219 research outputs found

    A Survey on the Network Models applied in the Industrial Network Optimization

    Full text link
    Network architecture design is very important for the optimization of industrial networks. The type of network architecture can be divided into small-scale network and large-scale network according to its scale. Graph theory is an efficient mathematical tool for network topology modeling. For small-scale networks, its structure often has regular topology. For large-scale networks, the existing research mainly focuses on the random characteristics of network nodes and edges. Recently, popular models include random networks, small-world networks and scale-free networks. Starting from the scale of network, this survey summarizes and analyzes the network modeling methods based on graph theory and the practical application in industrial scenarios. Furthermore, this survey proposes a novel network performance metric - system entropy. From the perspective of mathematical properties, the analysis of its non-negativity, monotonicity and concave-convexity is given. The advantage of system entropy is that it can cover the existing regular network, random network, small-world network and scale-free network, and has strong generality. The simulation results show that this metric can realize the comparison of various industrial networks under different models.Comment: 26 pages, 11 figures, Journa

    Achieving Small World Properties using Bio-Inspired Techniques in Wireless Networks

    Full text link
    It is highly desirable and challenging for a wireless ad hoc network to have self-organization properties in order to achieve network wide characteristics. Studies have shown that Small World properties, primarily low average path length and high clustering coefficient, are desired properties for networks in general. However, due to the spatial nature of the wireless networks, achieving small world properties remains highly challenging. Studies also show that, wireless ad hoc networks with small world properties show a degree distribution that lies between geometric and power law. In this paper, we show that in a wireless ad hoc network with non-uniform node density with only local information, we can significantly reduce the average path length and retain the clustering coefficient. To achieve our goal, our algorithm first identifies logical regions using Lateral Inhibition technique, then identifies the nodes that beamform and finally the beam properties using Flocking. We use Lateral Inhibition and Flocking because they enable us to use local state information as opposed to other techniques. We support our work with simulation results and analysis, which show that a reduction of up to 40% can be achieved for a high-density network. We also show the effect of hopcount used to create regions on average path length, clustering coefficient and connectivity.Comment: Accepted for publication: Special Issue on Security and Performance of Networks and Clouds (The Computer Journal

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    Greedy Forwarding in Dynamic Scale-Free Networks Embedded in Hyperbolic Metric Spaces

    Full text link
    We show that complex (scale-free) network topologies naturally emerge from hyperbolic metric spaces. Hyperbolic geometry facilitates maximally efficient greedy forwarding in these networks. Greedy forwarding is topology-oblivious. Nevertheless, greedy packets find their destinations with 100% probability following almost optimal shortest paths. This remarkable efficiency sustains even in highly dynamic networks. Our findings suggest that forwarding information through complex networks, such as the Internet, is possible without the overhead of existing routing protocols, and may also find practical applications in overlay networks for tasks such as application-level routing, information sharing, and data distribution

    Graph Theoretical Analysis of the Dynamic Lines of Collaboration Model for Disruption Response

    Get PDF
    The Dynamic Lines of Collaboration (DLOC) model was developed to address the Network-to-Network (N2N) service challenge found in e-Work networks with pervasive connectivity. A variant of the N2N service challenge found in emerging Cyber-Physical Infrastructures (CPI) networks is the collaborative disruption response (CDR) operation under cascading failures. The DLOC model has been validated as an appropriate modelling tool to aid the design of disruption responders in CPIs by eliciting the dynamic relation among the service team when handling service requests from clients in the CPI network

    Spatially self-organized resilient networks by a distributed cooperative mechanism

    Get PDF
    The robustness of connectivity and the efficiency of paths are incompatible in many real networks. We propose a self-organization mechanism for incrementally generating onion-like networks with positive degree-degree correlations whose robustness is nearly optimal. As a spatial extension of the generation model based on cooperative copying and adding shortcut, we show that the growing networks become more robust and efficient through enhancing the onion-like topological structure on a space. The reasonable constraint for locating nodes on the perimeter in typical surface growth as a self-propagation does not affect these properties of the tolerance and the path length. Moreover, the robustness can be recovered in the random growth damaged by insistent sequential attacks even without any remedial measures.Comment: 34 pages, 12 figures, 2 table
    corecore