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ABSTRACT 

Ferialdy, Arfinandi. M.S.I.E., Purdue University, August 2016. Graph Theoretical Analysis 
of The Dynamic Lines of Collaboration Model for Disruption Response. Major Professor: 
Shimon Y. Nof. 
 
 
The Dynamic Lines of Collaboration (DLOC) model was developed to address the Network-

to-Network (N2N) service challenge found in e-Work networks with pervasive 

connectivity.  A variant of the N2N service challenge found in emerging Cyber-Physical 

Infrastructures (CPI) networks is the collaborative disruption response (CDR) operation 

under cascading failures. The DLOC model has been validated as an appropriate modelling 

tool to aid the design of disruption responders in CPIs by eliciting the dynamic relation 

among the service team when handling service requests from clients in the CPI network. 

The DLOC model for CDR operation is conceptually an abstraction of the CPI network into 

two interdependent networks of client and service networks. No preliminary design 

guidelines have been devised for DLOC-CDR from a network perspective using graph 

properties. Previous results of graph theoretical analysis for network behaviors under 

disruption may also not apply to DLOC-CDR due to the intrinsic nature of the N2N service 

challenge. Previous research works in DLOC-CDR have also not taken into consideration 

in protecting vulnerable CPI network elements which can cause system collapse by a 

single failure. Based on these observations, this research is guided by the following 
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questions: (1) What graph properties to be viable predictors for evaluating the reliability 

of N2N service designs in DLOC and (2) Where should the disruption responders (resource) 

to ensure timely disruption mitigation with regards to protection of vulnerable nodes? 

To answer question (1), it is found that resiliency of a CPI network, as measured in DLOC 

by the Recoverability metric (𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ), can be approximated by the proportion of 

vulnerable nodes (𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟) as a function of average degree and cascade threshold (𝜑𝜑). 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  measures the probability of a network to fully recover from a cascading 

disruption.  It is found that there lies a certain regime where 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =1 as approximated 

by 𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟. By means of graph property analysis, we initially proposed two heuristics,   

𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺������� > 1
𝜑𝜑

 and   ∑ 𝑝𝑝𝑟𝑟(𝑘𝑘)𝑝𝑝𝑘𝑘𝑘𝑘 < 0.70, to mark the regime where 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is strictly 1.  From 

numerical experiments, it was found that 𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺������� > 1
𝜑𝜑

 is over conservative, while the latter 

applies to all tested networks.  This experiment result also supports the conclusion that 

the existence of a “small-world” phenomenon in networks can either inhibit or accelerate 

cascade, depending on the complexity of the propagation.  

To answer question (2), two heuristics protocols based on network centrality measures 

were initially proposed, namely the Bridge-Based Allocation (BBA) and Degree-Based 

Allocation (DBA). We initially hypothesized that the BBA would perform better in terms 

of preventing failures but with considerable trade-off in total response time compared to 

CBA, the existing resource allocation protocol of DLOC-CDR, in networks with high 

modularity. However, it was found that based on numerical experiments we concede that 

the BBA is not suitable to be applied in DLOC. The main advantage of the BBA is its ability 
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to identify bridging elements which its removal will make the network disconnected. The 

current DLOC, on the other hand, does not take into consideration of the connectivity 

state of the CPI network. Thus, rendering the BBA to become less effective than CBA and 

DBA. We also found that both CBA and DBA can be used interchangeably. Given a simple 

propagation, DBA constantly performs better on networks displaying high affinity towards 

power-law degree distribution compared to CBA. This is due to the high correlation 

between both centralities in these networks. For small-world networks, the performance 

increment from CBA to DBA has a decreasing trend with increasing network size. CBA’s 

performance is relatively constant and outperforms DBA in large network size.  
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CHAPTER 1. INTRODUCTION 

1.1 Motivation: N2N Service Challenge – Disruption Response 

Pervasive connectivity in e-Work networks (Nof, 2003) has brought forth a new type of 

service challenge in production systems. These challenges are characterized by 

increasingly interdependent service requirements and concurrent collaboration among 

service providers. A novel method to approach this challenge was proposed recently by 

(Zhong & Nof, 2015; Zhong, 2016) in the form of Dynamic Lines of Collaboration (DLOC) 

model. Inspired by the network-to-network interface ubiquitous in telecommunication 

networks, the DLOC model presents a novel abstraction of production systems as two 

interdependent networks, namely the client and the server network. The service 

challenge is then defined by the DLOC model as how to efficiently provide effective 

Network-to-Network (N2N) services in e-Work systems. Let the client network be defined 

as graph 𝑑𝑑 = (𝑁𝑁,𝐸𝐸) where the nodes 𝑁𝑁 and edges 𝐸𝐸 represent the elements of Cyber-

Physical Infrastructure (CPI) and the interdependency between them, respectively. The 

server (service team) network is defined as graph 𝑆𝑆 = (𝐴𝐴,𝑃𝑃) where the nodes 𝐴𝐴  and 

edges 𝑃𝑃  denote service agents and collaboration compatibility between them, 

respectively. An abstract representation of the N2N services in DLOC model can be seen 

in Fig 1.1 
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Figure 1.1 Abstract representation of N2N services of e-Work in DLOC (Zhong, 2016) 

Cascading failure is the mechanism by which failures propagate to cause large-scale 

catastrophes in complex systems. Cascading failure leads to the point of explaining large-

scale blackout phenomenon which occurs in power-grid systems (Dobson et. al., 2007).  

Apart from power-grid systems, cascading failure behavior are also imminent in other 

man-made CPIs such as in Smart Water Distribution Networks (WDN) (Shuang et. al, 2015). 

Other researchers have also found that most man-made CPI network exhibits modularity 

(Newman, 2006) and have power-law degree distribution which can be closely modeled 

by scale-free networks (Barabasi & Albert 2002). The implication of this is that networks 

with power-law degree distribution are less resilient to targeted disruptions as compared 

to random networks (Motter & Lai, 2002).  

The design of an effective disruption response team (service team) and operation in CPIs 

have to take into considerations of the interdependent service requirements between 

network elements. The DLOC model provides an appropriate modeling tool to aid the 

Interdependency in the client network  

Interaction between the client network and service team  

Interdependency in the service team network  

 
 

 

G(N,E) 

S(A,P) 
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design of disruption responders by eliciting the dynamic relation and collaboration among 

service agents when handling service requests from clients in the CPI network. Control 

protocols have been developed and validated under the DLOC model to improve the 

performance of N2N services for Collaborative Disruption Response (DLOC-CDR) 

operations. This research will be focused on enhancing the DLOC model usability for 

designing and evaluating the performance of N2N services as well as investigating new 

protocols to improve DLOC-CDR operations. 

1.2 Research Problem 

Existing works on graph theoretical analysis of network behaviors under disruption have 

not yet analyzed the novel N2N formation of the DLOC model, especially for DLOC-CDR 

operations. Due to the intrinsic nature of N2N service challenge, the results of past 

analysis may not be applicable as a guideline for designing N2N service teams in e-Work. 

The existing resource allocation strategy for DLOC-CDR has also not taken into 

consideration of protecting vulnerable nodes in the client network, which can cause 

system collapse by a single node failure (Motter & Lai, 2002) or through global cascades 

(Watts, 2002; Singh et. al., 2013) 

The research problem for this thesis can be defined as follows:  To identify a set of graph 

theoretical properties for a preliminary guideline of N2N service designs and investigate 

new control protocols for resource allocation of service agents for protection of 

vulnerable nodes. 
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1.3 Research Questions 

Based on the aforementioned research problem, the following research questions 

should be answered: 

1. Research Question 1 (RQ1): Graph Theoretical Analysis of DLOC Networks. 

What graph properties that can be viable predictors for evaluating the reliability 

of N2N service designs? How good are these predictors? 

2. Research Question 2 (RQ2): Protection of Vulnerable Parts of the Network. 

Which clients to connect with the service network to ensure timely disruption 

mitigation with regards to network topology and protection of vulnerable 

nodes?  

1.4 Overview of Proposed Methods 

This thesis proposes a development of one of the emerging principles of the Collaborative 

Control Theory (Nof, 2007) namely the DLOC Model (Zhong & Nof, 2015, Zhong, 2016) 

attributing to several network design methods and graph theoretical analysis. The DLOC 

model has been established to facilitate the modelling of various CPI systems and develop 

solutions for their respective N2N service challenges (Zhong & Nof, 2015, Zhong, 2016).   

Graph theoretical analysis will be conducted to find the relation among several basic 

network structural properties with the behavior and performance of N2N service for 

DLOC-CDR operations. The conclusion made from this analysis is set to establish 

preliminary guidelines for N2N service design in e-Work networks. 
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The Centrality-based depot allocation (CBA) protocol for service agent resource allocation 

on the previous version of DLOC only takes into consideration of the network’s 

betweenness centrality. In this research, we will attempt to improve the performance of 

DLOC-CDR by approaching the development of new resource allocation protocol from a 

network vulnerability point of view on cascading failure. Tools and methods provided 

from graph theory will be used in guiding the development of hypothesis and verification 

& explanation of experiment results.  

Finally, we will validate the proposed method of RQ1 and RQ2 using the Teamwork 

Integration Evaluator (TIE) – TIE/DLOC on several conceptual and real-world networks, 

namely electricity power grids. 

1.5 Assumptions 

The studies conducted in this research are built upon these following assumptions: 

1. Propagation of services (failures) 

Client network of the DLOC model request services which are to be fulfilled by the 

server network. In terms of DLOC-CDR, the client networks are CPIs while the 

server networks are disruption responder agents. The client network requests 

services to the server networks whenever it experiences a failure. The propagation 

of failure or service request among the elements of client network will be modeled 

based on adapted Watts Threshold model (Watts, 2002).  

2. Service team (Disruption responders) 
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The disruption responder agents travel within the client network according to the 

client’s network topology. It is assumed that each edge in  𝑑𝑑(𝑁𝑁,𝐸𝐸) represents 

one-unit length and the paths for agents to move are invulnerable to disruption, 

i.e. even though an edge or node is in failure state, an agent can still traverse 

through. 

3. Collaboration of service provider 

Disruption responder agents are required to collaborate with each other to fulfill 

certain types of service requests, i.e. to recover an edge in client network requires 

the collaboration of two agents. The collaboration compatibility among responder 

agents is denoted by an edge between them in the server network. 

4. Scheduling protocol  

The order in which a service is served within a queue follows the neuro-plasticity 

inspired protocols (Zhong, 2016). By this protocol, it is also assumed that the client 

network has an ability to add auxiliary edges to increase the robustness of local 

area to cascading failure.
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CHAPTER 2. LITERATURE SURVEY 

In this chapter, we will first review the DLOC model and its current development.  

Afterward, we will survey several literatures related to Graph theory application and 

analysis on complex networks. We will also be covering other topics related to complex 

networks are diffusion process, cascading failures, and disruption mitigation. 

2.1 The Dynamic Lines of Collaboration Model (DLOC) 

2.1.1 General Description 

The Line of Collaboration (LOC) principles under Collaborative Control Theory (CCT) (Nof, 

2007) addresses the relation among system elements (agents) to perform tasks in e-Work 

systems. Dynamic team structures are essential in e-collaboration, especially under 

emergent situations ((Velasquez, Yoon, & Nof, 2010). This statement is supported by the 

fact that different teams need to be formed to satisfy various task requirements and 

changing team structure is critical for the sustainability of the entire organization 

(Velasquez, Yoon, & Nof, 2010). Thus, the LOC are constantly updating inside and 

between teams. 
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The pervasive connectivity in emergent e-Work networks also administers collaboration 

requirement between interdependent networks, namely client and server networks 

(Zhong & Nof, 2015). For example, in a Cyber-Physical Systems (CPS), where elements are 

interdependent through cyber and physical links, service requirement from a client in a 

CPS will influence the other services in the same network, which dynamically affects the 

LOC within the server networks to provide their services. The concurrent collaboration of 

multiple servers is required to ensure that the service is provided promptly and prevents 

to become complicated by time.  

The DLOC model was developed to address the emerging Network-to-Network (N2N) 

service challenge in e-Work systems. It captures all details of the dynamic interactions 

between the client and the server networks: A networked service team whose 

collaborative operations are dependent on the team structure and the requirements from 

the client network. The dynamic service request from the client network are dependent 

on existing services as well as the interdependency within the clients (Zhong & Nof, 2015).  

2.1.2 Formulation of DLOC-CDR (Zhong & Nof, 2015) 

The main formulation of DLOC consists of four major building blocks: client network, 

service network, service propagation and prevention of failure by service agents.  The 

mathematical models for each building blocks are subject to the nature of the e-Work 

system under consideration.  Therefore, the DLOC model is flexible to be implemented 

on various systems with subject to different control protocols and network structure. 
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2.1.2.1 Client Network 

A client network is defined as 𝑑𝑑 = (𝑁𝑁,𝐸𝐸) with link distribution 𝑃𝑃𝐺𝐺 , where 𝑁𝑁  is set of 

nodes connected by edge (link) 𝐸𝐸 and |𝑁𝑁| & |𝐸𝐸| represent the number of node and edges 

in the network, respectively. A edge (𝑃𝑃, 𝑗𝑗)  represent dependency the between two 

adjacent nodes (𝑃𝑃, 𝑗𝑗𝑗𝑗𝑁𝑁) . The incidence matrix 𝑴𝑴𝑮𝑮 = (𝑚𝑚𝑣𝑣𝑟𝑟) maps out the incidence 

relationship between nodes (𝑛𝑛 𝑗𝑗 𝑁𝑁) and edges (𝑑𝑑 𝑗𝑗 𝐸𝐸) in client network G and adjacency 

matrix  𝑨𝑨𝑮𝑮 = (𝑃𝑃𝑖𝑖𝑖𝑖) contains the number of edges connecting nodes 𝑃𝑃 and 𝑗𝑗, (𝑃𝑃, 𝑗𝑗 𝑗𝑗 𝑁𝑁). For 

simplicity we assume that the client network is a simple graph; no parallel edges or loops, 

such that 𝑃𝑃𝑖𝑖𝑖𝑖 ≤ 1,∀𝑖𝑖𝑖𝑖, 𝑃𝑃, 𝑗𝑗 𝑗𝑗 𝑁𝑁.  Each nodes or edge in 𝑑𝑑 has two states at any time step: 

0 or 1. In ‘0’, the element is active – not requesting service, while ‘1’ represent the 

element is disrupted – requesting service. Disruptions that occur at time t are categorized 

into two types: edge failure and node failure.  

Client network edge failure 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑡𝑡(𝑃𝑃, 𝑗𝑗) = 1 and 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑡𝑡_(𝑃𝑃, 𝑗𝑗) = 0 (2.1) 

Client network node failure: 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑡𝑡(𝑃𝑃) = 1 and 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑡𝑡_(𝑃𝑃) = 0 (2.2) 

2.1.2.2 Failure and Service Propagation 

Let F be the set of disruptions which occur in the client network. The mapping from node 

failures and link ruptures to F is as follow:  a node failure is defined as a single disruption 

(𝑃𝑃 ∈  𝐹𝐹), and an edge failure is represented as two coupled disruptions (𝑃𝑃, 𝑗𝑗 ∈  𝐹𝐹). Each 

disruption is uniquely defined by a 3-tuple (𝑃𝑃 = < 𝜏𝜏𝑃𝑃, 𝜐𝜐𝑃𝑃, 𝛾𝛾𝑃𝑃 >, 𝑃𝑃 ∈  𝐹𝐹 ), where 𝜏𝜏𝑃𝑃  is the 

initial timestamp of this disruption (𝜏𝜏𝑃𝑃 ≥  0); 𝜐𝜐𝑃𝑃 represents the location of the disruption 
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(𝜐𝜐𝑃𝑃 ∈  𝑁𝑁). Note: here 𝑃𝑃 is not the index of nodes in G but an element of F; 𝛾𝛾𝑃𝑃 is a failure 

reference defined in Eq. (2.3). 

Edge failure reference:    𝛾𝛾𝑖𝑖 �
𝑗𝑗, 𝑃𝑃𝑖𝑖 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝜏𝜏𝑃𝑃 �𝜐𝜐𝑖𝑖 , 𝜐𝜐𝑖𝑖� = 1 𝑃𝑃𝑛𝑛𝑑𝑑 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝜏𝜏𝑖𝑖− �𝜐𝜐𝑖𝑖 , 𝜐𝜐𝑖𝑖� = 0
∅, 𝑃𝑃𝑖𝑖 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝜏𝜏𝑃𝑃 (𝜐𝜐𝑖𝑖) = 1 𝑃𝑃𝑛𝑛𝑑𝑑 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝜏𝜏𝑖𝑖− (𝜐𝜐𝑖𝑖) = 0

 (2.3) 

Eq. (2.3) shows that if two disruptions (𝑃𝑃 and 𝑗𝑗) are used to represent an edge failure 

together, the rupture references of them point to each other. If a disruption is used to 

represent a node failure, the reference is an empty pointer. 

The service propagation is modeled using an adapted Watts Threshold Cascade model 

(Watts, 2002). Different from the original version, propagation of failure on edges is also 

incorporated in our adaptation. In the beginning, all network elements (node and edges) 

are in state “0”. When a node or edge experiences a disruption (failure), it switches to 

state “1”. The cascading failure is modeled as a sequence of state changes. If a node is 

failed at time 𝑃𝑃, all connected edges will also adopt state “1”. At each time step, a node 

will assess its connected edges to determine it state. If fraction of edges in state “1” is at 

least equal to the cascade threshold 𝜑𝜑, the node adopts state “1”; thus, propagating the 

failure. Otherwise it retains its current state, vice versa (0 ≤ 𝜑𝜑 ≤ 1). Edges and nodes 

remain in state “1” unless repaired by responders.  

2.1.2.3 Service Team 

External to the client network (G), the service agents belong to another network defined 

as the service team. This network is a k-coloring of a graph 𝑆𝑆 = (𝐴𝐴,𝑃𝑃) where 𝐴𝐴 is the set 

of service agents that can restore failed nodes and edges in the client network. 𝑃𝑃 is set of 
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weighted edges which connects them. The number of service agents in the team is 

denoted by |𝐴𝐴|. There is a mapping of the node set of the graph, such that 𝑃𝑃:𝐴𝐴 → 𝑊𝑊, 

where 𝑊𝑊 is a set of k colors assignment to the nodes of 𝑆𝑆. Each colors of set 𝑊𝑊 represents 

the different capability (skills, responsibility, and workflow) of each service agents, such 

no nodes of the same color are adjacent in the network (Bond & Murty, 2007). The node 

coloring of graph 𝑆𝑆 is intended to model collaborative constraint of the service team to 

accomplish a certain task, such that for given task that requires collaboration, a given 

service agent (node) can only collaborate with another service agent which is adjacent to 

itself and has the required node coloring (in the case there many node colors which 

resembles different expertise). For the service team in this research, we will only apply 2-

coloring to the graph 𝑆𝑆.  

Each agent has two states: 0 for idle and 1 for working. Initially, each agent has an inter-

edge (𝐸𝐸) with one node in 𝑑𝑑 (i.e., the depot). If a node is failed, an agent will be assigned 

to repair, and thus transits to state 1. The working agent disconnects itself from its depot 

(𝑃𝑃) or current location and connects with the failed node (𝑗𝑗). It is assumed that the travel 

of an agent will not be affected by the failures in the client network. Therefore, agents 

can connect to failed nodes even if some links or nodes between 𝑃𝑃 and 𝑗𝑗 are failed. This 

assumption is reasonable for client networks, because the response team should have 

backup means to complete the response task.  

The service agents are initially located at depots (𝐷𝐷) and each agent has its own initial 

depot. We define a many-to-one correspondence relationship between sets of D and 𝑁𝑁 

as (𝑃𝑃 ∈ 𝐷𝐷 → 𝑃𝑃 ∈ 𝑁𝑁). This relationship denotes that a node in the client network can be 
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represented as the depot for more than one agent. For example, 𝑃𝑃, 𝑗𝑗 ∈ 𝐷𝐷 → ′𝑛𝑛𝑃𝑃𝑑𝑑𝑑𝑑 𝑃𝑃′ ∈

𝑁𝑁. In other words, even though some agents are deployed at the same physical locations 

of the client networks, they can be distinguishable by different notations of set 𝐷𝐷. By 

using this formulation, we can define that all depots uniform capacity of 1 and only binary 

decision variables are required. 

To model the relation between service agents and service requests (disruptions), we 

establish a virtual graph (𝐷𝐷 ∪ 𝐹𝐹, �𝑃𝑃𝑖𝑖𝑖𝑖 , 𝑃𝑃, 𝑗𝑗 ∈ 𝐷𝐷 ∪ 𝐹𝐹�) - 𝑃𝑃, 𝑗𝑗  here are not the index of 𝑁𝑁. This 

virtual graph has a directed and weighted edge denoted by (�𝑃𝑃𝑖𝑖𝑖𝑖�). The service agents 

travel on �𝑃𝑃𝑖𝑖𝑖𝑖� to handle disruptions. Each edge of the virtual graph has two parts: the 

traveling time from two locations (nodes) and the repair timespan used to remove 

disruptions. 

Weights of virtual graph:  𝑃𝑃𝑖𝑖𝑖𝑖 =  𝑃𝑃𝐷𝐷(𝑃𝑃, 𝑗𝑗) + 𝑃𝑃𝑅𝑅(𝑗𝑗) = 𝑑𝑑(𝑖𝑖,𝑖𝑖)
𝑟𝑟

+ 𝑃𝑃𝑅𝑅(𝑗𝑗)      (2.4) 

The traveling time and the distance function between the represented nodes in the client 

network are denoted by  𝑃𝑃𝐷𝐷(𝑃𝑃, 𝑗𝑗)  and 𝑑𝑑(𝑃𝑃, 𝑗𝑗) , respectively. For example, if 𝑃𝑃 ∈ 𝐷𝐷 

and  𝑃𝑃 = ′𝑛𝑛𝑃𝑃𝑑𝑑𝑑𝑑 𝑘𝑘1′ ∈ 𝑁𝑁 , the represented node for 𝑃𝑃  is 𝑛𝑛𝑃𝑃𝑑𝑑𝑑𝑑 𝑘𝑘1 . Same goes if 𝑗𝑗 ∈ 𝐹𝐹 

and  𝑃𝑃𝑖𝑖 = ′𝑛𝑛𝑃𝑃𝑑𝑑𝑑𝑑 𝑘𝑘2′ ∈ 𝑁𝑁 , the represented node for 𝑗𝑗  is 𝑛𝑛𝑃𝑃𝑑𝑑𝑑𝑑 𝑘𝑘2 . Thus, 𝑑𝑑(𝑃𝑃, 𝑗𝑗)  is the 

distance between 𝑘𝑘1 and 𝑘𝑘2. The distance function is application specific, where it can be 

denoted as Euclidean distance, shortest paths, etc. depending on the network 

application. 𝑃𝑃 is the velocity that the agents travel within the same space of 𝑑𝑑. 𝑃𝑃𝑅𝑅(𝑗𝑗) 

is the time required remove disruption at node 𝑃𝑃𝑖𝑖 ,if  𝑗𝑗 ∈ 𝐹𝐹. Otherwise, if 𝑗𝑗 ∈ 𝐷𝐷, 𝑃𝑃𝑅𝑅(𝑗𝑗) = 0. 

If 𝑗𝑗  is part of an edge rupture, ( 𝛾𝛾𝑖𝑖 = 𝑘𝑘) , 𝑃𝑃𝑅𝑅(𝑗𝑗) = 𝑃𝑃𝑅𝑅(𝑘𝑘),  which shows the current 
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collaboration lasts the same for the repair at two different sites. Collaboration ability of 

service agents is specifically designed for N2N services. An edge (𝑃𝑃, 𝑗𝑗) can only be repaired, 

If: 

1. Two agents are connected to each ends (nodes) of the edge 

2. The two agents can collaborate within the service team (𝑆𝑆) as defined earlier.  

2.1.2.4 Prevention of Failure by Service Team 

The presence of disruption responders in the node of the client networks enables them 

to prevent errors from propagating or ever occurring to the supervised node. Supervision, 

node failure prevention, and edge failure prevention are defined as follows.  

A node 𝑃𝑃, 𝑃𝑃 ∈ 𝑁𝑁, is supervised if and only if a disruption responder agent is located at the 

node: there is an inter-edge between this node and the responder.  

CPS node supervision (𝑃𝑃) = �1 ∃(𝑃𝑃,𝑃𝑃) ∈ 𝐸𝐸
0 𝑃𝑃𝑃𝑃ℎ𝑑𝑑𝑃𝑃𝑒𝑒𝑃𝑃𝑠𝑠𝑑𝑑

, 𝑃𝑃 ∈ 𝑁𝑁, 𝑃𝑃 ∈ 𝐴𝐴 (2.5) 

An edge (𝑃𝑃, 𝑗𝑗) is supervised if and only if two node incident to the edge are supervised and 

the supervising responder are able to collaborate. 

CPS node supervision (𝑃𝑃, 𝑗𝑗) = �1 ∃(𝑃𝑃,𝑃𝑃) ∈ 𝐸𝐸, (𝑗𝑗, 𝑃𝑃) ∈ 𝐸𝐸, (𝑃𝑃, 𝑃𝑃) ∈ ∁
0 𝑃𝑃𝑃𝑃ℎ𝑑𝑑𝑃𝑃𝑒𝑒𝑃𝑃𝑠𝑠𝑑𝑑

, 𝑃𝑃, 𝑗𝑗 ∈ 𝑁𝑁,𝑃𝑃, 𝑃𝑃 ∈ 𝐴𝐴 (2.6) 

As modeled by the Watts Cascade Threshold model, a node will fail if at least 𝜑𝜑 fraction 

of its edges are failed. If an edge is supervised, this edge does not as a failed edge to 

propagate the failure. Thus, the definition of node failure is updated as follows. 

Client node failure:  

state (𝑃𝑃) = �1 
∑ 𝑠𝑠𝑡𝑡𝑣𝑣𝑡𝑡𝑟𝑟(𝑖𝑖,𝑖𝑖)(𝑖𝑖,𝑗𝑗)∈𝐸𝐸 −∑ 𝑠𝑠𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖𝑟𝑟𝑣𝑣(𝑖𝑖,𝑖𝑖)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)=1

𝑑𝑑𝑟𝑟𝑑𝑑𝐺𝐺(𝑖𝑖)
≥ 𝜑𝜑

0 𝑃𝑃𝑃𝑃ℎ𝑑𝑑𝑃𝑃𝑒𝑒𝑃𝑃𝑠𝑠𝑑𝑑
, 𝑃𝑃, 𝑗𝑗 ∈ 𝑁𝑁 (2.7) 



14 
 

 

  

A link failure is defined as follows: if only one of its incident nodes is failed, the edge will 

fail as the other node is not supervised. If both nodes are failed, the edge will fail unless 

it is supervised (Eq. (2.8)). 

Client edge failure: state (𝑃𝑃, 𝑗𝑗) = 

�
𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑(𝑃𝑃)𝑥𝑥�1 − 𝑠𝑠𝑢𝑢𝑝𝑝𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑛𝑛(𝑃𝑃)� + 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑(𝑗𝑗)𝑥𝑥�1 − 𝑠𝑠𝑢𝑢𝑝𝑝𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑛𝑛(𝑗𝑗)�  𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑(𝑃𝑃) ≠ 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑(𝑗𝑗)

𝑠𝑠𝑢𝑢𝑝𝑝𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑛𝑛(𝑃𝑃, 𝑗𝑗)          𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑(𝑃𝑃) = 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑(𝑗𝑗) = 1
0         𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑(𝑃𝑃) = 𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑(𝑗𝑗) = 0

 

   , 𝑃𝑃, 𝑗𝑗 ∈ 𝑁𝑁 (2.9) 

2.1.2.5 Objective Function 

Given all of the DLOC major components have been explained, the mathematical 

formulation of the objective function is presented below: 

DLOC-CDR objective function: min 𝑧𝑧 = ∑ (𝜎𝜎𝑖𝑖 − 𝜏𝜏𝑖𝑖)𝑖𝑖,𝑖𝑖∈𝐹𝐹    (2.10) 

s.t. 

Response sequence constraint: 𝜎𝜎𝑖𝑖 ≥ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖∈𝐷𝐷∪𝐹𝐹 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖∈𝐹𝐹  𝑖𝑖𝑃𝑃𝑃𝑃 𝑗𝑗 ∈ 𝐹𝐹   (2.11) 

Depot visit constraint: ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 =𝑖𝑖∈𝐹𝐹 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖∈𝐹𝐹 ≤ 1,𝑖𝑖𝑃𝑃𝑃𝑃 𝑃𝑃 ∈ 𝐷𝐷   (2.12) 

Disruption visit constraint: ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1𝑖𝑖∈𝐷𝐷∪𝐹𝐹 , 𝑖𝑖𝑃𝑃𝑃𝑃 𝑃𝑃 ∈ 𝐹𝐹𝑖𝑖∈𝐷𝐷∪𝐹𝐹     (2.13) 

Depot-wander elimination constraint: ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 0𝑖𝑖,𝑖𝑖∈𝐷𝐷     (2.14) 

Sub-tour elimination constraint: ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ |𝐵𝐵| − 1,𝑖𝑖𝑃𝑃𝑃𝑃 𝐵𝐵 ⊂ 𝐹𝐹𝑖𝑖.𝑖𝑖          (2.15) 

Repair constraint: 𝜎𝜎𝑖𝑖 ≥ 𝜏𝜏𝑖𝑖 ,𝑖𝑖𝑃𝑃𝑃𝑃 𝑃𝑃 ∈ 𝐹𝐹        (2.16) 

Concurrent collaboration requirement: 𝜎𝜎𝑖𝑖 = 𝜎𝜎𝑖𝑖 for 𝛾𝛾𝑖𝑖 = 𝑗𝑗, 𝛾𝛾𝑖𝑖 = 𝑃𝑃, and 𝑃𝑃, 𝑗𝑗 ∈ 𝐹𝐹    (2.17) 

Decision variables for repair tours: 𝑋𝑋 = {𝑥𝑥𝑖𝑖𝑖𝑖 = {0,1}, 𝑃𝑃, 𝑗𝑗 ∈ 𝐷𝐷 ∪ 𝐹𝐹}    (2.18) 

Cascading function of disruptions: 𝐹𝐹 = 𝐶𝐶𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝐷𝐷(𝐹𝐹0,𝑑𝑑,𝑋𝑋)        (2.19) 
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Where 𝑧𝑧 is the total latency for disruption recovery; 𝜎𝜎𝑖𝑖 is the timestamp when disruption 

𝑃𝑃  is recovered; 𝜏𝜏𝑖𝑖  is the timestamp when disruption 𝑃𝑃  started; 𝑥𝑥𝑖𝑖𝑖𝑖  is a binary decision 

variable indicating if a repair-agent should go from node 𝑃𝑃 to node 𝑗𝑗 (𝑃𝑃, 𝑗𝑗 are either a depot 

or disruption) and 𝑋𝑋 is the set of all 𝑥𝑥𝑖𝑖𝑖𝑖; 𝐵𝐵 is the subset of any disruption; 𝐹𝐹0 is the set of 

initial disruption at time 0; and 𝐶𝐶𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝐷𝐷  is a model that generates the entire set of 

disruption 𝐹𝐹 based on initial disruptions (see section 2.1.2.2). 

 

2.1.3 TIE-DLOC Simulator 

A software tool has been developed to facilitate the modelling of various systems with 

the DLOC model and evaluate different protocols called the TIE/DLOC (Zhong & Nof, 2015; 

Zhong, 2016). It is based on the previous concepts of Teamwork Integration Evaluator (TIE) 

for various systems developed at PRISM Center, Purdue University.  The TIE tools apply 

parallel computers to simulate distributed e-Work enterprises, decision makers, agents, 

or sensors, which are communication and collaborating for a set of tasks. The 

input/output diagram of TIE/DLOC is illustrated in Fig. 2.1. 

 
 

 

 

 

 

Figure 2.1 Input/Output Diagram of TIE/DLOC (From Zhong, 2016) 
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2.1.4 Past Developments and Applications 

The TIE/DLOC has been previously applied to solve several N2N services challenges 

listed as below: 

1. Collaborative Disruption Response (Zhong & Nof, 2015) 

A collaborative disruption response (CDR) scenario in CPS was simulated on numerical 

experiment using three different networks models namely, ER: Erdos-Renyi random 

graph (Erdos & Renyi, 1959); BA: Barabasi-Albert scale-free networks (Barabasi & 

Albert, 1999; and WS: Watts-Strogatz small-world model (Watts & Strogatz, 1998). 

The client networks are modelled as people, systems, or other agents having two 

states: 0 for not requesting service and 1 for requesting service. They are linked into 

a network through their dependencies or interactions. It is assumed that the client 

network has a uniformly undirected and unweighted link. The client network will 

initiate a service request whenever there is a disruption within the network. 

Disruptions are in a form of link or node rupture within the client network.  

The service request will propagate throughout a network if not handled. In this work, 

a structure-based model is adopted to imitate the service request propagation. It is 

assumed that failed elements (nodes/links) will cause structurally connected 

elements to fail under the percolation theory (Watts, 2002; Bashan et al., 2011). 

The server network is external to the modeled network, but has inter-connected 

edges with client network, which can be interpreted physically as repairman depot. A 

collaboration relation is defined in the form of links between the server agents if they 

have collaborative ability to execute a certain task.  If a service depot (server) is 
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positioned (supervising) at a certain node within the network, then the server has 

error prevention capability attributed to the node. Link rupture prevention can only 

be achieved if both ends (nodes) of the links are supervised by a server; both nodes 

have interconnected edges to the server network. 

The N2N service challenge defined by this work is optimal resource allocation of the 

server/responder to manage the propagating service requests. This challenge was 

further breakdown in three specific questions: (1) How the team configuration should 

be? (2) How should the service depots be allocated? (3) How to schedule service 

operations to maximize quality of service? 

An Asynchronous Collaboration Requirement Planning (ACRP) framework is 

established for the construction of reconfigurable service team to provide flexible 

services to the client (to answer (1)). Depot allocation decisions (2) are implemented 

by using the Centrality-based depot allocation (CBA) method. In this method, service 

agents are initially positioned at nodes that have high betweenness centrality 

(Freeman, 1977). This is given the assumptions that the repair agents can only 

traverse through the client network using the existing links (regardless of ruptured or 

not), e.g. repair agents traveling to restore electricity grids.  Neuroplasticity-inspired 

protocols where applied to determine the schedule of providing service requested 

from the client network (3). This protocol consists of two main components; the 

activity-based priority (ABP) protocol (the main assignment protocol) and Auxiliary 

Links (ALs) addition procedure to the client network to improve local efficiency in the 

recovery operation. 
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Experiments were conducted on both conceptual complex network models, namely 

Erdos-Renyi random graph (Erdos & Renyi, 1959), Barbasi-Albert scale free networks 

(Barabasi & Albert,1999), and Watts-Strogatz small-world model (Watts & Strogatz, 

1998), and a realistic case study of a water distribution system. The results of these 

experiments concluded that the small-world phenomenon (Milgram, 1967; 

Watts,1998) attributed in the difficulty of removing cascading failures by service 

agents because disruptions are more difficult to be removed if they propagate to 

interlinked clusters. A better and more efficient collaboration between the service 

teams (through training, etc.) can improve the improve response performance to 

certain upper boundary dictated by the availability of service team resources. 

Meanwhile, the neuroplasticity-inspired protocol was able significantly reduce the 

total number of failures, distance travelled by repair agents, and latency compared to 

First-Come-First-Serve (FCFS) scheduling protocols. The ABP can be applied to any 

client network, while ALs can only be applied to reconfigurable client networks with 

acceptable reconfiguration costs. 

2. Furniture Manufacturing (Candranegara, Zhong, and Nof, 2015) 

Conflicts and human/machine errors (CE) between operations can propagate and 

leads inferior products in a furniture manufacturing systems. The N2N challenge in 

this system is how to efficiently allocate CE detection agents along the production line. 

Since these resources requires collaboration and services are interdepended, this 

problem can be solved by a DLOC model. Allocation of inspection resources (the 

server network) to the manufacturing stations (client network) for efficient detection, 
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prevention, and recovery of CEs were conducted by the measuring eigenvector 

centrality of each stations (network nodes) with respect to historical occurrence of 

CEs and the influence the station to other stations. Two scenarios are simulated: 

inspection by humans or by emerging autonomous systems. Experiment shows that 

the developed method increases CEPD performance with statistically significance by 

reducing the time to completion compared with the decentralized method (allocating 

resources to every stations), and increasing the preventability and reliability while 

reducing the rectification cost compared with the centralized method (allocating 

resources at the end of process). This case study validates the DLOC model in a 

manufacturing client network. 

 

2.2 Graph Theory and Network Science Problems 

2.2.1 Review of Graph Theoretical Analysis in Complex Networks 

The studies of network to model real-world problems came as early in the 17th century by 

Leonard Euler. His mathematical description vertices (nodes) and edges that builds 

network of Konigsberg bridge laid foundation to graph theory. The study of Graph theory 

does not directly translate into the study of network science and complex network, where 

the latter focuses on more of the applied application of graph theory tools to model and 

analyze real-world networks. Initially, real-world networks were thought to be random in 

their topology, as exemplified by the Erdos-Renyi random graph (Erdos & Renyi, 1959, 

1960). In the late 1990s, further advances in network science have found that real-world 
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networks have power-law degree distribution (Barabasi & Albert, 2002), which is not true 

in random networks that have Poisson degree distribution. Other attributes that were 

observed were the existence of short links connecting distant part of the network, but 

still maintain relative local interconnection (clustering). This attribute was later dubbed 

as the “small-world” property (Watts & Strogatz, 1998). Both of these attributes became 

canonical for network case-studies where they represented by the scale-free network 

(Barabasi & Albert, 2002) and small-world network (Watts & Strogatz, 1998).  

The study of robustness of networks against perturbation has become attractive lately, 

mostly related to complex system designs. The common properties measured in studying 

the robustness of a network are average geodesic length and size of giant component. It 

has been found that scale-free networks have high degree of robustness against random 

failure, but extremely vulnerable to failure in its hubs (Albert et al., 2000). The prevalence 

of community and modularity also effects networks robustness (Newman, 2006; Tran & 

Kwon, 2013). Modularity is negatively correlated with network robustness.  The study of 

network robustness has also motivated in the development of new network centrality 

measures (Freeman, 1977). One particularly new centrality measure is the bridge 

centrality (Hwang et al., 2006). The Bridge centrality has interesting potential of 

effectively detecting bridging edges & nodes which connects different network modules.  
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2.2.2 Prior Research Works Related to Cascading Failures in Complex Networks and 

Vulnerability 

It has been observed that real-world CPIs exhibits the characteristics of a cascading failure 

under perturbation. A profound example of this is the blackout of power grids which 

happened recently in the USA (Kadloor & Santh; 2010). The significance of this 

phenomena is that due to cascading failure, a single element failure may result into 

catastrophic consequence.  

The analysis and modelling of cascading failure has only been available in the recent 

decade. There are two main school of thoughts for modelling cascades in complex 

networks: the load-based and the threshold-based. The former, load-based method, is 

based on the concept of dynamical redistribution of flow in networks (Crucitti et. al., 

2004).  This model commonly used to analyze the cascading dynamics in networks where 

the elements are subjected to loads, i.e. power grid, water distribution networks (Lv et. 

al.,2014; Shuang et. al., 2015; Shuang et. al., 2014). However, we will not focus our 

research in this method since it is not being used by the DLOC. The threshold-based model 

is developed based on considering the diffusion of information or propaganda in social 

networks, where each individual’s state depends on its neighbors (Granovetter, 1978; 

Watts, 2002). Under this model, global cascade or full-size cascade occurs according to 

“cascade window” which varies according to the average degree and threshold value. In 

the initial model, cascade is triggered by a single failing nodes and the rest will also fail if 

the threshold is met. Further application of this model has resulted in a number of 

generalization in different networks. In social contagion (viruses, information, innovation), 
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a generalized model of has been made by integrating interdependent interaction models 

(Dodds & Watts, 2004). The model has also been generalized using analytical approach in 

modular networks (Gleeson, 2008), degree-correlated networks (Dodds et. al., 2009), and 

networks with adjustable clustering (2011). It has also been studied that different failure 

initiator selection and number would influence the final size of cascade (Singh et al., 2013).  

This mode threshold lends some similarity with other social contagion models such as the 

SIS model, where both models consider the fraction of “failure” neighbors to determine 

a node’s probability of becoming fault (Dodds & Watts, 2004). In information diffusion 

theory, sociologists have long argued that “bridges” between disjoint community clusters 

promotes the diffusion of information or diseases (Granovetter, 1973). This was further 

confirmed by the small-world network model (Watts & Strogatz, 1998) where links 

between otherwise distant nodes are created by rewiring that of a regular graph. It was 

found that disease infection spreads much easier and quickly in this network. 

Nevertheless, the type of cascade assumed in the aforementioned studies were simple 

propagation; one “fail” neighbor is sufficient to transmit information or tilt the status of 

its neighbor into “fail” as well. The other type of cascade is the complex propagation 

where it takes a minimum threshold of neighbors in “fail” status allow a given adopting 

the same “fail” status as well (Granovetter, 1978). Both of these cascade types are 

addressed in the Watts Global Cascade Threshold model by adjusting the cascade 

threshold (Watts, 2002). Complex propagation typically unfolds in clustered networks or 

within cluster modules of networks. This was exemplified in the studies of recruitment 

patterns for social movements; they are typically effective in locally dense network of 
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relationship (McAdam, 1986; McAdam et al., 1993). For complex propagation, it was 

shown “bridges” or random edges connecting node clusters can actually inhibit the 

cascade growth process (Centola et al., 2007). In fact, another studies proved that the 

occurrence of connected clusters in networks are the only obstacles to cascades (Easley 

& Kleinberg, 2010). Specifically, given the cascade threshold is 𝑞𝑞 , a 

failure/disease/information cannot propagate into a different node cluster if given the 

next node cluster has a clustering density (coefficient) greater than 1 − 𝑞𝑞.  

Despite there have been many advances in study of cascading failures in complex 

networks, there hasn’t been any research with the integration of DLOC model. The DLOC 

is a new class of research problems in the emerging e-Work systems; past findings and 

research regarding cascade behavior can be applied to DLOC-CDR to aid in developing 

quick design guidelines for disruption responders in CPI networks.  

 

2.2.3 Prior Research Works Related to Disruption Mitigation and Control 

Previous works in network disruption mitigation and control can be broadly grouped into 

two general directions.  The first direction discusses about designing robust network 

through identifying the critical elements of a network to maintain connectivity or 

connectivity reliability; maintain single component connected graph topology. This 

approach can also be implied as pre-disruption mitigation approach. The second approach, 

although not completely exclusive of the first, discusses about post-disruption mitigation. 

Prior works in identifying critical elements connectivity have mainly focused on the 

application of design of sensor and radio communication networks. The minimum 



24 
 

 

  

number of neighbors needed to maintain connectivity in a random radio network was 

previously investigated through simulation (Ni & Chandler, 1994). This resulted the 

“magic number” of minimum be neighbors to be three to eight. For wireless sensor 

networks, the number is estimated as a logarithmic function of the total number of nodes 

(Xue & Kumar, 2004). Subsequent research works develop these model by taking into 

account of various conditions. For example, (Dong, et al., 2007) found the lower bound 

probability of a wireless sensor network being connected under Rayleigh Fading as a 

function of minimum node density. Connectivity properties was also studied large scale 

sensor networks as a mean to optimize multi-path routing (Pishro-Nik, et al., 2009). 

Another approach for pre-disruption mitigation is by providing redundancy. (Chen and 

Nof, 2000; Chen, 2002) investigated genetic algorithms to be used in modelling low-cost 

fault tolerant structure of Multi-Enterprise Networks.  Inspired by the Fault Tolerance by 

Teaming principle of CCT (Nof, 2007), a new design paradigm called Resilience by Teaming 

(Reyes Levalle & Nof, 2015) has been validated on several supply networks to provide 

better network resiliency under disruptions.   

Connectivity reliability analysis has also been done on several other real-world networks. 

In transportation networks, a research has been conducted to aid post-disaster road 

network recovery decisions (Bin, et al., 2009). The road network was modeled as a 

weighted flow graph, whereas the flow represents time-varying traffics, and by assessing 

connectivity reliability of different recovery scenarios an optimal decision can be found 

to minimize total travel time cost between each pairs of nodes. Optimal resource 
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allocation (cost) for partial road network recovery has also been investigated using 

Lagrangian based heuristic algorithm (Liu & Qi, 2014).  

Still under the category of pre-disruption mitigation strategies, other works have 

investigated network design for self-healing telecommunication networks by utilizing 

spare capacity planning. The network in these works are modeled as bi-directional 

weighted networks having multiple commodities between different source and sink 

nodes (multi-commodity flow problem). There are two main basic methods devised by 

these works, namely line restoration and path restoration. Link restoration allocates 

spare capacity to the links so that a faulty link’s flow can be rerouted through an alternate 

path using the spare capacities of the links in the network (Veerasamy & Venkatesan, 

1995). Other works under these methods have mainly focused on developing algorithms 

and heuristics to compute optimal rerouting policy (Krishnamurthy, et al., 2003; Grover, 

et al., 1991; Sakauchi, 1990). Path restoration on the other hand, considers each path 

disrupted by the link failure separately and rerouted over an alternate path between the 

source and sink nodes (Murakami & Kim, 1998; Doshi, et al., 1991; Grover, 2000). This 

method, although requires more computation power, results in a more efficient spare 

capacity planning. Research developments in pre-disruption mitigation strategies have 

equipped network planner with better insight on the design of a more resilient client 

network, especially in weighted networks (i.e. telecommunication networks). However, 

the N2N challenges that DLOC addresses requires the properties of Online Service and 

Cascading Failures (Zhong & Nof, 2015; Zhong, 2016). These properties have not been 

addressed in the aforementioned works.  
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Post-disruption mitigation strategies research works are commonly found in protection 

of vital infrastructure networks. In Water Distribution Networks (WDN), an emergency 

model was developed to redistribute water pressure and flow to prevent cascading failure 

due to overload (Shuang, et al., 2014). Nodes in the network represents water reservoirs, 

consumers, and tanks, while edges represent pipes, pumps, and valves. The loads (flows) 

are assumed to be dynamic, such that it will cause edge failure if exceeds the flow capacity. 

In this model, external emergency resource exists to fix failed elements (nodes/edges) 

and are triggered by a certain threshold. However, external resources here assumed to 

be unlimited. Power grids utilizes a load shedding strategy to balance overall demands 

with electricity availability. In this case, the power grid network is abstracted as a graph, 

where the nodes represent buses (loads and generators) and edges represent electricity 

lines (Xu & Girgis, 2001; Aponte & Nelson, 2006; Bevrani, et al., 2010). Another method is 

proposed where the removing of “insignificant nodes” that a contribute more load to the 

network than they handle is removed to reduce the size of cascading failure (Motter, 

2004).  There are still several other works not mentioned here which also discusses about 

post-disruption mitigation strategy. However, for the interest of conciseness, the 

literature survey presented here have fairly represented the general types of work 

previously done.  

In summary, the post-disruption mitigation strategies presented gives a robust method 

to mitigate disruptions, especially for client network control during disruption. However, 

they have not yet included the external service network aspect of the DLOC. 
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2.2.4 Prior Research Works Related to Service Resource Allocation and Network 

Component Protection Priority 

Service resource allocation problems found in previous works are commonly related to 

facility location problem or k-center problem in graph theory.  Given a weighted network, 

this problem is concerned with optimal placement of facilities to minimize transportation 

cost across the network. There has been copious amount of research in this problem and 

exact and approximate algorithms have been found to fine the optimal placement 

(Current, et al., 1990). A subset of this problem deals not only with minimizing cost, but 

also maximizing coverage; the common name for these set problem the maximum 

coverage/shortest path problem (Current, et al., 1985). Location and covering problems 

in undirected and directed flow networks have been studied in (Tamura, et al., 1990; 

Tamura, et al., 1992), the optimal solution of both of these problems can be obtained in 

polynomial time. Resource allocation (facility location) for post-disaster management also 

requires the facility to have maximum coverage on the affected area with respect to 

minimum routing cost (Viswanath & Peeta, 2002). One of the key element in this work 

was the resource constraint on the number of resources to be deployed vs minimum cost 

routing which was solved using integer programming. A sensor location problem in traffic 

networks have also been investigated to find the minimum number of sensors such that 

information on flow volume in specific path can be obtained (Gentili & Mirchandani, 

2005). The maximal coverage/shortest path problem aligns with resource allocation 

problems applied in DLOC, where server have to be initially positioned in nodes that 

minimizes overall expected routing cost as well having maximum coverage of the network 
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in terms of group allocation. However, the approach employed on this problem cannot 

be directly adopted to the collaborative disruption response problem in DLOC. As stated 

in (Zhong & Nof, 2015; Zhong, 2016) the positioning of server agents in client networks 

also functions as error prevention on the supervised nodes/links. Thus, there is another 

objective of maximally positioning the server agents to protect important nodes. 

Due to cascade of overload failure, the highly heterogeneous distribution of loads of real-

world network makes them vulnerable to attacks such that an avalanche of failure nodes 

(cascading) may occur by disabling a single (or several) key nodes (Motter & Lai, 2002). A 

better protection strategy of client network can be developed by also taking into account 

this fact, i.e. priority protection on vulnerable nodes. Several research works have 

dedicated to investigate network survivability under the failure of these set of nodes and 

identify them for priority protection. (Cruciti, et al., 2004) showed that in weighted 

networks, the vulnerable nodes are the ones with the largest load. In fiber infrastructure 

network, a polynomial time algorithm has been developed to simulate several node 

failures (single or set) to identify the vulnerable nodes (Neumayer, et al., 2011). 

Vulnerable nodes in directed water distribution network where identified by assessing 

the ratio between discrepancy of failures cascade & direct failure and total number of 

initial node (Shuang, et al., 2014). The previously aforementioned works have 

investigated node vulnerability under the consideration of cascading overload failures, 

typically in flow networks. Notwithstanding the importance of flow continuum in 

networks, vulnerable nodes can also be identified by analyzing the network topological 

structure. Several measures graph (network) centrality measures have been developed, 
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including degree centrality and betweenness centrality (Freeman,1977; Borgatti, 2005; 

Newman, 2001). Nevertheless, these previous centrality measures are dominated by 

elements’ degree due. A newly developed measure, named bridging centrality measures, 

aims to identify the most important component in the networks by exploiting graph 

properties of cut edges/vertices and clustering (Hwang et al., 2006). Cut vertices/edges 

denotes the elements of a graph (network) where if removed would increase the number 

of connected components. This essential in real-world networks which mainly exhibits a 

modularity structure (Newman, 2006). 

In summary, previous research works related service resource allocation and network 

component protection priority have given significant contribution in understanding the 

failure dynamics and protection of complex network. Nevertheless, these two areas are 

still disaggregated in approaching collaborative disruption response – although they both 

hold important findings to improve collaborative disruption response. Thus, in the 

following chapter we will try to improve the service allocation protocol in DLOC by taking 

into account both the optimal service allocation as well as differentiated network 

component protection priority. 
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CHAPTER 3. GRAPH –THEORETIC PROPERTY ANALYSIS OF DLOC 

This chapter is dedicated for RQ1. We will revisit the results of previous research works 

on DLOC (Zhong & Nof, 2015; Zhong, 2016) and use tools from graph theory to develop 

inferences and quick guidelines for the design of disruption response operation in CPI 

network. The main contribution of this chapter is to find a general pattern of graph 

(network) properties which can approximate and explain the results of the DLOC 

experiments on conceptual networks and validate it on real-world CPI networks. The 

conceptual networks that will be used in this research are Erdos-Renyi Random Network 

(ER), Barabasi-Albert Scale-free Network (BA), and Watts-Strogaz Small-world Network 

(WS).

 

3.1 Phase Transition for Probability of Recoverability (𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

The threshold cascade model of the DLOC has been observed to display a phase transition 

phenomenon governed by the critical value of cascade threshold (𝜑𝜑), average degree 

(𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺�������), and failure initiator fraction (𝑝𝑝𝐹𝐹0)  at which beyond the critical mark, a global 

cascade first commence (Watts, 2002; Singh, 2013). Global cascade is defined as cascade 

size covering >90% of the networks elements. Motivated by this phenomena, we 

hypothesize that there’s exist a certain regime where the probability of a CPI network 
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(under the DLOC model) to fully recover from a cascading disruption is strictly less than 1,  

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 <1, and vice versa. Our initial analysis presumes that it is governed by the 

disruption responder team size (|𝐴𝐴|), average degree (𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺�������), and cascade threshold (𝜑𝜑) 

– while keeping the failure initiator fraction (𝑝𝑝𝐹𝐹0 ) fixed at certain value. We will be  

validating this hypothesis numerically by using the TIE-DLOC simulator on conceptual 

networks and a power grid network. 

3.2 Probability of Recovery from Cascade (𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) in DLOC 

In the presence of cascading failures, the client network, according to the DLOC model, 

will request service to the server network (disruption responders) to start the recovery 

process from failures. The resiliency of client CPI network to recover from impending 

disruption is addressed in DLOC by the Recoverability 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 metric (Zhong & Nof, 2015; 

Zhong, 2016). It can be formulated as: 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑃𝑃(|𝐹𝐹𝑡𝑡| = 0, 𝑃𝑃 > 0) (3.1) 

Where |𝐹𝐹𝑡𝑡|  denotes the dynamic cascading failure size at time t. The realization of 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 from the TIE-DLOC simulator is an average value over the number of replications. 

 

3.3 Analysis and Assumptions 

Analytical models have been developed predict the average cascade size for threshold 

model in different networks. (Watts, 2002; Dodds & Watts, 2004; Gleeson, 2008; Hackett 

et al., 2011). Let 𝑆𝑆𝑡𝑡  denote the subset of nodes in 𝑑𝑑(𝑁𝑁,𝐸𝐸)  which has already been 
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infected by the cascading failure (cascade size) at time 𝑃𝑃, 𝑆𝑆𝑡𝑡 ⊂ 𝑁𝑁. By construction of the 

Watts threshold model, |𝑆𝑆𝑡𝑡+1| > |𝑆𝑆𝑡𝑡| holds only if there exist a node 𝑃𝑃, 𝑃𝑃 ∉  𝑆𝑆𝑡𝑡 adjacent 

with at least one node in 𝑆𝑆𝑡𝑡 and has a degree (𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃)) ≤ �1
𝜑𝜑
�.  We proceed to call these 

nodes which has potential to propagate failures as vulnerable nodes.  

Several additional assumptions are applied to this study to limit the scope of analysis: 

1. Disruption responder team formation 

We assumed a fixed the number of disruption responder team |𝐴𝐴| to be 0.07*|𝑁𝑁|. 

Furthermore, it is assumed that each agent has the ability to collaborate with 1/3 

of the disruption responder team, or 𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠(𝐴𝐴) = |𝐴𝐴|
3

. 

2. Edges of client network 

Although the adopted Watts threshold Cascade Model in DLOC takes into account 

of failures involving the edges of the network, we concede that this will not be 

taken into account. It can be argued that this will not influence the analysis 

significantly since the failure state of the edges depend solely on its adjacent 

nodes. 

3. Failure initiator (𝐹𝐹0) 

For all network tested, we assume that initial failures occur randomly on 5 client 

network nodes. 

4. Disruption Responder Allocation 
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The disruption responder agents will initially be allocated to the nodes of client 

network with the highest betweennnes centrality value. This method is known as 

the Centralit-Based Depot Allocation, CBA (Zhong & Nof, 2015; Zhong, 2016). 

 

We proceed by presenting two hypotheses that can approximate the phase transition of 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 

Hypothesis 3.1 

   𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺������� > 1
𝜑𝜑
→ 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑟𝑟 = 1 (3.2) 

By the construction of the Watts threshold cascade model, we hypothesized that the 

expected degree of node should be more than the reciprocal threshold cascade 𝜑𝜑. 

 

Hypothesis 3.2 

𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟 = ∑ 𝑝𝑝𝑟𝑟(𝑘𝑘)𝑝𝑝𝑘𝑘𝑘𝑘 < 0.70 → 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1 (3.3) 

𝑝𝑝𝑟𝑟(𝑘𝑘) = 1 𝑃𝑃𝑖𝑖 𝑘𝑘 ≤ �1
𝜑𝜑
�, 0 otherwise (3.4) 

We denote that if the fraction vulnerable nodes (𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟) is less than 0.70, then the 

network has a probability of 1 to recover from disruption. 𝑝𝑝𝑘𝑘 denotes the probability that 

a node has a degree 𝑘𝑘, while 𝑝𝑝𝑟𝑟(𝑘𝑘) is binary variable conditioned on whether a node with 

a degree 𝑘𝑘 is vulnerable based on the threshold cascade. This relation is not bidirectional. 
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3.4 Experiment: TIE-DLOC Simulation 

We validate Hypothesis 3.1 and 3.2 through numerical simulation using TIE-DLOC 

simulation software. The data set is divided into two groups, namely conceptual networks 

and real-world networks. The latter consist of three different conceptual networks: Erdos-

Renyi Random Network (ER), Barabasi-Albert Scale-free (BA), and Watts-Strogatz Small 

world (WS). Each network will have 2 combinations of |𝑁𝑁| and 𝑑𝑑𝑑𝑑𝑑𝑑�����𝐺𝐺  summarized in Table 

3.1. Each network will also be tested on varying cascade threshold (𝜑𝜑): 0.25 and 0.4. 

Table 3.1 Combination of |N| and 𝑑𝑑𝑑𝑑𝑑𝑑�����𝐺𝐺  for conceptual network 

Combination Number of Nodes |𝑁𝑁| Average Degree (𝑑𝑑𝑑𝑑𝑑𝑑�����𝐺𝐺) 

1 500 4 

2 1000 6 

 

The real-world network will be represented by a network model of the USA Western 

States Power Grid (PW). There are 4941 nodes in this network connected by 6594 edges. 

The average degree of this network is 2.67 (Watts & Storgatz, 1998).  For the real-world 

network, the threshold cascade will be set at 0.25 and 0.4.  

The simulation result is summarized in Table 3.2. A general pattern can be inferred from 

this result is that 𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟 correlates negatively with 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 with a strong correlation. 

This is justifiable by the fact that 𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟 correlates positively with total cascade size 

𝐹𝐹.  
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Hypothesis 3.1 is negated by the fact that it does not applies on all experiment results. 

Specifically, on experiments no. (1) and (5), the average degree 𝑑𝑑𝑑𝑑𝑑𝑑�����𝐺𝐺  is equal to 1
𝜑𝜑

, i.e. 

𝑑𝑑𝑑𝑑𝑑𝑑�����𝐺𝐺 =4 for 𝜑𝜑 = 0.25, but 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is 1. We also conclude that the approximation 

proposed in Hypothesis 3.1 is risk-averse due to the fact that it underestimated the result 

of experiments (1) and (5). Nevertheless, this approximation can be a quick guideline for 

decision makers and designers to know the resiliency of their network without too much 

of analysis beforehand because it only requires the input of average degree and expected 

threshold cascade. 

Hypothesis 3.2 is found to be valid in all set of experiments. All networks that have 

𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟 < 0.70  has a probability 1 of recovering from a cascading failure. One 

important note is that by construction of the hypothesis we impose a logical relation of  

𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟 < 0.70  would produce 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1, but not the other way around (not 

bidirectional). Thus, experiment (5) still applies to this hypothesis.  

A caveat of this experiment is the interesting pattern found in small-world networks (WS). 

Results past experiment of DLOC have found that the WS to be the most vulnerable 

compared to ER and BA (Zhong & Nof, 2015; Zhong, 2016). The same setup of this 

experiment was used for experiment no (1), (5), and (9). However, it can be seen when 𝜑𝜑 

is changed to 0.4, WS has the lowest 𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟 among ER and BA. This implies that the 

vulnerability statute has changed. This result also complies with the findings that “bridges” 

or “shortcuts” found in small-world networks actually inhibits the spread of complex 

propagation (Centola et al., 2006) – as 𝜑𝜑 ≫, propagation becomes more complex because 
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it requires more neighbors to influence change of state. Finally, we also conject that exact 

numerical relation between 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑡𝑡𝑖𝑖𝑟𝑟  , i.e. relation in regards to exact 

numerical value, is dependent on the different network topology. This can be seen by 

comparing experiment no (5) and (9) where the former has higher 𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑡𝑡𝑖𝑖𝑟𝑟  than 

experiment (9) but higher 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  as well. Both network have different threshold of 

𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑡𝑡𝑖𝑖𝑟𝑟 to allow 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to phase into 1.
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Table 3.2 Experiment Result for 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑟𝑟 based on average of 50 replications 

No Network Cascade 

Threshold 

Number of 

Nodes 

Fraction of Vulnerable 

(𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟) 

Average 

Degree (𝑑𝑑𝑑𝑑𝑑𝑑�����𝐺𝐺) 

Probability of Recovery 

(𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑟𝑟) 

1 ER 0.25 500 0.632 4 1 

2 ER 0.25 1000 0.292 6 1 

3 ER 0.40 500 0.252 4 1 

4 ER 0.40 1000 0.065 6 1 

5 BA 0.25 500 0.782 4 1 

6 BA 0.25 1000 0.596 6 1 

7 BA 0.40 500 0.488 4 1 

8 BA 0.40 1000 0 6 1 

9 WS 0.25 500 0.72 4 0.96 

10 WS 0.25 1000 0 6 1 
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11 WS 0.40 500 0.058 4 1 

12 WS 0.40 1000 0 6 1 

13 PG 0.25 4941 0.88 2.67 0.9 

14 PG 0.4 4941 0.58 2.67 1 
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CHAPTER 4. RESOURCE ALLOCATION POLICY FOR PROTECTION OF VULNERABLE 
NETWORK ELEMENTS 

Advances in network science have found that networks found in real world have varying 

properties which cannot be modeled by a classical random graph (Watts & Strogatz, 1998; 

Barabasi & Albert, 1999). Some of these properties that are prominent in man-made CPIs 

networks includes power-law degree distribution due to evolutionary networks (growing 

networks) with preferential attachments, small-world properties which elucidates the 

“six-degree of separation” phenomena and shorter average paths (Barabasi & Albert, 

1999; Watts & Strogatz, 1998; Dorogovtsev & Mendes; 2002). These properties have an 

inherent impact on the heterogeneity of the network elements which also has an effect 

to how network respond to disruption (tolerance). For example, it is found that CPI 

networks having scale-free behavior has higher disruption tolerance against random 

errors but vulnerable against disruption to the network centralities which plays important 

roles in maintaining connectivity. The DLOC-CDR further elucidates this by assuming that 

CPI networks maintain cascading failure behavior disruption occurrence. Thus, if a failure 

happens to one of the vulnerability points, the results would be even more catastrophic.  

This chapter’s focus will start from addressing the vulnerable points fact to create a better 

resource allocation policy for DLOC-CDR operations in CPIs under the DLOC model.
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Compared to previous research in DLOC (Zhong & Nof, 2015; Zhong, 2016), we 

hypothesize that disruption responders must be allocated to the most vulnerable parts of 

the networks, such that preventing them ever to fail initially, as opposed to allocating 

based on reachability or shortest paths. An analysis of error vulnerability, therefore, will 

be conducted based on several targeted failures selection heuristics. The result of this 

analysis is expected to provide initial insights and further reinforce the hypothesis above 

to guide the development of the of a new and better resource allocation policy. 

 

4.1 Vulnerable Points of Network  

The objective of this study is to elucidate the effect of targeted failures in CPI networks 

using conceptual complex networks models and gain insight on vulnerability points of 

network. As mentioned before, we will use the insight gained from this study as a 

guideline in developing a better resource allocation policy which takes into consideration 

of prioritizing protection of vulnerable network elements (nodes & edges). The conclusion 

of this study will highlight the effectiveness of proposed network centrality measures in 

identifying vulnerable network elements; measured by average cascade size and speed 

with respect to differing network properties. 

 

4.1.1 Design of Study 

Vulnerability denotes the decrease of network performance due to random or selected 

removals of nodes and edges (Barabasi & Albert, 1999). In this research, we define 
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vulnerability points of the network as a set of nodes (and edges) whose removal will 

maximize cascading failure effect within the network, although not necessarily result in a 

global cascade (Watts, 2002). Ideally we would require detail knowledge of the whole 

network topology to locate and pinpoint each vulnerable set of network elements. This is 

a tedious and time-consuming process.   A more manageable choice is to look upon 

network centrality heuristics, which will also be the base of our newly improved resource 

allocation policy.  

Network centrality reveals the importance of an element (node or edge) within the whole 

network, and many centrality measures have been developed based on structural 

information of the network (Borgati, 2005; Lee, 2012).  For this research, we will compare 

three different centrality measures as explained below: 

1. Betweenness Centrality (Freeman, 1977) 

This centrality measures the share of times that all shortest paths pass through the 

node being measured. The betweenness centrality value of node 𝑃𝑃 ∈ 𝑁𝑁  can be 

expressed as: 

𝐵𝐵𝑖𝑖 = ∑ 𝜌𝜌𝑠𝑠𝑠𝑠(𝑖𝑖)
𝜌𝜌𝑠𝑠𝑠𝑠

𝑠𝑠≠𝑖𝑖≠𝑡𝑡
𝑠𝑠,𝑡𝑡,𝑖𝑖∈𝑁𝑁

 (4.1) 

Where 𝜌𝜌𝑠𝑠𝑡𝑡 is the number of shortest paths from node 𝑠𝑠 to 𝑃𝑃 and 𝜌𝜌𝑠𝑠𝑡𝑡(𝑃𝑃) is the number 

of shortest paths from node 𝑠𝑠 to 𝑃𝑃 that passes through 𝑃𝑃. Previous research on DLOC 

(Zhong & Nof, 2015; Zhong, 2016) have applied this centrality measure as a heuristic 

for resource allocation policy under the CBA policy. It has also been proven to yield a 
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better result on all dimensions of DLOC performance metrics (Time, failure, distance, 

and preventability) compared to random allocation. 

2. Degree Centrality (Freeman, 1978; Newman, 2004) 

The degree centrality measures the share number of edges connected to the node 

being measured. For a given node 𝑃𝑃 ∈ 𝑁𝑁, the degree centrality can be mathematically 

expressed as: 

𝐷𝐷𝑑𝑑𝑖𝑖 = deg (𝑖𝑖)
|𝐸𝐸|

 (4.2) 

Where deg (𝑃𝑃) is the degree of node 𝑃𝑃 and |𝐸𝐸| is the total number of edges of graph 𝑑𝑑. 

3. Bridge Centrality (Hwang et. al, 2006; Nanda & Kotz, 2012) 

A bridge node or edge is a network component which connects two modular structure 

(connected components) in a graph network. They are commonly known as cut 

vertices or edges (Bondy & Murty, 2008). If a bridge node or edges fails, it will have 

higher probability to reduce the connected network into a disconnected network and 

increase the number of connected components. This arguably causes higher damage 

to the central network with more nodes losing connection to each other. Bridging 

centrality of a node and edge are defined in Eq. (4.3) below: 

𝐵𝐵𝑃𝑃𝑖𝑖 = 𝐵𝐵𝑖𝑖 .𝐶𝐶𝐵𝐵𝑟𝑟(𝑖𝑖)  (4.3) 

Where 𝐵𝐵𝑃𝑃𝑖𝑖  denotes the bridging centrality of node 𝑃𝑃 ∈ 𝑁𝑁  of client network 𝑑𝑑 . The 

bridging centrality of node 𝑃𝑃  then is regarded as the product of its betweenness 

centrality (𝐵𝐵𝑖𝑖) and bridging coefficient (𝐶𝐶𝐵𝐵𝑟𝑟(𝑖𝑖)).   The bridging coefficient of a node 
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determines the extent how well node is located between high degree nodes. It is 

defined as below: 

𝐶𝐶𝐵𝐵𝑟𝑟(𝑖𝑖) = deg (𝑖𝑖)−1

∑ 1
deg (𝑗𝑗)𝑗𝑗∈𝑅𝑅𝑖𝑖  

  (4.3) 

Where 𝑅𝑅𝑖𝑖 is the set of neighbors of node 𝑃𝑃 and 𝑃𝑃, 𝑗𝑗 ∈ 𝑁𝑁. 

Three conceptual network models are selected in this research to represent different 

characteristics of observable network properties, they are Erdos-Renyi Random Network 

(ER), Barabasi-Albert Scale-free Network (BA) and Watt-Strogatz Small-world Network 

(WS). The unique characteristics of each model is the result of their differing generating 

mechanism. The ER model is generated by connecting nodes randomly. Each pair of nodes 

in the graph has a probability 𝑝𝑝 to be connected with an edge and independent with every 

other pair. By probabilistic methods, the expected number of edges of an ER network 

𝑑𝑑(𝑁𝑁,𝐸𝐸) is �𝑁𝑁2� 𝑝𝑝.  The resulting degree distribution of this network will be a Gaussian 

bell-shaped curve, implying the ER network has low heterogeneity in node degree. This 

degree distribution tends to be unrealistic when modelling real-world networks (Albert & 

Barabasi, 2002). The ER network also has average geodesic length and clustering 

coefficient which are shorter and lower, respectively, compared to most real-world 

networks. Regardless of its shortcoming, the ER model is widely used a benchmark for 

comparison with other network model. 

The other two network models, BA and WS, were developed to fill in the network 

property gap that the ER model had compared to real-world networks. The BA model 

generates network with the power law degree distribution (“scale-free”) by using a 
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preferential attachment mechanism. Many real-world networks were observed to have 

power-law degree distribution and thus this model was established (Barabasi & Albert, 

1999). The BA model has low clustering coefficient which scales to zero as 𝑁𝑁 → ∞. Finally, 

the WS model generates a network with high clustering coefficient and low average 

geodesic length. This is achieved by rewiring the nodes of a regular ring lattice with a 

specified probability. The shortcoming of this models is it tends to produce an unrealistic 

degree distribution due to its ring lattice structure. Nevertheless, this model successfully 

replicates the “small-world effect” in which the average geodesic length of the network 

scales proportionally with the logarithm of nodes (Watts & Strogatz, 1998). This effect is 

known to be prevalent in many social networks. Both the BA and WS model also maintain 

a hub-spoke architecture, although WS has a higher modularity. 

As mentioned in the beginning of this research, the error propagation in this study will be 

modeled using an adopted Watts Threshold model (Watts, 2002). All nodes and edges – 

except a handful of initiators -  will initially be in normal state “0” and will convert to 

failure state “1” if the threshold fraction, 𝜑𝜑, of neighbors in state “1” is reached. Based 

on this model, we will evaluate the number of network components (nodes and edge) 

that are induced to state “1” by error propagation from initiator nodes over time (hours) 

and without repair.  

Complex networks display a high degree of error tolerance against random attack, but are 

prone to targeted attack on their important nodes. (Albert et al., 2000; Cruciti et al., 2002). 

Furthermore, a recent study on threshold-limited error spread (propagation) to ER 

networks has found that selecting initiator node based on degree centrality will yield a 
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higher average error propagation compared to random selection (Singh et al., 2013). 

Therefore, we claim the random selection method of initiator node will not perform 

better than the three centrality methods (Degree, Betweenness and Bridge) that has been 

proposed earlier in this study. By conjecture, this claim is also more apparent in BA and 

WS networks since the former has a power law degree distribution – a small number of 

nodes are connected to most of the other nodes -  and the latter owes to its high 

clustering coefficient; both properties implies some component within the network is 

more important than the others. We further establish several hypotheses that are to be 

verified in this study. 

Hypothesis 4.1 

Failures initiated on a set of nodes with high degree centrality would yield a higher 

average and total cascading failure size compared to failures initiated on the same 

number of nodes with high betweenness centrality. Let |𝐹𝐹(𝛼𝛼)| and |𝐹𝐹𝑡𝑡(𝛼𝛼)| be the total 

number of failures on the network at the end of cascade process and dynamic size of 

cascading failure at time 𝑃𝑃, respectively, triggered by failures of nodes having the highest 

𝛼𝛼 centrality. This hypothesis can be expressed as: 

|𝐹𝐹(𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟)| ≥ |𝐹𝐹(𝑣𝑣𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑟𝑟𝑠𝑠𝑠𝑠)|  (4.4) 

|𝐹𝐹(𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟)| ≥ |𝐹𝐹(𝑣𝑣𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟)|  (4.5)  

With Eq. (4.4) & (4.5) having possibility of maintaining equality depending average degree 

of the network. This observation is supported by past studies which found that within the 
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network same network size (number of nodes) and type, varying average degree affects 

the cascading behavior of different centrality-based initiator (Singh et al., 2013). 

This hypothesis can be theoretically verified by the construction of the Watts Threshold 

Cascade model. A node will change its state to “1” if the fraction of its neighbor adopting 

state “1” exceeds the fraction 𝜑𝜑. Thus, a node’s degree (number of neighbors assuming 

no looping edges) plays an essential role in determining cascade failure tolerance of a 

given node. As a consequence, high-degree node (high degree centrality nodes) are 

harder to influence by cascading failures. The degree centrality heuristics will select high-

degree centrality nodes as error initiator for the cascading failure process.  Based on the 

previous arguments, these nodes are the ones harder to influence by normal propagation 

and, by the virtue of high degree, are capable of influencing larger number of nodes with 

lower average degree - more prone to cascading failure.  

Hypothesis 4.2 

The WS network model would be more vulnerable by error initiated on high bridge 

centrality nodes compared to betweenness centrality node. This hypothesis can be 

expressed as: 

|𝐹𝐹(𝑣𝑣𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟)| ≥ |𝐹𝐹(𝑣𝑣𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑟𝑟𝑠𝑠𝑠𝑠)|  (4.6) 

|𝐹𝐹𝑡𝑡(𝑣𝑣𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟)| ≥ |𝐹𝐹𝑡𝑡(𝑣𝑣𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑟𝑟𝑠𝑠𝑠𝑠)|,∀𝑃𝑃 > 0  (4.7) 

The same argument on equality for Eq. (4.4) also applies for Eq. (4.6). On the contrary to 

BA, the WS has high clustering coefficient which by construction we deduce is suitable for 

the bridge centrality to find bridging nodes between clusters.  



47 
 

 

  

4.1.2 Experiment: Simulation Result 

The objective of this experiment is to compare the effectiveness of the three selected 

network centrality heuristics on pin-pointing vulnerable parts of the network with respect 

to the conceptual network models. The metrics that will be evaluated in this experiment 

are the total number of failures, |𝐹𝐹|, and dynamic size cascading failure over time 𝑃𝑃, |𝐹𝐹𝑡𝑡|.  

We assume that the three conceptual networks have the same number nodes,  |𝑁𝑁| =

500.  The average degree, deg 𝐺𝐺������, of the client network 𝑑𝑑(𝑁𝑁,𝐸𝐸) will be varied within 

certain range to overcome bias of differing network formation due to degree variation. 

The cascading threshold 𝜑𝜑  is set to 0.2 and cascading failure process is initiated by 

selecting and turning 5 nodes into failure state “1” based on the centrality heuristics. We 

limit the observations of the experiment up to 30 time units (hours). 

Figure 4.1 summarizes the experiment result measured by Fraction of failures 𝑆𝑆 which is 

obtained by dividing total number of failures |𝐹𝐹| with the total number of nodes |𝑁𝑁| and 

edge |𝐸𝐸|.  In general, all conceptual network with degree centrality failure exhibits a 

pattern of “global cascade window” (Watts, 2002; Watts, 2007). The “global cascade 

window” is an intermediate range of deg 𝐺𝐺������  where global cascades are realized.  

Hypothesis 4.1 generally applies to all of the tested networks. For BA scale-free network, 

the degree centrality heuristic outperforms the betweenness centrality heuristics when 

the average degree is small but equalizes as the average degree scales, which implies 

nodes of both centrality overlap each other in that region. This overlapping phenomenon 

between centrality and betweenness heuristics can be explained by several attributes of 
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the BA scale-free network: (1) High-degree hub nodes, existent due to power-law 

distribution, connects a large number of small-degree node which allows short path 

length between these nodes by traversing through the hubs. The hub nodes, 

consequently, have high fraction of shortest paths going through them. This becomes 

more profound as the hubs are connected to more nodes as a function of the average 

degree (Albert & Barabasi, 2002; Cohen & Havlin, 2003) (2) The BA scale-free networks 

and networks with scale-free degree distributions in general shows high correlation 

between their degree and betweenness centrality values; the higher degree, the higher 

the betweennesss (Holme et al., 2002). The aforementioned arguments may underline 

the superiority of the degree centrality compared to the betweenness centrality with 

respect to the objective of this study. However, it can also be seen on Figure 4.2(a) that 

the degree centrality failure propagates faster throughout the network compared to the 

betweennes centrality in within the low degree range, albeit the same final cascade size. 

Real-world CPIs networks tend to have low average degrees, e.g. Power grid (Watts and 

Strogatz, 1998). Thus, this low average degree range is crucial for applications in DLOC-

CDR. On the other hand, the low performance that the bridge centrality yields in BA 

networks may be attributed to its construction. The bridging coefficient 𝐶𝐶𝐵𝐵𝑟𝑟(𝑖𝑖)  is a 

multiplier to the betweeenness centrality value, which values highly nodes that are within 

the intersection of high degree nodes. This is, however, counter-intuitive with regards to 

the network topology of the BA network for cascading failure.  Cascading failure initiated 

from these bridge nodes have low probability of influencing (fulfilling the threshold 
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fraction 𝜑𝜑) of the much higher degree hubs to change state, i.e. other nodes are miniscule 

in terms of degree compared to the hub. BA network also tend to have low clustering 

coefficient which causes “bottlenecks” during failure propagation to other members of 

the hub cluster, i.e. minimum/no edge-disjoint paths between bridge centrality and hub 

cluster (Figure 4.3). In conclusion, these arguments lead to the fact that among the 

network centralities tested the degree centrality most effectively identify the 

vulnerability points in BA scale-free networks. 

Both hypothesis 4.1 and 4.2 applies for the result of WS small world network (Figure 

4.1(a)). The degree centrality displays its superiority compared to the two others 

centrality measures, which verifies the theoretical proof of hypothesis 4.1. The 

performance of betweenness centrality and bridge centrality seem to follow a same 

pattern of performance within a given range of average degree. Nevertheless, the bridge 

centrality performs equally or better on all of tested average degree range compared to 

betweenness centrality, which also verifies hypothesis 4.2. It is concluded that the degree 

centrality and bridge centrality more effectively identify the vulnerability points in WS 

small world networks compared to betweenness centrality. 

For the ER random network, both heuristics (between and degree) perform equally well 

when average degree is small. This is because the constructed network only consists of 

small clusters without a giant component (Bollobas, 1984). Thus, spread is localized only 

to those small clusters and the rest follows the “global cascade window” phenomenon 

(Watts, 2002; Watts, 2007). The experimental result on this network also verifies 
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Hypothesis 4.1 in terms of the superiority of the degree centrality compared to the others 

(see Figure 4.1(c) and 4.2(b)). 

 

  

 

(a) BA Scale-free 

 

(b) WS Small World 
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(c) ER Random Network 

Figure 4.1 Cascade Failure Size 𝑆𝑆 as a function of average degree for different selection 
heuristics 
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(b) ER Random Network 

Figure 4.2 Dynamic Cascade Failure size |𝐹𝐹𝑡𝑡|as a function of time 𝑃𝑃 for different selection 
heuristics and average degree 1 and 3 

 

 

 

 

 

 

Figure 4.3 Failure propagation from bridge centrality node (colored red) reaches 
bottleneck to neighboring clusters in BA 
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4.2 DLOC Model Simulation: Conceptual Networks 

In this section, we will use the insights gained from section 4.1 on vulnerability point of 

network to analyze and develop a better resource allocation policy for collaborative 

disruption response (CDR) operation under the DLOC model.  In this regard, we will set 

the current DLOC-CDR resource allocation policy as a baseline (will be explained later) and 

failures will be initiated randomly throughout the simulation replication. It is assumed 

that the CPI network will have 5 nodes as failure initiators. The TIE-DLOC software (Zhong 

& Nof, 2015; Zhong, 2016) will be used to simulate the DLOC-CDR operation in this 

experiment to numerically verify the results of the newly developed resource allocation 

policy  

The current resource allocation policy that DLOC-CDR uses, CBA, is based on the 

betweenness centrality measure. The formulation of CBA is defined as below: 

𝐶𝐶𝐵𝐵𝐴𝐴 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∶  𝑃𝑃 = 𝑃𝑃,𝐵𝐵𝑟𝑟 ≥ max(𝐵𝐵𝑣𝑣) , 𝑃𝑃 ∈ 𝐷𝐷, 𝑃𝑃 ∈ 𝑁𝑁, 𝑃𝑃 ∈ 𝑁𝑁 𝑃𝑃𝑛𝑛𝑑𝑑 𝑃𝑃 ⊄ 𝐷𝐷 (4.8) 

𝑃𝑃 ≠ 𝑗𝑗, ∀𝑃𝑃, 𝑗𝑗 ∈ 𝐷𝐷     (4.9) 

Where 𝐵𝐵𝑟𝑟  is the betweenness centrality of node 𝑃𝑃  and 𝐷𝐷  is the set nodes in 𝑑𝑑(𝑁𝑁,𝐸𝐸) 

which are set as depots (initial locations) for disruption responders (Zhong & Nof, 2015; 

Zhong, 2016). CBA policy is a greedy heuristic to minimize response time by positioning 

the service team depot nodes which are intersections of shortest paths. The performance 

metric that will be measured by the TIE-DLOC simulator are: 
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1. Total response time (𝑧𝑧) : 

This metrics indicates response effectiveness of the responder team of 𝑆𝑆(𝐴𝐴,𝑃𝑃). 

Let 𝐹𝐹 be the set of disruption occurred within the network and 𝜎𝜎𝑖𝑖&𝜏𝜏𝑖𝑖 denotes the 

timestamp when disruption 𝑃𝑃  is repaired and initial timestamp of disruption 𝑃𝑃 , 

respectively. The total response time 𝑧𝑧 can be formulated as: 

𝑧𝑧 =  ∑ (𝜎𝜎𝑖𝑖 − 𝜏𝜏𝑖𝑖)𝑖𝑖𝑖𝑖𝐹𝐹  (4.10) 

2. Total Failures (|𝐹𝐹|): 

This metric indicates the total set of failed elements during the cascading failure 

process.  

3. Total distance travelled by responders (∆): 

The total distance relates to the disruption responder agents’ movement within 

the network to rectify failure/disruption; agents’ movement follows the network’s 

topology, i.e. edge-node connection.  

4. Preventability (𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟): 

Preventability measures the impact of applying disruption response mechanism 

to the network. Let 𝐹𝐹�  denote the set of disruption that would have occurred 

without a disruption response mechanism. Preventability can be formulated as: 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 = |𝐹𝐹�|−|𝐹𝐹|
|𝐹𝐹�|

    (4.11) 

 

The aforementioned performance metrics will help verify the effectiveness of the newly 

developed resource allocation policy.  
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The analysis and development of the new resource allocation policy will be divided into 

three phases: (1) Experiment with static disruption responder team size, (2) Experiment 

with varying disruption responder team size (3) Experiment with varying initial failure size.  

We will compare the performance of three depot allocation heuristics (based on 

centrality): Betweenness centrality (CBA), Degree Centrality (DBA), and Bridge Centrality 

(BBA). The heuristics will be applied on the three conceptual networks previously tested: 

ER, BA, and WS. These conceptual networks can approximate current emerging CPIs with 

certain accuracies (Surana, et al., 2005; Yagan, et al., 2012; Chen & Nof, 2012). The second 

and third phase will build upon the result of the first phase; only two allocation policies 

will be tested per network, thus the first phase will act as a screening for the subsequent 

phases. 

 

4.2.1 Static Disruption Responder Team Size 

From section 4.1, it can be concluded that different networks have differing set of 

vulnerability points against cascading failures, as it was identified by their respective 

centrality measures. Based on the selection of conceptual networks that were tested, it 

can also be inferred that these discrepancies arise because of their inherent network 

properties (e.g. clustering coefficient, degree distribution, path length, etc) that each of 

these networks have – each conceptual network models a unique property that real-

world networks have (Albert & Barabasi, 2002). Based on these findings, two hypothesis 



56 
 

 

  

regarding DLOC-CDR performance are put forward to be verified by the TIE-DLOC 

simulator.  

 

Hypothesis 4.3: 

The DBA policy will yield an improvement by decreasing maximum cascading failure 𝐹𝐹𝑚𝑚𝑣𝑣𝑚𝑚 

and increasing preventability 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟, but with a trade-off of increase in total response time 

𝑧𝑧  or latency and total distance travelled responders ∆  compared to CBA. Let  𝑧𝑧(𝛼𝛼) , 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝛼𝛼) and ∆(𝛼𝛼) denote the total latency, preventability, and total distance travelled 

performance metrics result of TIE-DLOC simulation using 𝛼𝛼  resource allocation policy. 

This hypothesis can be expressed as:  

𝑧𝑧(𝐷𝐷𝐵𝐵𝐴𝐴) − 𝑧𝑧(𝐶𝐶𝐵𝐵𝐴𝐴) > 0 (4.12) 

�𝐹𝐹(𝐷𝐷𝐵𝐵𝐴𝐴)� − �𝐹𝐹(𝐶𝐶𝐵𝐵𝐴𝐴)� < 0 (4.13) 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝐷𝐷𝐵𝐵𝐴𝐴) − 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶𝐵𝐵𝐴𝐴) < 0 (4.14) 

∆(𝐷𝐷𝐵𝐵𝐴𝐴) − ∆(𝐶𝐶𝐵𝐵𝐴𝐴) > 0 (4.15) 

Theoretically, the DBA policy will allocate depot to high degree nodes and based on the 

vulnerability analysis from section 4.1 all of the tested conceptual networks generally 

have their highest degree node as the vulnerable point of the network. Thus, by 

protecting these nodes it is presumed that the cascading failure can be minimized 

throughout the simulation replication if failures are initiated or propagates to these nodes. 

However, the trade-off is the agents (depot) are not initially located within the track of 

shortest path to most of the element within the network; as opposed to the CBA.  
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Hypothesis 4.4: 

The BBA policy in the WS small world network will yield improvements by decreasing 

maximum cascading failure 𝐹𝐹𝑚𝑚𝑣𝑣𝑚𝑚  and increasing preventability 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 , but with a 

considerable trade-off of increase in total response time 𝑧𝑧 or latency and total distance 

travelled responders ∆ compared to CBA. This hypothesis can be expressed as: 

𝑧𝑧(𝐵𝐵𝐵𝐵𝐴𝐴) − 𝑧𝑧(𝐶𝐶𝐵𝐵𝐴𝐴) > 0 (4.16) 

𝑧𝑧(𝐵𝐵𝐵𝐵𝐴𝐴) − 𝑧𝑧(𝐷𝐷𝐵𝐵𝐴𝐴) < 0 (4.17) 

�𝐹𝐹(𝐵𝐵𝐵𝐵𝐴𝐴)� − �𝐹𝐹(𝐶𝐶𝐵𝐵𝐴𝐴)� < 0 (4.18) 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝐴𝐴) − 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶𝐵𝐵𝐴𝐴) < 0 (4.19) 

∆(𝐵𝐵𝐵𝐵𝐴𝐴) − ∆(𝐶𝐶𝐵𝐵𝐴𝐴) > 0 (4.20) 

∆(𝐵𝐵𝐵𝐵𝐴𝐴) − ∆(𝐷𝐷𝐵𝐵𝐴𝐴) < 0 (4.21) 

As it was shown in section 4.1, the bridge centrality (BBA) was able to identify vulnerability 

points more effectively compared to betweenness centrality (CBA) in WS small world 

network. Thus, we concede that this should apply as well in the DLOC model. On the other 

hand, the BBA by construction also takes into consideration the betweenness centrality. 

Therefore, it should have better performance in terms of latency and total travelling 

distance compared to DBA.  

The simulation parameters for this experiment parameters are summarized in Table 4.1. 

In order for the results to be comparable, all three conceptual CPI networks have the 

same number of nodes |𝑁𝑁| and average degree 𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺�������. The disruption responder team 

consist of 35 agents where each of them are able to collaborate with 4 other agents 
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(degree of each agent). It is assumed that failures spread at the speed of 1 edge/hour, 

while the agent’s travel speed 𝑃𝑃 is 1 edge/hour and the repair time 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑖𝑖𝑟𝑟 is 1 hour. For 

each conceptual network, there will be three scenarios based on the allocation policies 

(CBA, BBA, DBA) and each scenario runs for 40 hours with 100 replications. The cascading 

is initiated by selecting 5 random nodes to be switched to failure state “1”. 

Table 4.1 Parameters for TIE-DLOC Simulation on Fixed Number of  
|𝐴𝐴| 

Parameter Description Value 

|𝐴𝐴| Number of disruption responder agents 35 

𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆(𝐴𝐴) Degree for each agent 4 

𝑃𝑃 Agent’s traveling speed 1 edge/hour 

|𝑁𝑁| Number of nodes in Client Network 500 

𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺������� Average degree of Client Network 4 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑖𝑖𝑟𝑟 Disruption repair timespan 1 hour 

𝜑𝜑 Cascade threshold 0.25 

𝑢𝑢 Spread speed of propagating failures 1 edge/hour 

|𝐹𝐹0| Number of initial failures 5 

𝑛𝑛𝑅𝑅 Number of replication for simulation 

scenario 

100 

𝑃𝑃𝑚𝑚𝑣𝑣𝑚𝑚 Simulation length for each scenario 40 hours 
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Table 4.2 and Table 4.3 summarizes the measured performance metrics result of the 

experiment while Figure 4.4 shows the disruption response behavior during the initial 40 

hours.  It can be seen that both hypothesis (4.3 & 4.4) have failed to explain the DLOC-

CDR simulation results. In terms of total failures  |𝐹𝐹|, the DBA policy outperforms CBA 

policy on all tested networks: (1) ER decreases by -10.05%, (2) BA decreases by -3.61%, 

and (3) WS decreases by -14.71%, with an 80% statistical significance (based on two-

sample t-test). Increment percentage is calculated by subtracting CBA result from DBA 

and divided by CBA result. This method will be used herein to denote performance 

metrics increment percentage. These results also appear to be in correlation with the 

vulnerability study in section 4.1. In all of the tested networks, the Degree centrality is 

most effective in identifying vulnerable elements which translates to effectiveness of DBA 

in reducing total failure. The performance gap between these two policies also follows a 

similar trend from the vulnerable study results, e.g. BA performance increment is 

marginal (<10%) where the vulnerability difference between Degree and Betweenness 

centrality method is also marginal (see Figure 4.2.a).  

DBA policy also outperforms CBA in terms of total latency 𝑧𝑧 : (1) ER decreases by -14.58%, 

(2) BA decreases by -5.41%, and (3) WS decreases by -18.02% with an 80% statistical 

significance (based on two-sample t-test). Again, the performance increment among 

networks also follows the same pattern from result of the vulnerability study (section 4.1).  

This result negates Hypothesis 4.3 by showing that total latency 𝑧𝑧 is also improved along 

with the total failure |𝐹𝐹|. This also implies that there is a positive correlation between 

these two metrics. Contrary to what has been researched earlier (Zhong & Nof, 2015; 
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Zhong, 2016), this result also suggests the objective function of DLOC-CDR can be adjusted 

to include total failure consideration. 

The BBA policy performs the worst among the allocation policies in all tested networks. 

Despite its breakthrough method in identifying bridging nodes and edges, we have to 

concede that the it may not be suitable due to the performance metrics and failure model 

(Watts threshold cascading model) used by the DLOC. It has been validated that the 

Bridge Centrality is able to identify bridging elements which its removal will make the 

network disconnected (Hwang et al., 2006). In real worlds CPI network this is a 

catastrophic failure as it may halt flows or reachability to certain parts of the networks. 

In the DLOC model, however, the performance metric only measures the total failure as 

indicated by the state of elements (0 or 1), without regards to connectivity. This also 

shows the drawback of the DLOC model in its inability to detect the connectivity state of 

a network and maintain connectivity in the event of cascading disruption. This result also 

negates the validity of Hypothesis 4.4 with a 60% statistical significance. 

In general, we can conclude from the experiment results that the DBA outperforms the 

CBA policy in all performance metrics on all of tested networks with an overall 80% 

statistical significance (see Table 4.4 and 4.5). The extent of when this conclusion is valid 

will be studied on the next section. Furthermore, we also conjecture two things.  

Conjecture 4.1: 

An a-priori vulnerability study on a network can foretell the performance of CBA and DBA 

allocation policy under the DLOC-CDR model. 
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Conjecture 4.2: 

The effectiveness DBA (relative to CBA) to real-world CPI networks can be approximated 

by comparing the similarity of network structural features to that of the conceptual 

networks. For example, if a CPI network has an average geodesic length and clustering 

coefficient almost the same as an WS small world network with the same size (node and 

average degree) then effectiveness of each allocation policy (DBA and CBA) can be 

approximated by the WS small world network. 

Table 4.2 Experiment Results for Static Team Size – Total Latency (𝑧𝑧) 

Network 
CBA BBA DBA 

Mean STD. Mean STD. Mean  STD. 

ER 374.91 376.99 - - 320.26 258.91 

BA 253.48 182.69 837.54 1218.6 239.76 189.87 

WS 1891.967 1729.29 2047.91 2082.1 1550.98 1443.21 

 

Table 4.3 Experiment Results for Static Team Size – Total Failure (|𝐹𝐹|) 

Network 
CBA BBA DBA 

Mean STD. Mean STD. Mean  STD. 

ER 65.76 37.34 - - 59.15 31.01 

BA 54.35 27.65 100.55 85.54 52.39 28.25 

WS 194.3 127.81 201.47 154.59 165.71 104.6 

 



62 
 

 

  

Table 4.4 Statistical Significance of Total Latency (𝑧𝑧) Increment on two-sample t-test for 
Static Team Size 

Network 
Increment from CBA to DBA Increment CBA to BBA 

Mean SEM p-value Mean SEM p-value 

ER -54.65 33.61 0.106 - - - 

BA -13.72 10.82 0.207 584.06 125.07 0.000 

WS -340.99 154.40 0.028 155.94 102.74 0.131 

 

Table 4.5 Statistical Significance of Total Failure (|𝐹𝐹|) Increment on two-sample t-test for 
Static Team Size 

Network 
Increment CBA to DBA Increment CBA to BBA 

Mean SEM p-value Mean SEM p-value 

ER -6.60 3.12 0.036 - - - 

BA -1.96 1.49 0.191 46.2 9.111 0.000 

WS -28.59 10.86 0.009 7.17 8.70 0.411 
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(a) ER Random Network 

 

 

(b) BA Scale-Free 
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(c) WS Small World 

Figure 4.4 Dynamic Cascade Failure size |𝐹𝐹𝑡𝑡|as a function of time 𝑃𝑃 on different networks 
(with 0.95 confidence interval) 

4.2.2 Varying Disruption Responder Team Size  

Based on the results of the previous experiment, we will only be testing the CBA and DBA 

policy from herein. Only two conceptual networks will be used in this experiment, BA and 

WS, and with varying disruption responder team size |𝐴𝐴|. The responder collaboration 

capability (𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠(𝐴𝐴)) is fixed at 4 because it has been verified in the previous research 

works (Zhong & Nof, 2015; Zhong, 2016) that changes in 𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠(𝐴𝐴)  will have positive 

correlation on performance of resource allocation policy. The simulation parameter for 

this experiment is summarized in Table 4.6. A critical range of |𝐴𝐴| in BA and WS have also 

been observed in previous research works (Zhong & Nof, 2015; Zhong, 2016). Beyond this 

critical range, the responder team size is either too scarce or too abundant, such that 
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different allocation policies have minor influence to the performance metrics. The critical 

range for BA and WS are  30 ≤ |𝐴𝐴| ≤ 42 and 56 ≤ |𝐴𝐴| ≤ 61, respectively. 

Table 4.6 Parameters for TIE-DLOC Simulation on Varying Number of  
|𝐴𝐴| 

Parameter Description Value 

|𝐴𝐴| Number of disruption responder agents: 

- BA scale-free 

- WS small world 

 

30 ≤ |𝐴𝐴| ≤ 42 

56 ≤ |𝐴𝐴| ≤ 61 

𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆(𝐴𝐴) Degree for each agent 4 

𝑃𝑃 Agent’s traveling speed 1 edge/hour 

|𝑁𝑁| Number of nodes in Client Network 500 

𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺������� Average degree of Client Network 4 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑖𝑖𝑟𝑟 Disruption repair timespan 1 hour 

𝜑𝜑 Cascade threshold 0.25 

𝑢𝑢 Spread speed of propagating failures 1 edge/hour 

|𝐹𝐹0| Number of initial failures 5 

𝑛𝑛𝑅𝑅 Number of replication for simulation 

scenario 

100 

𝑃𝑃𝑚𝑚𝑣𝑣𝑚𝑚 Simulation length for each scenario 40 hours 
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Table 4.7 and 4.8 summarizes the average performance metric increment percentage on 

BA and WS, respectively.  Figure 4.5 and 4.6 shows the value of each performance metrics 

as function of |𝐴𝐴| on BA and WS, respectively, to illustrate the variation of performance 

increment.  

As it can be seen, the performance metric increments on both networks are constant 

around the mean with low standard deviation. This result further adds to the conclusion 

from the previous section: For a fixed network size |𝑁𝑁| and initiator failure size (|𝐹𝐹0|), the 

DBA outperforms CBA with a constant performance increment around the mean with 

varying disruption responder team size. This result is also shown to be more statistically 

significant on WS network where null hypothesis is rejected at significance level 0.1, 

compared to BA network at significance level 0.2.  
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Table 4.7 Mean Performance Increment on BA with Varying |𝐴𝐴| 

Metric 

Mean increment 

from CBA to DBA 

(%)* 

Standard deviation of 

increment 

p-value of one-

sample t-test** 

Total failure (|𝐹𝐹|) -3.75% 0.035 0.028 

Total distance 

traveled by agents 

(∆) 

-3.46% 0.029 0.006 

Total latency (𝑧𝑧) -6.30% 0.051 0.207 

Preventability 

(𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟) 

0.26% 0.006 0.175 

*Calculated by subtracting CBA result from DBA and divided by CB 

**Null hypothesis of no increment 
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Table 4.8 Mean Performance Increment on WS with Varying |𝐴𝐴| 

Metric 

Mean increment 

from CBA to DBA 

(%)* 

Standard deviation of 

increment 

p-value of one-

sample t-test** 

Total failure (|𝐹𝐹|) -14.97% 0.040 0.000 

Total distance 

traveled by agents 

(∆) 

-9.56% 0.034 0.09 

Total latency (𝑧𝑧) -19.63% 0.050 0.000 

Preventability 

(𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟) 

0.12% 0.007 0.05 

*Calculated by subtracting CBA result from DBA and divided by CB 

**Null hypothesis of no increment 
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(a) Total Failure (|𝐹𝐹|) 

 

(b) Total Latency (𝑧𝑧) 
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(c) Total Distance Travelled (∆) 

Figure 4.5 Experiment Results on BA with Varying |𝐴𝐴| 
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(b) Total Latency (𝑧𝑧) 

 

(c) Total Distance Travelled (∆) 

Figure 4.6 Experiment Results on WS with Varying |𝐴𝐴| 

 

500

600

700

800

900

1000

1100

55 56 57 58 59 60 61 62

To
ta

l L
at

en
cy

 -
z

Team Size - |A|

CBA

DBA

300

320

340

360

380

400

420

440

460

480

55 56 57 58 59 60 61 62

To
ta

l D
is

ta
nc

e 
-△

Team Size - |A|

CBA

DBA



72 
 

 

  

4.2.3 Varying Initiator Failure Size 

The two previous experiments have validated the performance of the DBA policy relative 

to CBA on the tested conceptual networks from the perspective of the server network (i.e. 

responder team size). For this set of experiment, the performance difference between 

DBA and CBA is further investigated by varying the size of initial failure |𝐹𝐹0| . The 

simulation parameters for this experiment are listed in Table 4.9. The conceptual 

networks tested (BA and WS) will have fixed |𝑁𝑁|, |𝐴𝐴|,𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺 ,�������  & 𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠(𝐴𝐴) at 1000, 50, 4 and 

4, respectively. Five variation of initial failure size |𝐹𝐹0| will be tested: 5, 10, 20, 30, 40, and 

50, which corresponds to 0.005, 0.01, 0.02, 0.03, 0.04 and 0.0.05 fraction of the total 

nodes |𝑁𝑁|, respectively. 
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Table 4.9 Parameters for TIE-DLOC Simulation on Varying Number of  
|𝐹𝐹0| 

Parameter Description Value 

|𝐴𝐴| Number of disruption responder agents 50 

𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆(𝐴𝐴) Degree for each agent 4 

𝑃𝑃 Agent’s traveling speed 1 edge/hour 

|𝑁𝑁| Number of nodes in Client Network 1000 

𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺������� Average degree of Client Network 4 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑖𝑖𝑟𝑟 Disruption repair timespan 1 hour 

𝜑𝜑 Cascade threshold 0.25 

𝑢𝑢 Spread speed of propagating failures 1 edge/hour 

|𝐹𝐹0| Number of initial failures 5; 10; 20; 30; 40; 50 

𝑛𝑛𝑅𝑅 Number of replication for simulation 

scenario 

100 

𝑃𝑃𝑚𝑚𝑣𝑣𝑚𝑚 Simulation length for each scenario 40 hours 

 

Figure 4.7 and 4.8 shows the experiment results for total failure (|𝐹𝐹|) and total latency (𝑧𝑧) 

metrics increment (%) on WS and BA, respectively. The experiment result reveals that 

within a fixed client and responder network size, the performance of both network policy, 

relative to each other, varies greatly with varying size of initial failures. The DBA performs 

better within intermediate range of |𝐹𝐹0|, while the CBA triumphs in the low range (|𝐹𝐹0| <

25) and high range (|𝐹𝐹0| > 40) of |𝐹𝐹0| in WS small world network.  Both metrics, |𝐹𝐹| and 
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𝑧𝑧, observes a similar pattern. On other hand, the DBA constantly outperforms CBA within 

the tested interval in BA scale-free network, albeit with a declining trend. This would 

imply that DBA performs better relative to DBA in low range of initial failure size within a 

fixed network size.  

Based on this experiment, it can be concluded that the performance of CBA and DBA 

varies between different network structure and initial failure size. Among different 

network structure and within a fix range of failure size and number nodes |𝑁𝑁| , the 

allocation policy behaves differently, e.g. in BA the DBA is constantly better than CBA 

while it is not true in WS (Figure 4.7 and 4.8). On the other hand, within the same network 

and fixed responder team size, the relation between CBA and DBA, in terms of 

performance, is not strict; one can outperform the other depending on the initial failure 

size. This is further supported by the statistical properties gathered from the TIE-DLOC 

simulator presented in Table 4.10 and Table 4.11. On average, the DBA policy shows 

improvements on all performance metrics compared to CBA on both networks. However, 

these results are not statistically significant as indicated by the p-values of one-sample t-

test on null hypothesis of zero increment. The BA network had a maximum p-value of 

0.382, while the WS network had 0.865.  
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Table 4.10 Mean Performance Increment on BA with Varying |𝐹𝐹0|* 

Metric 
Mean increment 

from CBA to DBA  

Standard deviation of 

increment 

p-value of one-

sample t-test 

Total failure (|𝐹𝐹|) -13.06 14.937 0.382 

Total distance 

traveled by agents 

(∆) 

-0.01 4.377 0.998 

Total latency (𝑧𝑧) -364.44 332.778 0.274 

Preventability 

(𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟) 

0.001 0.007 0.874 

* Result on |𝐹𝐹0| = 40 omitted for consistency 

**Null hypothesis of no increment 
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Table 4.11 Mean Performance Increment on WS with Varying |𝐹𝐹0| 

Metric 
Mean increment 

from CBA to DBA  

Standard deviation of 

increment 

p-value of one-

sample t-test* 

Total failure (|𝐹𝐹|) -10.81 63.962 0.865 

Total distance 

traveled by agents 

(∆) 

-9.56% 0.034 0.09 

Total latency (𝑧𝑧) -274.45 1393.282 0.844 

Preventability 

(𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟) 

0.000 0.000 0.096 

**Null hypothesis of no increment 

 

 

Figure 4.7 Experiment Results on WS with Varying |𝐹𝐹0| 
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Figure 4.8 Experiment Results on BA with Varying |𝐹𝐹0| 

 

4.3 DLOC Model Simulation: USA Western Power Grid 

In this section, a real-world power grid system (PG) and its DLOC-CDR operation will be 

simulated in TIE-DLOC. The objective of this final experiment is to test the validity of the 

insights and conclusions gained from previous experiments on conceptual networks to 

real-world networks. The client network will simulate a network based on the USA 

Western Power Grid. The nodes of the client represent generators, transformers, and 

substations and the edges represent transmission line (Watts & Strogatz, 1998). There are 

4941 nodes in this network connected by 6594 edges. The average degree of this network 

is 2.67.  
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Past research works have analyzed the structural properties of the PG network (Watts & 

Strogatz, 1998). PG has an average path length almost similar to that of ER with the same 

size: 18.7 ~ 12.4 (PG and ER, respectively), but significantly higher clustering coefficient: 

0.080 ~ 0.005 (PG and ER, respectively). The fact that the PG network maintains low 

average path and high clustering coefficient entitles it to having the “small-world network 

behavior”; most of the nodes can by another with small number of steps. Past research 

results in DLOC model using the CBA allocation policy concluded that this property makes 

the disruption responder less effective in recovering the client network as measured by 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟  Zhong & Nof, 2015; Zhong, 2016. The experiment in section 4.2.1 used the same 

datasets and setup as (Zhong & Nof, 2015; Zhong, 2016) and has shown that improvement 

in all of the performance metrics can be made by using the DBA allocation policy in CPI 

with small-world networks (WS). Nevertheless, the PG does not perfectly imitate all the 

properties that WS have; WS has a clustering coefficient of ~0.18 and a shorter right tail 

distribution (see Figure 4.9). Given the difference in clustering coefficient and degree 

distribution, it seems unreasonable to conclude the results of DLOC from WS model can 

fully predict the PG network. 
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Figure 4.9 Degree Distribution of PG and WS 

The simulation parameter for this experiment is shown in Table 4.12. In this experiment, 

the disruption responder team has 500 agents and each of them are able to collaborate 

with 300 others. The cascade threshold is fixed at 0.25 and failures propagates at 1 

edge/hour. All four performance metrics used in section 4.2 will also be measured in this 

experiment. Based on the insights of the varying initial failure size experiment (section 

4.2.3), we will use two initial failure size |𝐹𝐹0|, 5 and 49, to analyze the validity of CBA-DBA 

performance change. Each simulation scenario will run for 40 hours with 100 replications.  
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Table 4.12 Parameters for TIE-DLOC Simulation on USA Western Power Grid (PG) 
 

Parameter Description Value 

|𝐴𝐴| Number of disruption responder agents 500 

𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆(𝐴𝐴) Degree for each agent 300 

𝑃𝑃 Agent’s traveling speed 1 edge/hour 

|𝑁𝑁| Number of nodes in Client Network 4943 

𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺������� Average degree of Client Network 2.67 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑖𝑖𝑟𝑟 Disruption repair timespan 1 hour 

𝜑𝜑 Cascade threshold 0.25 

𝑢𝑢 Spread speed of propagating failures 1 edge/hour 

|𝐹𝐹0| Number of initial failures 5; 49 

𝑛𝑛𝑅𝑅 Number of replication for simulation 

scenario 

100 

𝑃𝑃𝑚𝑚𝑣𝑣𝑚𝑚 Simulation length for each scenario 40 hours 

 

Table 4.13 summarizes the performance metrics increment result from this experiment, 

while Table 4.14 and Table 4.15 shows the statistical significance of the increments for 

|𝐹𝐹0| = 5 and |𝐹𝐹0| = 49, respectively. Figure 4.10 shows the process of cascading failures 

with disruption response control after initial failures on PG.  
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The performance metrics increments show that the CBA policy performs better than DBA 

in the PG network (for the current simulation setting). For |𝐹𝐹0| = 5, the CBA has 

significantly lower total latency 𝑧𝑧  at 2170.24 as opposed DBA at 2595.39, which 

represents 19.59% increment reduction. CBA also performs better relative to DBA on the 

other metrics with ≈ 10% increment.  The disruption response over time (Figure 4.10.a) 

shows that the DBA actually performs better (in terms of |𝐹𝐹𝑡𝑡|) than CBA during the initial 

hours of the cascading failures (𝑃𝑃 < 9), though it was later outperformed by CBA. This 

pattern can be explained by the following argument.  By the vulnerability analysis on PG 

(not shown), the Degree centrality is in fact more effective in identifying vulnerable 

elements resulting in higher cascading failure size, 𝑆𝑆. This is supported by the degree 

distribution of PG which shows the top 5 highest degree node can reach 2% of the nodes 

in PG network, compared to WS 0.5% given the same size, which means these nodes are 

more significant in terms of vulnerability – albeit not as significant as in the BA with the 

same size reaching 8% of the nodes. However, this still doesn’t lead to foretell that the 

DBA should perform better, as it has already been disapproved by the experiment result. 

Another driving factor is the small-world property that the PG maintains due to its low 

average path and high clustering coefficient. It has been studied that the small-world 

property enables diseases to spread much more easily and faster due (Watts & Strogatz, 

1998). This insight is in the same analogy of the Watts threshold model used in DLOC and 

enables failures to propagate faster throughout the network, relative to the responder 

recovery speed. Finally, these pieces of facts together construct the argument that the 

DBA performs better during the initial hour because depots are better positioned to 
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recover the vulnerable nodes if they are selected as initial failure throughout the 

simulation replication. The significance of DBA during this initial hour is also supported 

the PG’s degree distribution as aforementioned before. During the latter hours, the small-

world property enables the initial failures to propagate faster throughout the PG network, 

which are widely spread within 4941 nodes. In this case, the CBA policy has better 

positioning to reach to distant nodes since the responders are located between 

intersection of shortest paths. This explains the turn-around point observe at 𝑃𝑃 = 9 

(Figure 4.10.a) for CBA, while the DBA needs more time to reach the failing elements – 

WS-like networks have low correlation between degree and betweenness centrality 

(Holme et al., 2002). The validity of these argument also hinges upon the assumption of 

propagation type we are modelling; in this case it is simple propagation as noted by the 

low cascade threshold 𝜑𝜑. 

Increasing the initial failure size |𝐹𝐹0| further reduces the performance gap between CBA 

and DBA. As it can be seen, all performance metrics have increments <10%. This pattern 

confirms the study that was conducted in section 4.2.3 where the number of initial 

failures affects the performance of both policies relative to each other. The DBA also had 

much longer range in which before it was outperformed by CBA at 𝑃𝑃 = 11 (Figure 4.10.b). 

Nevertheless, it can also be seen in Figure 4.10.b that both policies have marginal effect 

towards disruption response operation because the inadequate number of responder 

resource (|𝐴𝐴|) as signified by the increasing trend of |𝐹𝐹𝑡𝑡| towards the end of the initial 40 

hours.  
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In conclusion, TIE-DLOC simulation of USA Western Power Grid Network (PG) for 

disruption response operation has helped validate the conclusion gained from 

experiments in previous sections and bridge the gap between studies on conceptual 

networks and real-world CPI networks. Conceptual networks (ER, BA, and WS) models 

distinct properties of networks that are commonly found collectively in real-world 

networks. In this case, the PG has small-world property which is modeled by the WS 

network, but a degree distribution akin to the BA, though not purely power law 

distribution. As result, the response behavior mimics an intermediary between the two 

models. The DBA performs better initially due to power law-like degree, but later 

outperformed by CBA due to the fast propagation in small-world and less correlation 

between degree and betweenness centrality. By comparing the network properties of CPI 

networks with conceptual networks model, decision maker and designer can better 

predict the disruption response operation of the CPI network under different resource 

policies and failures. It was also shown that in real-world CPI network, the CBA and DBA 

can be used interchangeably depending on the network structure – each policies do not 

constantly outperform the other. 
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Table 4.13 Performance Increment of CBA-DBA on PG with varying |𝐹𝐹0| 

Metric 
Performance increment 

(%)* for |𝐹𝐹0| = 5 

Performance increment (%)* 

for |𝐹𝐹0| = 49 

Total failure (|𝐹𝐹|) 9.62% 0.65% 

Total distance traveled 

by agents (∆) 

9.55% 5.02% 

Total latency (𝑧𝑧) 19.59% 5.29% 

*Calculated by subtracting CBA result from DBA and divided by CBA 

 

Table 4.14 Statistical Significance of Performance Metric Increment on one-sample t-test 
for |𝐹𝐹0| = 5 

Metric 
Mean increment 

from CBA to DBA  

Standard deviation of 

increment 

p-value of one-

sample t-test* 

Total failure (|𝐹𝐹|) 28.28 33.442 0.399 

Total distance 

traveled by agents 

(∆) 

90.74 105.231 0.391 

Total latency (𝑧𝑧) 425.15 327.720 0.197 

*Null hypothesis of no increment 
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Table 4.15 Statistical Significance of Performance Metric Increment on one-sample t-test 
for |𝐹𝐹0| = 49 

Metric 
Mean increment 

from CBA to DBA  

Standard deviation of 

increment 

p-value of one-

sample t-test* 

Total failure (|𝐹𝐹|) 29.62 98.413 0.764 

Total distance 

traveled by agents 

(∆) 

485.77 119.759 0.000 

Total latency (𝑧𝑧) 2540.08 1366.21 0.065 

*Null hypothesis of no increment 

 

 

(a) |𝐹𝐹0|=5 
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(b) |𝐹𝐹0|=49 

Figure 4.10 Dynamic Cascade Failure size |𝐹𝐹𝑡𝑡|as a function of time 𝑃𝑃 on PG (with 0.95 
confidence interval) 

4.4 Summary 

Incorporating vulnerability consideration to the of DLOC-CDR has yielded many useful 

insights for future work in designing resource allocation policy for disruption responder 

teams in CPI networks. From a network vulnerability point of view, the degree centrality 

appears to be most effective heuristic to point out vulnerable elements of a network 

under cascading failure. We initially conject that the results of vulnerability analysis to be 

a good indicator of the performance of the respective CBA and DBA policy (Conjecture 

4.1). However, Conjecture 4.1 is rejected based on the experiments results of 4.2.3. Thus, 

network designer should not solely use network vulnerability indicator to select which 

resource allocation policy to use.  
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Two new heuristic resource allocation policy heuristics were implemented in this research, 

namely the Degree-based Allocation (DBA) and Bridge-based Allocation (BBA) based on 

degree centrality and bridge centrality, respectively. It was initially hypothesized that the 

BBA would perform better than CBA because of its ability to detect and protect bridging 

node which can increase the number of connected components in networks. However, 

the simulation conducted proved otherwise. This is because the TIE-DLOC simulator does 

not measures the connectivity state of the client CPI network.  In reality, some CPI 

network weights connectivity to be more important as opposed to number of failure itself, 

e.g. water distribution network. This can be a future direction for the development of the 

TIE-DLOC simulator to also measure network connectivity state. 

Finally, it is found that two competing resource allocation policy heuristics, DBA and CBA 

can be used interchangeably depending on the network properties a CPI network has. 

From our experiment on conceptual networks (ER, BA and WS), we made a conjecture 

(Conjecture 4.2) that by comparing the similarity of the network graph structural features 

(average geodesic length, degree distribution, clustering coefficient) to that of the 

corresponding conceptual network, we can make an inference on how well the CBA-DBA 

policy will perform with respect to each other – given the same network size. Albeit a 

general guideline is left for future work, some constant patterns have been found: 

1. Varying disruption responder team size, while fixing agent’s degree, will yield an 

expected increment value which approaches a mean with marginal STD.  Varying 

fixed degree will improve performance by increasing collaboration capability 

(Zhong & Nof, 2015; Zhong, 2016). 
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2. The performance increment from CBA to DBA, within a given network size, is 

sensitive to the size of initial failure |𝐹𝐹0|.  Thus, network design must assess what 

is the expected number failures that may appear simultaneously to trigger a 

cascading failure. 

3. The DBA policy constantly performs better compared to CBA on networks with 

power-law degree distribution or similar to BA Scale-free. This assertion is 

supported by experiments from section 4.2.1 and 4.2.3 and theoretically due to 

the fact the DBA and CBA have high correlation in terms of their centrality (Holmes, 

2002).  

4. In networks with small world property, the performance increment from CBA to 

DBA has a decreasing trend with increasing network size. For large network size, 

the CBA will outperform DBA. This assertion is supported by the experiment 

results in section 4.2.1 and 4.2.2 where in the latter the WS client network has 

more nodes, |𝑁𝑁|, compared to the former and the DBA policy performs worse 

than CBA.  The same behavior is also prevalent in the PG network. Theoretically, 

this can also be explained by the fact that: (1) the degree centrality and 

betweenness centrality have lower correlation in networks with increasing 

clustering coefficient (Holmes, 2002) and (2) Small-world properties allows 

failures to propagates faster throughout the network. Due to fact (1), responder 

agents under CBA policy are better positioned to travel quickly throughout the 

network to recover propagating failures. 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

The findings on this research can be concluded according to the RQ as following 

1. RQ1: Graph Theoretical Analysis of DLOC 

The DLOC models measures resiliency of networks under cascading disruption by 

the Recoverability metric 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 which denotes the probability of a network to 

fully recover from a cascading disruption. The behavior of cascade failure in DLOC 

is driven by the underlying model of Watts Threshold Cascade. Using percolation 

theory in graphs, past research works have been able to create an analytical model 

to predict average cascade size in different networks (Watts, 2002). Motivated by 

this, we hypothesize there exist a regime where 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1  for all different 

networks and is driven by its degree distribution and threshold cascade 𝜑𝜑. We 

found that this is true. More specifically, we found that if the fraction of vulnerable 

nodes of the network, 𝑃𝑃𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑟𝑟, is below 0.7, 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1. This hypothesis 

was tested on three different conceptual networks with varying size to represent 

the changes in topology and one real-world CPI network, the USA Western Power 

Grid (PG). All experiment complies with the aforementioned hypothesis. 

Furthermore, the experiment result complements findings from past DLOC 

research works in terms of the “small-world” effect of on disruption response.
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Finally, this result can also be used a quick guideline for designers of e-Work 

systems on evaluating the reliability of their disruption responder teams. Similar 

analysis can also be conducted with different responder team size to produce a 

more robust guideline. 

2. RQ2: Protection of Vulnerable Parts of the Network. 

Based on vulnerability analysis, two new heuristic resource allocation policy 

heuristics were implemented in this research, namely the Degree-based 

Allocation (DBA) and Bridge-based Allocation (BBA) based on degree centrality 

and bridge centrality, respectively. However, BBA was later proven to be inferior 

in performance compared to the two others. 

The DBA and CBA can be used interchangeably depending on the network 

properties that a CPI network have. From our experiment on conceptual networks 

(ER, BA and WS), we made a conjecture (Conjecture 4.2) that by comparing the 

similarity of the network graph structural features (average geodesic length, 

degree distribution, clustering coefficient) to that of the corresponding conceptual 

network, we can make an inference on how well the CBA-DBA policy will perform 

with respect to each other – given the same network size. Albeit a general 

guideline is left for future work, some constant patterns have been found: 

a. Varying disruption responder team size, while fixing agent’s degree, will yield 

an expected increment value which approaches a mean with marginal STD. 

b. The performance increment of DBA and CBA, within a given network size, 

sensitive to the size of initial failure |𝐹𝐹0|.  Thus, network design must assess 
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what is the expected number failures that may appear simultaneously to 

trigger a cascading failure. 

c. The DBA policy constantly performs better to CBA better on networks with 

power-law degree distribution or similar to BA Scale-free.  

d. In networks with small world property, the performance increment from CBA 

to DBA has a decreasing trend with increasing network size.  

Based on the results of this research, we have identified selected topics that have big 

potential for the development of DLOC model for future works: 

1. Development analytical methods to approximate DLOC-CDR performance 

The results and analysis from RQ1 implies that future works can be directed to 

construct analytical methods in reviewing DLOC design, as opposed to the current 

empirical methods. Analytical methods will further improve DLOC’s modelling 

capability and versatility in aiding network designers by providing quick guidelines 

and accurate approximation. Some references worthwhile reviewing is regarding 

percolation theory and universal behavior of cascade and contagion behavior. 

2. Measure Connectivity State of Client Network 

Connectivity state is an important issue in complex infrastructure systems, such 

as transportation network, water distribution network, etc. While the DLOC has 

rigorously modeled failure states of network elements, it is still lacking the ability 

to measure connectivity state. The inclusion of connectivity state may alter the 

design guidelines produce by the current DLOC, as a new objective may be added 

to minimize disconnection in network. This argument can be implied by the 
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effectiveness of the BBA in the current DLOC (Chapter 4), which is inferior to CBA 

and DBA despite the advantage of detecting bridges in network. Bridges are 

important element networks where the severing of these bridges can increase the 

number of connected components and disconnect a network (Bondy & Murty, 

2008). 
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