12,019 research outputs found

    Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables

    Full text link
    Analytic combinatorics studies the asymptotic behaviour of sequences through the analytic properties of their generating functions. This article provides effective algorithms required for the study of analytic combinatorics in several variables, together with their complexity analyses. Given a multivariate rational function we show how to compute its smooth isolated critical points, with respect to a polynomial map encoding asymptotic behaviour, in complexity singly exponential in the degree of its denominator. We introduce a numerical Kronecker representation for solutions of polynomial systems with rational coefficients and show that it can be used to decide several properties (0 coordinate, equal coordinates, sign conditions for real solutions, and vanishing of a polynomial) in good bit complexity. Among the critical points, those that are minimal---a property governed by inequalities on the moduli of the coordinates---typically determine the dominant asymptotics of the diagonal coefficient sequence. When the Taylor expansion at the origin has all non-negative coefficients (known as the `combinatorial case') and under regularity conditions, we utilize this Kronecker representation to determine probabilistically the minimal critical points in complexity singly exponential in the degree of the denominator, with good control over the exponent in the bit complexity estimate. Generically in the combinatorial case, this allows one to automatically and rigorously determine asymptotics for the diagonal coefficient sequence. Examples obtained with a preliminary implementation show the wide applicability of this approach.Comment: As accepted to proceedings of ISSAC 201

    Discontinuities in recurrent neural networks

    Get PDF
    This paper studies the computational power of various discontinuous real computational models that are based on the classical analog recurrent neural network (ARNN). This ARNN consists of finite number of neurons; each neuron computes a polynomial net-function and a sigmoid-like continuous activation-function. The authors introducePostprint (published version

    Toward accurate polynomial evaluation in rounded arithmetic

    Get PDF
    Given a multivariate real (or complex) polynomial pp and a domain D\cal D, we would like to decide whether an algorithm exists to evaluate p(x)p(x) accurately for all xDx \in {\cal D} using rounded real (or complex) arithmetic. Here ``accurately'' means with relative error less than 1, i.e., with some correct leading digits. The answer depends on the model of rounded arithmetic: We assume that for any arithmetic operator op(a,b)op(a,b), for example a+ba+b or aba \cdot b, its computed value is op(a,b)(1+δ)op(a,b) \cdot (1 + \delta), where δ| \delta | is bounded by some constant ϵ\epsilon where 0<ϵ10 < \epsilon \ll 1, but δ\delta is otherwise arbitrary. This model is the traditional one used to analyze the accuracy of floating point algorithms.Our ultimate goal is to establish a decision procedure that, for any pp and D\cal D, either exhibits an accurate algorithm or proves that none exists. In contrast to the case where numbers are stored and manipulated as finite bit strings (e.g., as floating point numbers or rational numbers) we show that some polynomials pp are impossible to evaluate accurately. The existence of an accurate algorithm will depend not just on pp and D\cal D, but on which arithmetic operators and which constants are are available and whether branching is permitted. Toward this goal, we present necessary conditions on pp for it to be accurately evaluable on open real or complex domains D{\cal D}. We also give sufficient conditions, and describe progress toward a complete decision procedure. We do present a complete decision procedure for homogeneous polynomials pp with integer coefficients, {\cal D} = \C^n, and using only the arithmetic operations ++, - and \cdot.Comment: 54 pages, 6 figures; refereed version; to appear in Foundations of Computational Mathematics: Santander 2005, Cambridge University Press, March 200

    A Near-Optimal Algorithm for Computing Real Roots of Sparse Polynomials

    Full text link
    Let pZ[x]p\in\mathbb{Z}[x] be an arbitrary polynomial of degree nn with kk non-zero integer coefficients of absolute value less than 2τ2^\tau. In this paper, we answer the open question whether the real roots of pp can be computed with a number of arithmetic operations over the rational numbers that is polynomial in the input size of the sparse representation of pp. More precisely, we give a deterministic, complete, and certified algorithm that determines isolating intervals for all real roots of pp with O(k3log(nτ)logn)O(k^3\cdot\log(n\tau)\cdot \log n) many exact arithmetic operations over the rational numbers. When using approximate but certified arithmetic, the bit complexity of our algorithm is bounded by O~(k4nτ)\tilde{O}(k^4\cdot n\tau), where O~()\tilde{O}(\cdot) means that we ignore logarithmic. Hence, for sufficiently sparse polynomials (i.e. k=O(logc(nτ))k=O(\log^c (n\tau)) for a positive constant cc), the bit complexity is O~(nτ)\tilde{O}(n\tau). We also prove that the latter bound is optimal up to logarithmic factors

    The complexity and geometry of numerically solving polynomial systems

    Full text link
    These pages contain a short overview on the state of the art of efficient numerical analysis methods that solve systems of multivariate polynomial equations. We focus on the work of Steve Smale who initiated this research framework, and on the collaboration between Stephen Smale and Michael Shub, which set the foundations of this approach to polynomial system--solving, culminating in the more recent advances of Carlos Beltran, Luis Miguel Pardo, Peter Buergisser and Felipe Cucker

    Accurate and Efficient Expression Evaluation and Linear Algebra

    Full text link
    We survey and unify recent results on the existence of accurate algorithms for evaluating multivariate polynomials, and more generally for accurate numerical linear algebra with structured matrices. By "accurate" we mean that the computed answer has relative error less than 1, i.e., has some correct leading digits. We also address efficiency, by which we mean algorithms that run in polynomial time in the size of the input. Our results will depend strongly on the model of arithmetic: Most of our results will use the so-called Traditional Model (TM). We give a set of necessary and sufficient conditions to decide whether a high accuracy algorithm exists in the TM, and describe progress toward a decision procedure that will take any problem and provide either a high accuracy algorithm or a proof that none exists. When no accurate algorithm exists in the TM, it is natural to extend the set of available accurate operations by a library of additional operations, such as x+y+zx+y+z, dot products, or indeed any enumerable set which could then be used to build further accurate algorithms. We show how our accurate algorithms and decision procedure for finding them extend to this case. Finally, we address other models of arithmetic, and the relationship between (im)possibility in the TM and (in)efficient algorithms operating on numbers represented as bit strings.Comment: 49 pages, 6 figures, 1 tabl

    Using approximate roots for irreducibility and equi-singularity issues in K[[x]][y]

    Full text link
    We provide an irreducibility test in the ring K[[x]][y] whose complexity is quasi-linear with respect to the valuation of the discriminant, assuming the input polynomial F square-free and K a perfect field of characteristic zero or greater than deg(F). The algorithm uses the theory of approximate roots and may be seen as a generalization of Abhyankhar's irreducibility criterion to the case of non algebraically closed residue fields. More generally, we show that we can test within the same complexity if a polynomial is pseudo-irreducible, a larger class of polynomials containing irreducible ones. If FF is pseudo-irreducible, the algorithm computes also the valuation of the discriminant and the equisingularity types of the germs of plane curve defined by F along the fiber x=0.Comment: 51 pages. Title modified. Slight modifications in Definition 5 and Proposition 1
    corecore