33 research outputs found

    Precise tail asymptotics of fixed points of the smoothing transform with general weights

    Get PDF
    We consider solutions of the stochastic equation R=di=1NAiRi+BR=_d\sum_{i=1}^NA_iR_i+B, where N>1N>1 is a fixed constant, AiA_i are independent, identically distributed random variables and RiR_i are independent copies of RR, which are independent both from AiA_i's and BB. The hypotheses ensuring existence of solutions are well known. Moreover under a number of assumptions the main being EA1α=1/N\mathbb{E}|A_1|^{\alpha}=1/N and EA1αlogA1>0\mathbb{E}|A_1|^{\alpha}\log|A_1|>0, the limit limttαP[R>t]=K\lim_{t\to\infty}t^{\alpha}\mathbb{P}[|R|>t]=K exists. In the present paper, we prove positivity of KK.Comment: Published at http://dx.doi.org/10.3150/13-BEJ576 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Про асимптотичну поведінку моментів випадкових рекурсивних послідовностей

    Get PDF
    Запропоновано новий метод дослiдження асимптотичної поведiнки моментiв лiнiйних випадкових рекурсивних послiдовностей, який базується на технiцi iтеративних функцiй. За допомогою цього методу показано, що моменти числа зiткнень та моменти часу поглинання в коалесцентi Пуассона–Дiрiхле асимптотично зростають як степенi функцiї ln*(·), яка зростає повiльнiше за будь-яку iтерацiю логарифму, та доведено слабкi закони великих чисел для вказаних функцiоналiв.We propose a new method of analyzing the asymptotics of moments of certain random recurrences which is based on the technique of iterative functions. By using the method, we show that the moments of the number of collisions and the absorption time in the Poisson–Dirichlet coalescent behave like powers of the ln*(·) function which grows slower than any iteration of the logarithm, and thereby prove the weak laws of large numbers

    On the contraction method with degenerate limit equation

    Full text link
    A class of random recursive sequences (Y_n) with slowly varying variances as arising for parameters of random trees or recursive algorithms leads after normalizations to degenerate limit equations of the form X\stackrel{L}{=}X. For nondegenerate limit equations the contraction method is a main tool to establish convergence of the scaled sequence to the ``unique'' solution of the limit equation. In this paper we develop an extension of the contraction method which allows us to derive limit theorems for parameters of algorithms and data structures with degenerate limit equation. In particular, we establish some new tools and a general convergence scheme, which transfers information on mean and variance into a central limit law (with normal limit). We also obtain a convergence rate result. For the proof we use selfdecomposability properties of the limit normal distribution which allow us to mimic the recursive sequence by an accompanying sequence in normal variables.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000017

    Martingales and Profile of Binary Search Trees

    Full text link
    We are interested in the asymptotic analysis of the binary search tree (BST) under the random permutation model. Via an embedding in a continuous time model, we get new results, in particular the asymptotic behavior of the profile

    Transfer Theorems and Asymptotic Distributional Results for m-ary Search Trees

    Full text link
    We derive asymptotics of moments and identify limiting distributions, under the random permutation model on m-ary search trees, for functionals that satisfy recurrence relations of a simple additive form. Many important functionals including the space requirement, internal path length, and the so-called shape functional fall under this framework. The approach is based on establishing transfer theorems that link the order of growth of the input into a particular (deterministic) recurrence to the order of growth of the output. The transfer theorems are used in conjunction with the method of moments to establish limit laws. It is shown that (i) for small toll sequences (tn)(t_n) [roughly, tn=O(n1/2)t_n =O(n^{1 / 2})] we have asymptotic normality if m26m \leq 26 and typically periodic behavior if m27m \geq 27; (ii) for moderate toll sequences [roughly, tn=ω(n1/2)t_n = \omega(n^{1 / 2}) but tn=o(n)t_n = o(n)] we have convergence to non-normal distributions if mm0m \leq m_0 (where m026m_0 \geq 26) and typically periodic behavior if mm0+1m \geq m_0 + 1; and (iii) for large toll sequences [roughly, tn=ω(n)t_n = \omega(n)] we have convergence to non-normal distributions for all values of m.Comment: 35 pages, 1 figure. Version 2 consists of expansion and rearragement of the introductory material to aid exposition and the shortening of Appendices A and B.

    Analysis of Quickselect under Yaroslavskiy's Dual-Pivoting Algorithm

    Full text link
    There is excitement within the algorithms community about a new partitioning method introduced by Yaroslavskiy. This algorithm renders Quicksort slightly faster than the case when it runs under classic partitioning methods. We show that this improved performance in Quicksort is not sustained in Quickselect; a variant of Quicksort for finding order statistics. We investigate the number of comparisons made by Quickselect to find a key with a randomly selected rank under Yaroslavskiy's algorithm. This grand averaging is a smoothing operator over all individual distributions for specific fixed order statistics. We give the exact grand average. The grand distribution of the number of comparison (when suitably scaled) is given as the fixed-point solution of a distributional equation of a contraction in the Zolotarev metric space. Our investigation shows that Quickselect under older partitioning methods slightly outperforms Quickselect under Yaroslavskiy's algorithm, for an order statistic of a random rank. Similar results are obtained for extremal order statistics, where again we find the exact average, and the distribution for the number of comparisons (when suitably scaled). Both limiting distributions are of perpetuities (a sum of products of independent mixed continuous random variables).Comment: full version with appendices; otherwise identical to Algorithmica versio
    corecore