ∈ W2

(−1,−1),

(21, 21) ∈ W2
(1,1), (21, 21) ∈ W2

(−1,1), (21, 21) ∈ W2
(−1,−1),

(12, 21) ∈ W2
(1,1), (12, 21) ∈ W2

(−1,−1),

(21, 12) ∈ W2
(1,1), (21, 12) ∈ W2

(−1,−1)

reasons. First, the function Ff(·; z) in Lemma 4.5.1 is, in some sense, a “generating function of generating

functions” and acquires both Fourier analytic and enumerative underpinnings. Secondly, we hope that

by narrowing our attention to compact abelian groups, previously untapped tools from abstract harmonic

analysis may help systematize both the singularity analysis of generating functions that happen to be images

of some Fourier transform as well as the symbolic calculus of their corresponding combinatorial classes.

The Bernstein-Szegő Measure Moment Problem

The goal of this thesis is to pursue the question of whether the result from [Geronimo and Woerdeman 2004]

can be further generalized to three or more variables. We also wonder if any parallels can be drawn between
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the Bernstein-Szegő measure moment problem and the problem of determining what conditions must be

imposed on a family of unlabeled combinatorial classes and the corresponding family of generating functions

to ensure the existence of a compact abelian group G and an L2(G) function satisfying the conditions of

Lemma 4.5.1. Moreover, are there other combinatorial classes whose generating functions are Bernstein-

Szegő measures? Perhaps by recognizing crucial facets of such generating functions, one may be able to

reverse engineer a generalization of Geronimo and Woerdeman’s solution to the two-variable Bernstein-Szegő

measure moment problem.

Stabilized Symmetric Functions

It was a wonderful surprise to us that the Fourier coefficients of the stabilized power sum symmetric poly-

nomials are generating functions for classes of offset words. This prompts us to speculate about similar

stabilization procedures for symmetric functions as a whole. Can one suitably “stabilize” a generic sym-

metric function in such a way that the Fourier coefficients of its spectral density function are generating

functions for a family of classes of words? Furthermore, would such classes unilaterally categorize all words

in some manageable fashion?

We hope that there are still some profound interactions between the theories of symmetric functions and

Bernstein-Szegő measures waiting to be unearthed. There is still much remaining to be understood about

both areas.
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