311 research outputs found

    A New Multilayered PCP and the Hardness of Hypergraph Vertex Cover

    Get PDF
    Given a kk-uniform hyper-graph, the Ekk-Vertex-Cover problem is to find the smallest subset of vertices that intersects every hyper-edge. We present a new multilayered PCP construction that extends the Raz verifier. This enables us to prove that Ekk-Vertex-Cover is NP-hard to approximate within factor (k1ϵ)(k-1-\epsilon) for any k3k \geq 3 and any ϵ>0\epsilon>0. The result is essentially tight as this problem can be easily approximated within factor kk. Our construction makes use of the biased Long-Code and is analyzed using combinatorial properties of ss-wise tt-intersecting families of subsets

    From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz

    Full text link
    The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to significantly expand the breadth of quantum computing applications. A leading candidate is Farhi et al.'s Quantum Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, is the consideration of general parametrized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach to a wide variety of approximate optimization, exact optimization, and sampling problems. Here, we introduce the Quantum Alternating Operator Ansatz, lay out design criteria for mixing operators, detail mappings for eight problems, and provide brief descriptions of mappings for diverse problems.Comment: 51 pages, 2 figures. Revised to match journal pape

    Parameterized Directed kk-Chinese Postman Problem and kk Arc-Disjoint Cycles Problem on Euler Digraphs

    Full text link
    In the Directed kk-Chinese Postman Problem (kk-DCPP), we are given a connected weighted digraph GG and asked to find kk non-empty closed directed walks covering all arcs of GG such that the total weight of the walks is minimum. Gutin, Muciaccia and Yeo (Theor. Comput. Sci. 513 (2013) 124--128) asked for the parameterized complexity of kk-DCPP when kk is the parameter. We prove that the kk-DCPP is fixed-parameter tractable. We also consider a related problem of finding kk arc-disjoint directed cycles in an Euler digraph, parameterized by kk. Slivkins (ESA 2003) showed that this problem is W[1]-hard for general digraphs. Generalizing another result by Slivkins, we prove that the problem is fixed-parameter tractable for Euler digraphs. The corresponding problem on vertex-disjoint cycles in Euler digraphs remains W[1]-hard even for Euler digraphs

    Entity-Linking via Graph-Distance Minimization

    Get PDF
    Entity-linking is a natural-language-processing task that consists in identifying the entities mentioned in a piece of text, linking each to an appropriate item in some knowledge base; when the knowledge base is Wikipedia, the problem comes to be known as wikification (in this case, items are wikipedia articles). One instance of entity-linking can be formalized as an optimization problem on the underlying concept graph, where the quantity to be optimized is the average distance between chosen items. Inspired by this application, we define a new graph problem which is a natural variant of the Maximum Capacity Representative Set. We prove that our problem is NP-hard for general graphs; nonetheless, under some restrictive assumptions, it turns out to be solvable in linear time. For the general case, we propose two heuristics: one tries to enforce the above assumptions and another one is based on the notion of hitting distance; we show experimentally how these approaches perform with respect to some baselines on a real-world dataset.Comment: In Proceedings GRAPHITE 2014, arXiv:1407.7671. The second and third authors were supported by the EU-FET grant NADINE (GA 288956

    ETH-Hardness of Approximating 2-CSPs and Directed Steiner Network

    Get PDF
    We study the 2-ary constraint satisfaction problems (2-CSPs), which can be stated as follows: given a constraint graph G=(V,E)G=(V,E), an alphabet set Σ\Sigma and, for each {u,v}E\{u, v\}\in E, a constraint CuvΣ×ΣC_{uv} \subseteq \Sigma\times\Sigma, the goal is to find an assignment σ:VΣ\sigma: V \to \Sigma that satisfies as many constraints as possible, where a constraint CuvC_{uv} is satisfied if (σ(u),σ(v))Cuv(\sigma(u),\sigma(v))\in C_{uv}. While the approximability of 2-CSPs is quite well understood when Σ|\Sigma| is constant, many problems are still open when Σ|\Sigma| becomes super constant. One such problem is whether it is hard to approximate 2-CSPs to within a polynomial factor of ΣV|\Sigma| |V|. Bellare et al. (1993) suggested that the answer to this question might be positive. Alas, despite efforts to resolve this conjecture, it remains open to this day. In this work, we separate V|V| and Σ|\Sigma| and ask a related but weaker question: is it hard to approximate 2-CSPs to within a polynomial factor of V|V| (while Σ|\Sigma| may be super-polynomial in V|V|)? Assuming the exponential time hypothesis (ETH), we answer this question positively by showing that no polynomial time algorithm can approximate 2-CSPs to within a factor of V1o(1)|V|^{1 - o(1)}. Note that our ratio is almost linear, which is almost optimal as a trivial algorithm gives a V|V|-approximation for 2-CSPs. Thanks to a known reduction, our result implies an ETH-hardness of approximating Directed Steiner Network with ratio k1/4o(1)k^{1/4 - o(1)} where kk is the number of demand pairs. The ratio is roughly the square root of the best known ratio achieved by polynomial time algorithms (Chekuri et al., 2011; Feldman et al., 2012). Additionally, under Gap-ETH, our reduction for 2-CSPs not only rules out polynomial time algorithms, but also FPT algorithms parameterized by V|V|. Similar statement applies for DSN parameterized by kk.Comment: 36 pages. A preliminary version appeared in ITCS'1

    On largest volume simplices and sub-determinants

    Full text link
    We show that the problem of finding the simplex of largest volume in the convex hull of nn points in Qd\mathbb{Q}^d can be approximated with a factor of O(logd)d/2O(\log d)^{d/2} in polynomial time. This improves upon the previously best known approximation guarantee of d(d1)/2d^{(d-1)/2} by Khachiyan. On the other hand, we show that there exists a constant c>1c>1 such that this problem cannot be approximated with a factor of cdc^d, unless P=NPP=NP. % This improves over the 1.091.09 inapproximability that was previously known. Our hardness result holds even if n=O(d)n = O(d), in which case there exists a \bar c\,^{d}-approximation algorithm that relies on recent sampling techniques, where cˉ\bar c is again a constant. We show that similar results hold for the problem of finding the largest absolute value of a subdeterminant of a d×nd\times n matrix
    corecore