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Abstract

Given a k-uniform hyper-graph, the Ek-Vertex-Cover problem is to find the smallest subset

of vertices that intersects every hyper-edge. We present a new multilayered PCP construction

that extends the Raz verifier. This enables us to prove that Ek-Vertex-Cover is NP-hard to

approximate within factor (k − 1 − ε) for any k ≥ 3 and any ε > 0. The result is essentially

tight as this problem can be easily approximated within factor k. Our construction makes use

of the biased Long-Code and is analyzed using combinatorial properties of s-wise t-intersecting

families of subsets.

Keywords: PCP, Multilayered Outer Verifier, Hardness of Approximation, Hypergraph Vertex

Cover, Long Code.

1 Introduction

A k-uniform hypergraph H = (V,E) consists of a set of vertices V and a collection E of k-element

subsets of V called hyperedges. A vertex cover of H is a subset S ⊆ V such that every hyperedge

in E intersects S, i.e., e ∩ S 6= ∅ for each e ∈ E. An independent set in G is a subset whose

complement is a vertex cover, or in other words a subset of vertices that contains no hyperedge

entirely within it. The Ek-Vertex-Cover problem is the problem of finding a minimum size vertex

cover in a k-uniform hypergraph. This problem is alternatively called the minimum hitting set

problem with sets of size k (and is equivalent to the set cover problem where each element of the

universe occurs in exactly k sets).

The Ek-Vertex-Cover problem is a fundamental NP-hard optimization problem which arises

in numerous settings. For k = 2, it is just the famous vertex cover problem on graphs. Owing

to its NP-hardness, one is interested in how well it can be approximated in polynomial time. A
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very simple algorithm that is invariably taught in a typical undergraduate algorithms class is the

following: greedily pick a maximal set of pairwise disjoint hyperedges and then include all vertices in

the chosen hyperedges in the vertex cover. It is easy to show that this gives a factor k approximation

algorithm for Ek-Vertex-Cover. State of the art techniques yield only a tiny improvement, achieving

a k − o(1) approximation ratio [12]. This raises the question whether achieving an approximation

factor of k − ε for any constant ε > 0 could be NP-hard.

In this paper, we prove a nearly tight hardness result for Ek-Vertex-Cover. Specifically, we

prove that Ek-Vertex-Cover is indeed NP-hard to approximate within factor (k − 1 − ε) for any

ε > 0, thus explaining why no efficient algorithm with performance guarantee much better than k

has been found.

Previous Hardness Results

The vertex-cover problem on hypergraphs where the size of the hyperedges is unbounded is nothing

but the Set-Cover problem. For this problem there is a lnn approximation algorithm [20, 18], and a

matching (1−o(1)) ln n hardness result due to Feige [8]. The first explicit hardness result shown for

Ek-Vertex-Cover was due to Trevisan [23] who considered the approximability of bounded degree

instances of several combinatorial problems, and specifically showed an inapproximability factor of

k1/19 for Ek-Vertex-Cover. Holmerin [16] showed that E4-Vertex-Cover is NP-hard to approximate

within (2−ε). Independently, Goldreich [10] showed a direct ‘FGLSS’-type [9] reduction (involving

no use of the long-code, a crucial component in most recent PCP constructions) attaining a hardness

factor of (2 − ε) for Ek-Vertex-Cover for some constant k. Later, Holmerin [17] showed that Ek-

Vertex-Cover is NP-hard to approximate within a factor of k1−ε, and also that it is NP-hard to

approximate E3-Vertex-Cover within factor (3/2 − ε).

Somewhat surprisingly, more recently Dinur, Guruswami and Khot gave a fairly simple proof

of an α · k hardness result for Ek-Vertex-Cover, (for some α > 1
3 ). The proof takes a combinatorial

view of Holmerin’s construction and instead of Fourier analysis uses some properties concerning

intersecting families of finite sets. The authors also give a more complicated reduction that shows

a factor (k−3−ε) hardness for Ek-Vertex-Cover. The crucial impetus for that work came from the

recent result of Dinur and Safra [7] on the hardness of approximating vertex cover (on graphs), and

as in [7] the notion of biased long codes and some extremal combinatorics relating to intersecting

families of sets play an important role. In addition to ideas from [7], the factor (k − 3 − ε)

hardness result also exploits the notion of covering complexity introduced by Guruswami, H̊astad

and Sudan [11]. Both the α · k and the k − 3 − ε results have not been published (an ECCC

manuscript exists, [5]) since they have been subsumed by the work presented herein.

Our result and techniques

In this paper we improve upon all the above hardness results by proving a factor (k − 1 − ε)

inapproximability result for Ek-Vertex-Cover. Already for k = 3, this is an improvement from

1.5 − ε to 2 − ε. Extending our result from k − 1 − ε to k − ε appears highly non-trivial and

in particular would imply a factor 2 − ε hardness for vertex-cover on graphs, a problem that is

notoriously difficult. While our proof shares some of the extremal combinatorics flavor of [7] and

[5], it draws its strength mainly from a new multilayered outer verifier system for NP languages.
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This multilayered system is constructed using the Raz verifier [21] as a building block.

The Raz verifier, which serves as the starting point or “outer verifier” in most if not all recent

hardness results, can be described as follows. There are two sets of (non-Boolean) variables Y and

Z, and for certain pairs of y ∈ Y and z ∈ Z, a constraint πy→z. The constraints are projections,

i.e., for each assignment to y there exists exactly one assignment to z such that the constraint πy→z

is satisfied. The goal is to find an assignment A to the variables so that a maximum number of

constraints πy→z are satisfied, i.e., have the property πy→z(A(y)) = A(z). The PCP Theorem [2, 1]

along with the Parallel Repetition Theorem [21] imply that for any ε > 0 it is NP-hard to distinguish

between the case where all the constraints can be satisfied and the case where no more than a

fraction ε of the constraints can be satisfied.

In [5], the α · k hardness result is obtained by replacing every Y variable by a block of vertices

(representing its Long-Code). Hyperedges connect y1-vertices to y2-vertices only if there is some

z ∈ Z such that πy1→z, πy2→z are constraints in the system. This construction has an inherent

symmetry between blocks which deteriorates the projection property of the constraints, limiting

the hardness factor one can prove to at most k/2.

Another way of reducing the Raz verifier to Ek-Vertex-Cover is by maintaining the asymmetry

between Y and Z, introducing a block of vertices for each variable in Y and in Z (representing their

Long-Code). Each constraint πy→z can be emulated by a set of hyperedges, where each hyperedge

consists of both y-vertices and z-vertices. The hyperedges can be chosen so that if the initial PCP

instance was satisfiable, then taking a certain 1/k of the vertices in each block will be a vertex-

cover. However, this reduction has a basic ‘bipartiteness’ flaw: the underlying constraint graph,

being bipartite with parts Y and Z, has a vertex cover of size at most one half of the number of

vertices. Taking all the vertices of, say, the Z variables will be a vertex cover for the hypergraph

regardless of whether or not the initial PCP instance was satisfiable. This, once again, limits the

gap to no more than k/2.

We remark that this ‘bipartiteness’ flaw naturally arises in other settings as well. One example

is approximate hypergraph coloring, where indeed our multilayered PCP construction has been

successfully used for showing hardness, see [6, 19].

The Multilayered PCP. We overcome the k/2 limit by presenting a new, multilayered PCP. In

this construction we maintain the projection property of the constraints that is a strong feature

of the Raz verifier, while overcoming the ‘bipartiteness’ flaw. In the usual Raz verifier we have

two ‘layers’, the first containing the Y variables and the second containing the Z variables. In

the multilayered PCP, we have l layers containing variables X1,X2, . . . ,Xl respectively. Between

every pair of layers i1 and i2, we have a set of projection constraints that represent an instance of

the Raz verifier. In the multilayered PCP, it is NP-hard to distinguish between (i) the case where

there exists an assignment that satisfies all the constraints (between every pair of layers), and (ii)

the case where for every i1, i2 it is impossible to satisfy more than a fraction ε of the constraints

between Xi1 and Xi2 .

In addition, we prove that the underlying constraint graph no longer has the ‘bipartiteness’

obstacle, i.e. it no longer has a small vertex cover and hence a large independent set. Indeed we

show that the multilayered PCP has a certain ‘weak-density’ property: for any set containing an ε

fraction of the variables there are many constraints between variables of the set. This guarantees
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that “fake” independent sets in the hypergraph (i.e., independent sets that occur because there

are no constraints between the variables of the set) contain at most ε of the vertices. Hence, the

minimum vertex cover must contain vertices in almost all of the blocks.

We mention that the PCP presented by Feige in [8] has a few structural similarities with ours.

Most notably, both have more than two types of variables. However, while in our construction the

types are layered with decreasing domain sizes, in Feige’s construction the different types are all

symmetric. Furthermore, and more importantly, the constraints tested by the verifier in Feige’s

construction are not projections while this is a key feature of our multilayered PCP, crucially

exploited in our analysis.

We view the construction of the multilayered PCP as a central contribution of our paper, and

believe that it could be a powerful tool to reduce from in other hardness of approximation results as

well. In fact, as mentioned above, our multilayered construction has already been used in obtaining

strong hardness results for coloring 3-uniform hypergraphs [6, 19] (namely the hardness of coloring

a 2-colorable 3-uniform hypergraph using an arbitrary constant number of colors), a problem for

which no non-trivial inapproximability results are known using other techniques. We anticipate

that this new outer verifier will also find other applications besides the ones in this paper and in

[6, 19].

The Biased Long-Code

Our hypergraph construction relies on the Long-Code that was introduced in [3], and more specif-

ically, on the biased Long-Code defined in [7]. Thus, each PCP variable is represented by a block

of vertices, one for each ‘bit’ of the biased Long-Code. More specifically, in x’s block we have one

vertex for each subset of R, where R is the set of assignments for the variable x. However, rather

than taking all vertices in a block with equal weight, we attach weights to the vertices according

to the p-biased Long-Code. The weight of a subset F is set to p|F |(1− p)|R\F |, highlighting subsets

of cardinality p · |R|. Thus we actually construct a weighted hypergraph which can then be easily

translated, by appropriate duplication of vertices, to a non-weighted one (see, e.g., [7]).

The vertex cover in the hypergraph is shown to have relative size of either 1−p in the good case

or almost 1 in the bad case. Choosing large p = 1− 1
k−1−ε , yields the desired gap of 1

1−p ≈ k − 1− ε

between the good and bad cases. The reduction uses the following property: a family of subsets of

a set R, where each subset has size p |R|, either contains very few subsets, or it contains some k−1

subsets whose common intersection is very small. We will later show that this property holds for

p < 1 − 1
k−1 and therefore we obtain a gap of k − 1 − ε. As can be seen, this property does not

hold for p > 1− 1
k−1 and therefore one cannot improve the k − 1− ε result by simply increasing p.

Location of the gap

All our hardness results have the gap between sizes of the vertex cover at the “strongest” location.

Specifically, to prove a factor (k − 1 − ε) hardness we show that it is hard to distinguish between

k-uniform hypergraphs that have a vertex cover of weight 1
k−1+ε from those whose minimum vertex

cover has weight at least (1− ε). This result is stronger than a gap of about (k − 1) achieved, for

example, between vertex covers of weight 1
(k−1)2

and 1
k−1 . In fact, by adding dummy vertices, our

result implies that for any c < 1 it is NP-hard to distinguish between hypergraphs whose minimum
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vertex-cover has weight at least c from those which have a vertex-cover of weight at most ( c
k−1 +ε).

Put another way, our result shows that for k-uniform hypergraphs, for k ≥ 3, there is a fixed α such

that for arbitrarily small ε > 0, it is NP-hard to find an independent set consisting of a fraction

ε of the vertices even if the hypergraph is promised to contain an independent set comprising a

fraction α of vertices. We remark that such a result is not known for graphs and seems out of reach

of current techniques. (The recent 1.36 hardness result for vertex cover on graphs due to Dinur and

Safra [7], for example, shows that it is NP-hard to distinguish between cases when the graph has

an independent set of size 0.38 · n and when no independent set has more than 0.16 · n vertices.)

Organization

We begin in Section 2 by developing the machinery from extremal combinatorics concerning in-

tersecting families of sets that will play a crucial role in our proof. In Section 3 we present the

multilayered PCP construction. In Section 4 we present our reduction to a gap version of Ek-

Vertex-Cover which allows us to prove a factor (k−1−ε) inapproximability result for this problem.

2 Intersecting Families

In this section we describe certain properties of s-wise t-intersecting families. For a comprehensive

survey, see [13]. Denote [n] = {0, 1, . . . , n − 1} and 2[n] = {F | F ⊆ [n]}.

Definition 2.1 A family F ⊆ 2[n] is called s-wise t-intersecting if for every s sets F1, . . . , Fs ∈ F ,

we have

|F1 ∩ . . . ∩ Fs| ≥ t .

We are interested in bounding the size of such families, and for this purpose it is useful to

introduce the notion of a left-shifted family. Performing an (i, j)-shift on a family consists of

replacing the element j with the element i in all sets F ∈ F such that j ∈ F , i /∈ F and (F \ {j})∪

{i} /∈ F . A left-shifted family is a family which is invariant with respect to (i, j)-shifts for any

1 ≤ i < j ≤ n. For any family F , by iterating the (i, j)-shift for all 1 ≤ i < j ≤ n we eventually

get a left-shifted family which we denote by S(F). The following simple lemma summarizes the

properties of the left-shift operation (see, e.g., [13], p. 1298, Lemma 4.2):

Lemma 2.2 For any family F ⊆ 2[n], there exists a one-to-one and onto mapping τ from F to

S(F) such that |F | = |τ(F )| for every F ∈ F . In other words, left-shifting a family maintains its

size and the size of the sets in the family. Moreover, if F is an s-wise t-intersecting family then so

is S(F).

The next lemma states that a subset F in a left-shifted s-wise t-intersecting family, cannot be

‘sparse’ on all of its prefixes F ∩ [t+ js], ∀j ≥ 0.

Lemma 2.3 ([13], p. 1311, Lemma 8.3) Let F be a left-shifted s-wise t-intersecting family.

Then, for every F ∈ F , there exists a j ≥ 0 with |F ∩ [t+ sj]| ≥ t+ (s− 1)j.

Definition 2.4 For a bias parameter 0 < p < 1, and a ground set R, the weight of a set F ⊆ R is

µR
p (F )

def
= p|F | · (1− p)|R\F |
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When R is clear from the context we write µp for µR
p . The weight of a family F ⊆ 2R is µp(F) =

∑

F∈F µp(F ).

The weight of a subset is precisely the probability of obtaining this subset when one picks every

element in R independently with probability p.

The following is the main lemma of this section. It shows that for any p < s−1
s , a family of

non-negligible µp-weight (i.e., µp(F) ≥ ε) cannot be s-wise t-intersecting for sufficiently large t.

Lemma 2.5 For any ε, s, p with p < s−1
s , there exists a t = t(ε, s, p) such that for any s-wise

t-intersecting family F ⊆ 2[n], µp(F) < ε.

Proof: The proof follows from Lemma 2.3 (see [13], p. 1311, Theorem 8.4). Let F be an s-wise

t-intersecting family where t will be determined later. According to Lemma 2.2, S(F) is also s-wise

t-intersecting and µp(S(F)) = µp(F). By Lemma 2.3, for every F ∈ S(F), there exists a j ≥ 0 such

that |F ∩ [t+ sj]| ≥ t+ (s− 1)j. We can therefore bound µp(S(F)) from above by the probability

that such a j exists for a random set chosen according to the distribution µp. We now prove an

upper bound on this probability, which will give the desired bound on µp(S(F)) and hence also on

µp(F).

Let δ = s−1
s − p. Then, for any j ≥ 0, Pr[ |F ∩ [t+ sj]| ≥ t+ (s− 1)j ] is at most

Pr[ |F ∩ [t+ sj]| − p(t+ sj) ≥ δ(t+ sj) ] ≤ e−2(t+sj)δ2 .

by the Chernoff bound [4]. Summing over all j ≥ 0 we get:

µp(S(F)) ≤
∑

j≥0

e−2(t+sj)δ2 = e−2tδ2/(1− e−2sδ2)

which is smaller than ε for large enough t.

3 The Multilayered PCP

3.1 Starting Point - The PCP Theorem and the Parallel Repetition Theorem

As is the case with many inapproximability results (e.g., [3], [14], [15], [22]), we begin our reduction

from the Raz verifier described next. Let Ψ be a collection of two-variable constraints, where the

variables are of two types, denoted Y and Z. Let RY denote the range of the Y -variables and

RZ the range of the Z-variables, where |RZ | ≤ |RY |
1. Assume each constraint π ∈ Ψ depends on

exactly one y ∈ Y and one z ∈ Z, furthermore, for every value ay ∈ RY assigned to y there is

exactly one value az ∈ RZ to z such that the constraint π is satisfied. Therefore, we can write each

constraint π ∈ Ψ as a function from RY to RZ , and use notation πy→z : RY → RZ . Furthermore,

we assume that the underlying constraint graph is bi-regular, i.e., every Y -variable appears in the

same number of constraints in Ψ, and every Z-variable appears in the same number of constraints

in Ψ.

The following theorem follows by combining the PCP Theorem with Raz’s Parallel Repetition

Theorem. The PCP given by this theorem will be called the Raz’s verifier henceforth.
1Readers familiar with the Raz verifier may prefer to think concretely of RY = [7u] and RZ = [2u] for some

number u of repetitions.

6



Theorem 3.1 (PCP Theorem [1, 2] + Raz’s Parallel Repetition Theorem [21]) Let Ψ be as

above. There exists a universal constant γ > 0 such that for every (large enough) constant |RY | it

is NP-hard to distinguish between the following two cases:

• Yes : There is an assignment A : Y → RY , A : Z → RZ such that all π ∈ Ψ are satisfied

by A, i.e., ∀πy→z ∈ Ψ, πy→z(A(y)) = A(z).

• No : No assignment can satisfy more than a fraction 1
|RY |γ of the constraints in Ψ.

As discussed in the introduction, a natural approach to build a hypergraph from the PCP Ψ

is to have a block of vertices for every variable y or z and define hyperedges of the hypergraph so

as to enforce the constraints πy→z. For every constraint πy→z, there will be hyperedges containing

vertices from the block of y and the block of z. However, this approach is limited by the fact that

the constraint graph underlying the PCP has a small vertex cover. Since each hyperedge contains

vertices from both the Y and Z ‘sides’, the subset of all vertices on the Y (resp. Z) ‘side’, already

covers all of the hyperedges regardless of whether the initial PCP system was satisfiable or not.2

This difficulty motivates our construction of a multilayered PCP where we have many types of

variables (rather than only Y and Z) and the resulting hypergraph is multipartite. The multilayered

PCP is able to maintain the properties of Theorem 3.1 between every pair of layers. Moreover,

the underlying constraint graph has a special ‘weak-density’ property that roughly guarantees it

will have only tiny independent sets (thus any vertex cover for it must contain almost all of the

vertices).

3.2 Layering the Variables

Let l, R > 0. Let us begin by defining an l-layered PCP. In an l-layered PCP there are l sets of

variables denoted by X1, . . . ,Xl. The range of variables in Xi is denoted Ri, with |Ri| = RO(l).

For every 1 ≤ i < j ≤ l there is a set of constraints Φij where each constraint π ∈ Φij depends

on exactly one x ∈ Xi and one x′ ∈ Xj. For any two variables we denote by πx→x′ the constraint

between them if such a constraint exists. Moreover, the constraints in Φij are projections from x to

x′, that is, for every assignment to x there is exactly one assignment to x′ such that the constraint

is satisfied.

In addition, as mentioned in the introduction, we would like to show a certain ‘weak-density’

property of our multilayered PCP:

Definition 3.2 An l-layered PCP is said to be weakly-dense if for any δ > 0, given m ≥ ⌈2δ ⌉ layers

i1 < . . . < im and given any sets Sj ⊆ Xij for j ∈ [m] such that Sj ≥ δ|Xij |, there always exist

two sets Sj and Sj′ such that the number of constraints between them is at least a δ2

4 fraction of

the constraints between the layers Xij and Xij′ .

2Adding hyperedges entirely within vertices on the Y and Z sides cannot help either since we wish to ensure a

small vertex cover in the completeness case. Hence picking all vertices on, say, the Z side, together with the small

vertex cover that hits all edges entirely within the Y side (such a small cover must exist due to the completeness

case) will again give a vertex cover of weight close to 1/2.
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Theorem 3.3 There exists a universal constant γ > 0, such that for any parameters l, R, there is

a weakly-dense l-layered PCP ∪Φij such that it is NP-hard to distinguish between the following two

cases:

• Yes : There exists an assignment that satisfies all the constraints.

• No : For every i < j, not more than 1/Rγ of the constraints in Φij can be satisfied by an

assignment.

Proof: Let Ψ be a constraint-system as in Theorem 3.1. We construct Φ = ∪Φij as follows. The

variables Xi of layer i ∈ [l] are the elements of the set Zi × Y l−i, i.e., all l-tuples where the first i

elements are Z variables and the last l − i elements are Y variables. The variables in layer i have

assignments from the set Ri = (RZ)
i × (RY )

l−i corresponding to an assignment to each variable

of Ψ in the l-tuple. It is easy to see that |Ri| ≤ RO(l) for any i ∈ [l] and that the total number of

variables is no more than |Ψ|O(l). For any 1 ≤ i < j ≤ l we define the constraints in Φij as follows.

A constraint exists between a variable xi ∈ Xi and a variable xj ∈ Xj if they contain the same Ψ

variables in the first i and the last l − j elements of their l-tuples. Moreover, for any i < k ≤ j

there should be a constraint in Ψ between xi,k and xj,k. More formally, denoting xi = (xi,1, ..., xi,l)

for xi ∈ Xi = Zi × Y l−i,

Φij =

{

πxi,xj
xi ∈ Xi, xj ∈ Xj ,

∀k ∈ [l] \ {i+ 1, . . . , j}, xi,k = xj,k

∀k ∈ {i+ 1, . . . , j}, πxi,k→xj,k
∈ Ψ

}

.

As promised, the constraints πxi,k→xj,k
are projections. Given an assignment a = (a1, .., al) ∈ Ri

to xi, we define the consistent assignment b = (b1, .., bl) ∈ Rj to xj as bk = πxi,k→xj,k
(ak) for

k ∈ {i+ 1, . . . , j} and bk = ak for all other k.

The completeness of Φ follows easily from the completeness of Ψ. That is, assume we are given

an assignment A : Y ∪ Z → RY ∪ RZ that satisfies all the constraints of Ψ. Then, the assignment

B :
⋃

Xi →
⋃

Ri defined by B(x1 . . . xl) = (A(x1) . . . A(xl)) is a satisfying assignment.

For the soundness part, assume that there exist two layers i < j and an assignment B that

satisfies more than a 1/Rγ fraction of the constraints in Φij. We partition Xi into classes such that

two variables in Xi are in the same class iff they are identical except possibly on coordinate j. The

variables in Xj are also partitioned according to coordinate j. Since more than 1/Rγ of the con-

straints in Φij are satisfied, it must be the case that there exist a class xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,l
in the partition of Xi and a class xj,1, . . . , xj,j−1, xj,j+1, . . . , xj,l in the partition of Xj between which

there exist constraints and the fraction of satisfied constraints is more than 1/Rγ . We define an

assignment to Ψ as

A(y) = (B(xi,1, . . . , xi,j−1, y, xi,j+1, . . . , xi,l))j

for y ∈ Y and as

A(z) = (B(xj,1, . . . , xj,j−1, z, xj,j+1, . . . , xj,l))j

for z ∈ Z. Notice that there is a one-to-one and onto correspondence between the constraints in

Ψ and the constraints between the two chosen classes in Φ. Moreover, if the constraint in Φ is
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satisfied, then the constraint in Ψ is also satisfied. Therefore, A is an assignment to Ψ that satisfies

more than 1/Rγ of the constraints.

To prove that this multilayered PCP is weakly-dense, we recall the bi-regularity property men-

tioned above, i.e., each variable y ∈ Y appears in the same number of constraints and also each

z ∈ Z appears in the same number of constraints. Therefore, the distribution obtained by uniformly

choosing a variable y ∈ Y and then uniformly choosing one of the variables in z ∈ Z with which it

has a constraint is a uniform distribution on Z.

Take any m = ⌈2δ ⌉ layers i1 < . . . < im and sets Sj ⊆ Xij for j ∈ [m] such that Sj ≥ δ|Xij |.

Consider a random walk beginning from a uniformly chosen variable x1 ∈ X1 and proceeding to a

variable x2 ∈ X2 chosen uniformly among the variables with which x1 has a constraint. The random

walk continues in a similar way to a variable x3 ∈ X3 chosen uniformly among the variables with

which x2 has a constraint and so on up to a variable in Xl. Denote by Ej the indicator variable of

the event that the random walk hits an Sj variable when in layer Xij . From the uniformity of Ψ it

follows that for every j, Pr[Ej ] ≥ δ. Moreover, using the inclusion-exclusion principle, we get:

1 ≥ Pr[
∨

Ej ] ≥
∑

j

Pr[Ej ]−
∑

j<k

Pr[Ej ∧ Ek]

≥ ⌈
2

δ
⌉ · δ −

(

m

2

)

maxj<kPr[Ej ∧ Ek]

≥ 2−

(

m

2

)

maxj<kPr[Ej ∧ Ek]

which implies

maxj<kPr[Ej ∧ Ek] ≥ 1/

(

m

2

)

≥
δ2

4

Fix j and k such that Pr[Ej ∧ Ek] ≥
δ2

4 and consider a shorter random walk beginning from

a random variable in Xij and proceeding to the next layer and so on until hitting layer ik. Since

Ej is uniform on Xij we still have that Pr[Ej ∧ Ek] ≥
δ2

4 where the probability is taken over the

random walks between Xij and Xik . Also, notice that there is a one-to-one and onto mapping from

the set of all random walks between Xij and Xik to the set Φij ,ik . Therefore, at least a fraction δ2

4

of the constraints between Xij and Xik are between Sj and Sk, which completes the proof of the

weak-density property.

4 The Hypergraph Construction

Theorem 4.1 (Main Theorem) For any k ≥ 3 it is NP-hard to approximate the vertex-cover

on a k-uniform hypergraph within any constant factor less than k − 1.

Proof: Fix k ≥ 3 and arbitrarily small ε > 0. Define p = 1 − 1
k−1−ε . Let Φ be a PCP instance

with layers X1, . . . ,Xl, as described in Theorem 3.3, with parameters l = 32ε−2 and R large enough

to be chosen later. We present a construction of a k-uniform hypergraph G = (V,E). We use the

Long Code introduced by Bellare et al. [3]. A Long Code over domain R has one bit for every

subset v ⊆ R. An encoding of element x ∈ R assigns bit-value 1 to the sets v s.t. x ∈ v and assigns

0 to the sets which do not contain x. In the following, the bits in the Long Code will be vertices
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of the hypergraph. The vertices that correspond to a bit-value 0 are (supposedly) the vertices of a

Vertex Cover.

Vertices. For each variable x in layer Xi we construct a block of vertices V [x]. This block

contains a vertex for each subset of Ri. Throughout this section we slightly abuse notation by

writing a vertex rather than the set it represents. The weight of the vertices inside the block V [x]

is according to µRi
p , i.e. the weight of a subset v ⊆ Ri is proportional to µRi

p (v) = p|v|(1 − p)|Ri\v|

as in Definition 2.4. All blocks in the same layer have the same total weight and the total weight

of each layer is 1
l . Formally, the weight of a vertex v ∈ V [x] where x ∈ Xi is given by

1

l|Xi|
µRi
p (v).

Hyperedges. We construct hyperedges between blocks V [x] and V [y] such that there exists a

constraint πx→y. We connect a hyperedge between any v1, . . . , vk−1 ∈ V [x] and u ∈ V [y] whenever

πx→y(
⋂k−1

i=1 vi) ∩ u = φ.

Let IS(G) denote the weight of vertices contained in the largest independent set of the hyper-

graph G.

Lemma 4.2 (Completeness) If Φ is satisfiable then IS(G) ≥ p.

Proof: Let A be a satisfying assignment for Φ, i.e., A maps each i ∈ [l] and x ∈ Xi to an

assignment in Ri such that all the constraints are satisfied. Let I ⊆ V contain in the block V [x]

all the vertices that contain the assignment A(x),

I =
⋃

x

{v ∈ V [x] | v ∋ A(x)} .

We claim that I is an independent set. Take any v1, ..., vk−1 in I∩V [x] and a vertex u in I∩V [y].

The vertices v1, . . . , vk−1 intersect on A(x) and therefore the projection of their intersection contains

πx→y(A(x)) = A(y). Since u is in I ∩ V [y] it must contain A(y). The proof is completed by noting

that inside each block, the weight of the set of all vertices that contain a specific assignment is

exactly p.

We now turn to the soundness of the construction.

Lemma 4.3 (Soundness) If IS(G) ≥ ε then Φ is satisfiable.

This lemma completes the proof of our main result since the ratio between the sizes of the vertex

cover in the yes and no cases is 1−ε
1−p = (1− ε)(k − 1− ε) which can be arbitrarily close to k − 1.

Proof: Let I be an independent set of weight ε. We consider the set X ′ of all variables x for

which the weight of I ∩ V [x] in V [x] is at least ε/2. A simple averaging argument shows that the

weight of
⋃

x∈X′ V [x] is at least ε
2 . Another averaging argument shows that in at least ε

4 l = 8
ε

layers, X ′ contains at least ε
4 fraction of the variables. Using the weak-density property of the

PCP (see Definition 3.2), we conclude that there exist two layers Xi and Xj such that ε2

64 fraction

of the constraints between them are constraints between variables in X ′. Let us denote by X the

variables in Xi ∩X ′ and by Y the variables in Xj ∩X ′.
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For any variable x ∈ X, consider the vertices in I ∩ V [x]. According to Lemma 2.5 there exists

a t = t( ε2 , k − 1, p) and k − 1 vertices in I ∩ V [x] that intersect in less than t assignments. We

denote these vertices by vx,1, . . . , vx,k−1 and their intersection by B(x).

In the following we define an assignment to the variables in X and Y such that many of the

constraints between them are satisfied. Then Theorem 3.3 would imply that Φ must be satisfiable

(provided R is chosen large enough). For a variable x ∈ X we choose a random assignment from

the set B(x). For a variable y ∈ Y we choose the assignment

A(y) = maxvara∈RY
|{x ∈ X | a ∈ πx→y(B(x))}|,

i.e., the assignment that is contained in the largest number of projections of B(x).

Before continuing, we need the following simple claim:

Claim 4.4 Let A1, . . . , An be a collection of n sets of size at most m such that no element is

contained in more than k sets. Then, there are at least n
1+(k−1)m ≥ n

km disjoint sets in this collection.

Proof: We prove by induction on n that there are at least n
1+(k−1)m disjoint sets in the collection.

The claim holds trivially for n ≤ 1 + (k − 1)m. Otherwise, consider all the sets that intersect A1.

Since no element is contained in more than k sets, the number of such sets (including A1) is at

most 1 + (k − 1)m. Removing these sets we get, by using the induction hypothesis, a collection

that contains n−1−(k−1)m
1+(k−1)m = n

1+(k−1)m − 1 disjoint sets. We conclude the induction step by adding

A1 to the disjoint sets.

Consider a variable y ∈ Y and a variable x such that the constraint πx→y exists. There are no

hyperedges of the form (vx,1, . . . , vx,k−1, u) for any vertex u ∈ I ∩ V [y]. Therefore, every vertex

u ∈ I ∩V [y] must intersect πx→y(B(x)). Now consider the family of projections πx→y(B(x)) for all

the variables x such that the constraint πx→y exists. Let q denote the maximum number of disjoint

sets inside this family. Note that every disjoint set reduces the weight of the vertices in I ∩ V [y]

by a factor of 1− (1− p)t. Because the weight of I ∩ V [y] is at least ε
4 , we obtain that q is at most

log( ε4 )/ log(1− (1− p)t). Claim 4.4 implies that there exists an assignment for y that is contained

in at least a fraction
1

t log( ε4)/ log(1− (1− p)t)

of the projections πx→y(B(x)). Therefore, the expected fraction of constraints satisfied between X

and Y is at least
1

t2 log( ε4 )/ log(1− (1− p)t)

which is a constant that does not depend on R. We complete the proof by choosing the range R

of the PCP large enough so that this fraction is larger than 1/Rγ and applying Theorem 3.3. This

completes the soundness proof.
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