63 research outputs found

    Severely Fading MIMO Channels

    Get PDF
    In most wireless communications research, the channel models considered experience less severe fading than the classic Rayleigh fading case. In this thesis, however, we investigate MIMO channels where the fading is more severe. In these environments, we show that the coefficient of variation of the channel amplitudes is a good predictor of the link mutual information, for a variety of models. We propose a novel channel model for severely fading channels based on the complex multivariate t distribution. For this model, we are able to compute exact results for the ergodic mutual information and approximations to the outage probabilities for the mutual information. Applications of this work include wireless sensors, RF tagging, land-mobile, indoor-mobile, ground-penetrating radar, and ionospheric radio links. Finally, we point out that the methodology can also be extended to evaluate the mutual information of a cellular MIMO link and the performance of various MIMO receivers in a cellular scenario. In these cellular applications, the channel itself is not severely fading but the multivariate t distribution can be applied to model the effects of intercellular interference

    Optimisation of wireless communication system by exploitation of channel diversity

    Get PDF
    Communication systems are susceptible to degradation in performance because of interference received through their side lobes. The interference may be deliberate electronic counter measure (ECM), Accidental RF Interference (RFI) or natural noise. The growth of interference communication systems have given rise to different algorithms, Adaptive array techniques offer a possible solution to this problem of interference received through side lobes because of their automatic null steering in both spatial and frequency domains. Key requirement for space-time architecture is to use robust adaptive algorithms to ensure reliable operation of the smart antenna. Space division multiple access (SDMA) involves the use of adaptive nulling to allow two or more users (mobiles) in the same cell to share same frequency and time slot. One beam is formed for each user with nulls in the direction of other users. Different approaches have been used to identify the interferer from desired user. Thus a basic model for determining the angle of arrival of incoming signals, an appropriate antenna beam forming and adaptive algorithms are used for array processing. There is an insatiable demand for capacity in wireless data networks and cellular radio communication systems. However the RF environment that these systems operate in is harsh and severely limits the capacity of traditional digital wireless networks. With normal wireless systems this limits the data rate in cellular radio environments to approximately 200 kbps whereas much higher data rates in excess of 25Mbps are required. A common wireless channel problem is that of frequency selective multi-path fading. To combat this problem, new types of wireless interface are being developed which utilise space, time and frequency diversity to provide increasing resilience to the channel imperfections. At any instant in time, the channel conditions may be such that one or more of these diversity methods may offer a superior performance to the other diversity methods. The overall aim of the research is to develop new systems that use a novel combination of smart antenna MIMO techniques and an advanced communication system based on advanced system configuration that could be exploited by IEEE 802.20 user specification approach for broadband wireless networking. The new system combines the Multi-input Multi-output communication system with frequency diversity in the form of an OFDM modulator. The benefits of each approach are examined under similar channel conditions and results presented.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    On the Performance Analysis of Cooperative Vehicular Communication

    Get PDF
    Vehicular networking is envisioned to be a key technology area for significant growth in the coming years. Although the expectations for this emerging technology are set very high, many practical aspects remain still unsolved for a vast deployment of vehicular networks. This dissertation addresses the enabling physical layer techniques to meet the challenges in vehicular networks operating in mobile wireless environments. Considering the infrastructure-less nature of vehicular networks, we envision cooperative diversity well positioned to meet the demanding requirements of vehicular networks with their underlying distributed structure. Cooperative diversity has been proposed as a powerful means to enhance the performance of high-rate communications over wireless fading channels. It realizes spatial diversity advantages in a distributed manner where a node uses others antennas to relay its message creating a virtual antenna array. Although cooperative diversity has garnered much attention recently, it has not yet been fully explored in the context of vehicular networks considering the unique characteristics of vehicular networks, this dissertation provides an error performance analysis study of cooperative transmission schemes for various deployment and traffic scenarios. In the first part of this dissertation, we investigate the performance of a cooperative vehicle-to-vehicle (V2V) system with amplify-and-forward relaying for typical traffic scenarios under city/urban settings and a highway area. We derive pairwise error probability (PEP) expressions and demonstrate the achievable diversity gains. The effect of imperfect channel state information (CSI) is also studied through an asymptotical PEP analysis. We present Monte-Carlo simulations to confirm the analytical derivations and present the error rate performance of the vehicular scheme with perfect and imperfect-CSI. In the second part, we consider road-to-vehicle (R2V) communications in which roadside access points use cooperating vehicles as relaying terminals. Under the assumption of decode-and-forward relaying, we derive PEP expressions for single-relay and multi-relay scenarios. In the third part, we consider a cooperative multi-hop V2V system in which direct transmission is not possible and investigate its performance through the PEP derivation and diversity gain analysis. Monte-Carlo simulations are further provided to con firm the analytical derivations and provide insight into the error rate performance improvement

    Wireless multiuser communication systems: diversity receiver performance analysis, GSMuD design, and fading channel simulator

    Get PDF
    Multipath fading phenomenon is central to the design and analysis of wireless communication systems including multiuser systems. If untreated, the fading will corrupt the transmitted signal and often cause performance degradations such as increased communication error and decreased data rate, as compared to wireline channels with little or no multipath fading. On the other hand, this multipath fading phenomenon, if fully utilized, can actually lead to system designs that provide additional gains in system performance as compared to systems that experience non-fading channels.;The central question this thesis tries to answer is how to design and analyze a wireless multiuser system that takes advantage of the benefits the diversity multipath fading channel provides. Two particular techniques are discussed and analyzed in the first part of the thesis: quadrature amplitude modulation (QAM) and diversity receivers, including maximal ratio combining (MRC) and generalized selection combining (GSC). We consider the practical case of imperfect channel estimation (ICE) and develop a new decision variable (DV) of MRC receiver output for M-QAM. By deriving its moment generating function (MGF), we obtain the exact bit error rate (BER) performance under arbitrary correlated Rayleigh and Rician channels, with ICE. GSC provides a tradeoff between receiver complexity and performance. We study the effect of ICE on the GSC output effective SNR under generalized fading channels and obtain the exact BER results for M-QAM systems. The significance of this part lies in that these results provide system designers means to evaluate how different practical channel estimators and their parameters can affect the system\u27s performance and help them distribute system resources that can most effectively improve performance.;In the second part of the thesis, we look at a new diversity technique unique to multiuser systems under multipath fading channels: the multiuser diversity. We devise a generalized selection multiuser diversity (GSMuD) scheme for the practical CDMA downlink systems, where users are selected for transmission based on their respective channel qualities. We include the effect of ICE in the design and analysis of GSMuD. Based on the marginal distribution of the ranked user signal-noise ratios (SNRs), we develop a practical adaptive modulation and coding (AMC) scheme and equal power allocation scheme and statistical optimal 1-D and 2-D power allocation schemes, to fully exploit the available multiuser diversity. We use the convex optimization procedures to obtain the 1-D and 2-D power allocation algorithms, which distribute the total system power in the waterfilling fashion alone the user (1-D) or both user and time (2-D) for the power-limited and energy-limited system respectively. We also propose a normalized SNR based GSMuD scheme where user access fairness issues are explicitly addressed. We address various fairness-related performance metrics such as the user\u27s average access probability (AAP), average access time (AAT), and average wait time (AWT) in the absolute- and normalized-SNR based GSMuD. These metrics are useful for system designers to determine parameters such as optimal packet size and delay constraints.;We observe that Nakakagami-m fading channel model is widely applied to model the real world multipath fading channels of different severity. In the last part of the thesis, we propose a Nakagami-m channel simulator that can generate accurate channel coefficients that follow the Nakagami-m model, with independent quadrature parts, accurate phase distribution and arbitrary auto-correlation property. We demonstrate that the proposed simulator can be extremely useful in simulations involving Nakagami-m fading channel models, evident from the numerous simulation results obtained in earlier parts of the thesis where the fading channel coefficients are generated using this proposed simulator

    Design and Analysis of Advanced Free Space Optical Communication Systems

    Get PDF
    Free space optical (FSO) communication has emerged as a viable technology for broadband wireless applications. FSO technology offers the potential of high bandwidth capacity over unlicensed optical wavelengths. On long-range FSO links, atmospheric turbulence causes intensity fluctuations, which degrades links performance. The performance of an optical link can be improved by the use of a time delayed diversity technique, which takes advantage of the fact that the atmospheric path from transmitter to receiver is statistically independent for time intervals beyond the coherence time of the intensity fluctuations. Communications performance is improved because the joint probability of error is less than the probability of error from individual channels. Theoretical analysis and experimental investigation were conducted to assess and characterize the performance of a time delayed diversity FSO system. Two experiments were conducted: inside our laboratory under simulated convective turbulence and inter-building in clear atmospheric turbulence. In both cases, time delayed diversity system is shown to offer a notable performance improvement compared to a non-diversity FSO system, where the signal-to-noise ratio (SNR) performance can gain up to 4.7 dB and the bit error rate (BER) performance is doubled. These experimental studies confirm the effectiveness of a time delayed diversity technique to mitigate turbulence induced fading, and its optimality in a dual diversity scheme. This is the first published report of theoretical and experimental performance characteristics of FSO communication system utilizing time delayed diversity technique. FSO technology has also emerged as a key technology for the development of rapidly deployable and secure communication and surveillance networks. In networking applications, broadcasting capability is frequently required to establish and maintain inter-node communications. One approach to deal with the broadcasting issue in FSO networking is the use of omnidirectional FSO links, which is based on non-directed line-of-sight (LOS) technique. Prototype omnidirectional FSO transceiver had been constructed and their performance investigated. Although omnidirectional FSO links cannot provide the performance of directional ones, the results suggest that they could be used in sensor networks or as alternative for traditional wireless networks, when the use of radio frequency (RF) technology is prohibited

    Multibeam Joint Processing in Satellite Communications

    Get PDF
    Cooperative Satellite Communications (SatComs) involve multi-antenna satellites enabled for the joint transmission and reception of signals. This joint processing of baseband signals is realized amongst the distinct but interconnected antennas. Advanced signal processing techniques –namely precoding and Multiuser Detection (MUD)– are herein examined in the multibeam satellite context. The aim of this thesis is to establish the prominence of such methods in the next generation of broadband satellite networks. To this end, two approaches are followed. On one hand, the performance of the well established and theoretically concrete MUD is analysed over the satellite environments. On the other, optimal signal processing designs are developed and evaluated for the forward link. In more detail, the present dissertation begins by introducing the topic of multibeam joint processing. Thus, the most significant practical constraints that hinder the application of advanced interference mitigation techniques in satellite networks are identified and discussed. Prior to presenting the contributions of this work, the multi-antenna joint processing problem is formulated using the generic Multiuser (MU) Multiple InputMultiple Output (MIMO) baseband signal model. This model is also extended to apply in the SatComs context. A detailed presentation of the related work, starting from a generic signal processing perspective and then focusing on the SatComs field, is then given. With this review, the main open research topics are identified. Following the comprehensive literature review, the first contribution of this work, is presented. This involves the performance evaluation of MUD in the Return Link (RL) of multiuser multibeam SatComs systems. Novel, analytical expressions are derived to describe the information theoretic channel capacity as well as the performance of practical receivers over realistic satellite channels. Based on the derived formulas, significant insights for the design of the RL of next generation cooperative satellite systems are provided. In the remaining of this thesis, the focus is set on the Forward Link (FL) of multibeam SatComs, where precoding, combined with aggressive frequency reuse configurations, are proposed to enhance the offered throughput. In this context, the alleviation of practical constraints imposed by the satellite channel is the main research challenge. Focusing on the rigid framing structure of the legacy SatCom standards, the fundamental frame-based precoding problem is examined. Based on the necessity to serve multiple users by a single transmission, the connection of the frame-based precoding and the fundamental signal processing problem of physical layer multigroup multicasting is established. In this framework and to account for the power limitations imposed by a dedicated High Power Amplifier (HPA) per transmit element, a novel solution for multigroup multicasting under Per Anntenna Constraints (PACs) is derived. Therefore, the gains offered by multigroup multicasting in frame-based systems are quantified over an accurate simulation setting. Finally, advanced multicast and interference aware scheduling algorithms are proposed to glean significant gains in the rich multiuser satellite environment. The thesis concludes with the main research findings and the identification of new research challenges, which will pave the way for the deployment of cooperative multibeam satellite systems

    Performance analysis for industrial wireless networks

    Get PDF
    Industrial wireless networks operate in harsher and noisier environments compared to traditional wireless networks, while demanding high reliability and low latency. These requirements, combined with the constant need for better coverage, higher data rates and overall seamless user experience call for a paradigm shift in communication in regards to the previous generations of technologies used. Cooperative diversity is one such approach. The main focus of this thesis is on the performance analysis of cooperative wireless networks set in industrial environments – where the network, apart from additive white Gaussian noise, is subject to multipath fading and shadowing, and/or temporary random blockage effects. In these scenarios, in order to achieve specific performance metrics such as error rates or outage probabilities, existing cooperative strategies are aided by protocols in the channel between the cooperating nodes. Moreover, pair-wise analysis investigates the correlation of multiple data flows. Building upon existing repetition protocols, outage performance of a network subject to fading and shadowing is observed, and the effects of fading and shadowing severity, network dimension, average signal-to-noise ratio values and packet length are discussed. Special cases are also observed, in which the composite fading channel is reduced to several familiar propagation environments, unifying the analysis. Afterwards, the analysis of more complex protocols is presented, taking into account random blockage in the channels between cooperating nodes. A novel, threshold-based internode protocol is introduced, which improves performance by listening to the transmissions and choosing whether to send a packet immediately or after a waiting period. As these two periods are close, the effect of temporal correlation is also investigated. Apart from the exact outage probability expressions, simpler asymptotic expressions, with and without blockage, are derived as well, giving a better insight on the network behaviour at high average signal-to-noise ratio regimes. Both outage probability and packet error rate can be also improved by adding automatic repeat request schemes in the channel between cooperating nodes, which again utilize the internode channels by re-sending data until it can be successfully decoded. Error-free communication can be achieved, but at a delay cost. Nevertheless, a trade-off between performance gains and delays remains, and can therefore be used for designing wireless networks with different requirements – error-free or low-latency. Finally, joint outage performance is investigated. Using a generic approach, which can be applied to any sort of data where multiple sources are communicating over wireless networks, pair-wise behaviour is investigated. As a result, any multi-route diversity type of scheme will have this sort of behaviour, since particular point-to-point relay links are being shared by source nodes. This in turn means that the performance of those flows will be correlated. For higher layers, there is a difference in the behaviour, meaning that when errors are correlated, data flows start behaving correlated as well. As a result, negative acknowledgements may start to correlate as well. All of this contributes to the network behaving in a correlated way, i.e., when something happens, it tends to happen to more than one data flow
    corecore