
Toward accurate polynomial evaluation

in rounded arithmetic (short report)

James Demmel∗, Ioana Dumitriu†, and Olga Holtz‡

November 12, 2005

Abstract

Given a multivariate real (or complex) polynomial p and a domain D, we would like to decide
whether an algorithm exists to evaluate p(x) accurately for all x ∈ D using rounded real (or
complex) arithmetic. Here “accurately” means with relative error less than 1, i.e., with some
correct leading digits. The answer depends on the model of rounded arithmetic: We assume that
for any arithmetic operator op(a, b), for example a+b or a·b, its computed value is op(a, b)·(1+δ),
where |δ| is bounded by some constant ǫ where 0 < ǫ ≪ 1, but δ is otherwise arbitrary. This
model is the traditional one used to analyze the accuracy of floating point algorithms.

Our ultimate goal is to establish a decision procedure that, for any p and D, either exhibits
an accurate algorithm or proves that none exists. In contrast to the case where numbers are
stored and manipulated as finite bit strings (e.g., as floating point numbers or rational numbers)
we show that some polynomials p are impossible to evaluate accurately. The existence of an
accurate algorithm will depend not just on p and D, but on which arithmetic operators and
constants are available to the algorithm and whether branching is permitted in the algorithm.

Toward this goal, we present necessary conditions on p for it to be accurately evaluable on
open real or complex domainsD. We also give sufficient conditions, and describe progress toward
a complete decision procedure. We do present a complete decision procedure for homogeneous
polynomials p with integer coefficients, D = Cn, using only arithmetic operations +, − and ·.

1 Introduction

In actual computations “real numbers” are represented by floating point numbers r = m ·βe, where
m is a finite precision mantissa, β is a fixed radix (2 or 10), and e is an integer exponent. Viewing

these as rational numbers makes it clear that all algebraic expressions can be evaluated exactly, but
possibly at high cost. The usual alternative is to think of each arithmetic operation as introducing

a multiplicative error 1 + δ with |δ| ≤ ǫ ≪ 1, caused by rounding m with a relative error bounded
by ǫ. Sometimes composite operations like x + y · z are carefully implemented so that they too

produce the exact answer times some 1 + δ.

∗Mathematics Department and CS Division, University of California, Berkeley, CA 94720. The author acknowl-

edges the support of NSF under grants CCF-0444486, ACI-00090127, CNS-0325873 and of DOE under grant DE-

FC02-01ER25478.
†Mathematics Department, University of California, Berkeley, CA 94720. The author acknowledges the support

of the Miller Institute for Basic Research in Science.
‡Mathematics Department, University of California, Berkeley, CA 94720.

1
Dagstuhl Seminar Proceedings 05391
Algebraic and Numerical Algorithms and Computer-assisted Proofs
http://drops.dagstuhl.de/opus/volltexte/2006/447

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We use this model as our starting point, and ask which expressions permit accurate evaluation,
given a set of rounded arithmetic operations, possibly including an arbitrary set of “black-box”

operations like x + y · z. By treating δ as a tiny but otherwise arbitrary real (or complex) number,
we will see that some expressions are in fact impossible to evaluate accurately. The practical impli-
cation is that higher precision arithmetic (in the form of more accurately implemented “black-box

operations”) is necessary for accurate evaluation of such expressions. Indeed, our goal is a deci-
sion procedure that takes any expression and identifies whether it can be evaluated accurately, and

provides the algorithm if it exists. The impact would be both to formalize the process of accu-
rate algorithm generation [9] and to systematize recent results [5] identifying apparently disparate

classes of structured matrices for which efficient and accurate linear algebra algorithms exist.
We give some examples to illustrate our results. Consider the family of homogeneous poly-

nomials Mjk(x) = j · x6
3 + x2

1 · x2
2 · (j · x2

1 + j · x2
2 − k · x2

3) where j and k are positive integers,
D = Rn, and we allow only addition, subtraction and multiplication of two arguments as basic

arithmetic operations, along with comparisons and branching. When k/j < 3, Mjk(x) is positive
definite, i.e., zero only at the origin and positive elsewhere. This will mean that Mjk(x) is easy to
evaluate accurately using a simple method discussed in Section 3. When k/j > 3, then we will show

that Mjk(x) cannot be evaluated accurately by any algorithm using only addition, subtraction and
multiplication of two arguments. This will follow from a simple necessary condition on the real

variety VR(Mjk), the set of real x where Mjk(x) = 0, see Theorem 4.4. When k/j = 3, i.e., on the
boundary between the above two cases, Mjk(x) is a multiple of the Motzkin polynomial [8]. The

real variety VR(Mjk) = {x : |x1| = |x2| = |x3|} of this polynomial satisfies the necessary condition
of Theorem 4.4, and the simplest accurate algorithm to evaluate it that we know of has 8 cases

depending on the relative values of |xi ± xj |, one branch of which evaluates p by the nonobvious
formula p = j · (x4

3 · [4((x1 − x3)
2 + (x2 − x3)

2 + (x1 − x3)(x2 − x3))] + x3
3 · [2(2(x1 − x3)

3 + 5(x2 −
x3)(x1−x3)

2 +5(x2−x3)
2(x1 −x3)+2(x2−x3)

3)]+x2
3 · [(x1−x3)

4 +8(x2−x3)(x1−x3)
3 +9(x2 −

x3)
2(x1 − x3)

2 + 8(x2 − x3)
3(x1 − x3) + (x2 − x3)

4] + x3 · [2(x2 − x3)(x1 − x3)((x1 − x3)
3 + 2(x2 −

x3)(x1−x3)
2 +2(x2−x3)

2(x1−x3)+(x2−x3)
3)]+(x2−x3)

2(x1−x3)
2((x1−x3)

2+(x2−x3)
2)). In

contrast to the real case, when D = C
n then Theorem 4.4 will show that Mjk(x) is not accurately

evaluable using only addition, subtraction and multiplication.

The necessary condition for accurate evaluability of p(x) in Theorem 4.4 depends only on
the variety of p(x), but the variety alone is not enough to determine accurate evaluability, at

least in the real case. Consider the irreducible, homogeneous, degree 2d, real polynomial p(x) =
(x2d

1 + x2d
2) + (x2

1 + x2
2)(q(x3, ..., xn))

2, where q(·) is homogeneous of degree d − 1. The variety

V (p) = {x1 = x2 = 0} satisfies the necessary condition for accurate evaluability, but near V (p) the
polynomial p(x) is “dominated” by (x2

1+x2
2)(q(x3, ..., xn))

2, so accurate evaluability of p(x) depends

on q(·). Applying the same principle to q(·), we see that any decision procedure must be recursive,
expanding p(x) near the components of its variety and so on. We show current progress toward a
decision procedure in Section 4.3. In particular, Theorem 4.12 shows that, at least for algorithms

without branching, being able to compute dominant terms of p (suitably defined) accurately on
Rn is a necessary condition for computing p accurately on Rn. Furthermore, Theorem 4.14 shows

that accurate evaluability of the dominant terms, along with branching, is sufficient to evaluate p
accurately. In contrast to the real case, Theorem 4.5 shows that for the complex case knowing V (p)

is necessary and sufficient to decide.
The rest of this paper is organized as follows. Section 2 discusses further details of our al-

gorithmic model. Section 3 discusses the evaluation of positive polynomials. Section 4 discusses

2

necessary conditions (for real and complex data) and sufficient conditions (for complex data) for
accurate evaluability, when using only classical arithmetic. Section 4.3 describes progress toward

devising a decision procedure for accurate evaluability in the real case using classical arithmetic.
Section 5 extends Section 4’s necessary conditions to arbitrary black-box arithmetic operations,
and gives sufficient conditions in the complex case. Section 6 is devoted to open problems and

future work.

2 Models of Algorithms

Now we state more formally our decision question. We write the output of our algorithm as
pcomp(x, δ), where δ = (δ1, δ2, ..., δk) is the vector of rounding errors made during the algorithm.

Definition 2.1. We say that pcomp(x, δ) is an accurate algorithm for the evaluation of p(x) for
x ∈ D if

∀ 0 < η < 1 ... for any η = desired relative error
∃ 0 < ǫ < 1 ... there is an ǫ = machine precision

∀ x ∈ D ... so that for all x in the domain
∀ |δi| ≤ ǫ ... and for all rounding errors bounded by ǫ

|pcomp(x, δ)− p(x)| ≤ η · |p(x)| ... the relative error is at most η.

Our ultimate goal is a decision procedure (a “compiler”) that takes p(·) and D as input, and
either produces an accurate algorithm pcomp (including how to choose the machine precision ǫ given
the desired relative error η) or exhibits a proof that none exists.

To be more precise, we must say what our set of possible algorithms includes. The above
decision question is apparently not Tarski-decidable [7, 10] despite its appearance, because we see

no way to express “there exists an algorithm” in that format.
A more formal description of the algorithms that we consider is as follows.

1. We insist that the inputs x are given exactly, rather than approximately.

2. We insist that the algorithm computes the output pcomp(x, δ) always in finitely many steps
and, moreover, computes the exact value of p(x) when all rounding errors δ = 0. In particular,
we exclude iterative algorithms which might produce an approximate value of p(x) even when

δ = 0.

3. We must describe the basic arithmetic operations we consider, beyond addition, subtraction

and multiplication. We refer to the model with only those three operations, together with
exact negation, as classical arithmetic. The case when additional polynomial operations are
included is referred to as black-box arithmetic. We must also describe the constants available

to our algorithms.

4. We consider algorithms both with and without comparisons and branching, since this choice
may change the set of polynomials that we can accurately evaluate.

5. If the computed value of an operation depends only the values of its operands, i.e., if the same
operands x and y of op(x, y) always yield the same δ in rnd(op(x, y)) = op(x, y) · (1+ δ), then
we call our model deterministic, else it is nondeterministic. One can show that comparisons

3

and branching let a nondeterministic machine simulate a deterministic one, and subsequently
restrict our investigation to the easier nondeterministic model.

6. What domains of evaluation D do we consider? In principle, any semialgebraic set D is a
possibility, but for simplicity we mostly consider open D, especially D = Rn or D = Cn. We

point out issues in extending results to other D.

For further details of these assumptions, and comparisons with other models, see [4].

3 Evaluating positive polynomials accurately

Here we address the simpler case where the polynomial p(x) to be evaluated has no zeros in the
domain of evaluation D. It turns out that we need more than this to guarantee accurate evaluability:

we will require that |p(x)| be bounded both above and below in an appropriate manner on D.
We let D̄ denote the closure of D. (For proofs of this and subsequent results, see [4].)

Theorem 3.1. Let pcomp(x, δ) be any algorithm for p(x) satisfying pcomp(x, 0) = p(x), i.e. it
computes the right value in the absence of rounding error. Let pmin := infx∈D̄ |p(x)|. Suppose D̄ is

compact and pmin > 0. Then pcomp(x, δ) is an accurate algorithm for p(x) on D.

Next we consider domains D whose closure is not compact. To see that merely requiring
pmin > 0 is not enough, consider evaluating p(x) = 1 + (x1 + x2 + x3)

2 on R3. Intuitively, p(x) can

only be accurate if its “dominant term” (x1 + x2 + x3)
2 is accurate, once it is large enough, and

this is not possible using only addition, subtraction and multiplication (as follows from results of

Section 4.3).
Instead, we consider a homogeneous polynomial p(x) evaluated on a homogeneous D, i.e. one

where x ∈ D implies γx ∈ D for any scalar γ. Even though such D are unbounded, homogeneity

of p will let us consider just the behavior of p(x) on D intersected with the unit ball Sn−1 in R
n

(or S2n−1 in Cn). On this intersection we can use the same compactness argument as above:

Theorem 3.2. Let p(x) be a homogeneous polynomial, let D be a homogeneous domain, and let S

denote the unit ball in R
n (or C

n). Let

pmin,homo := inf
x∈D̄∩S

|p(x)|

Then p(x) can be evaluated accurately if pmin,homo > 0.

4 Classical arithmetic

In this section we sketch the way in which we deal with the classical arithmetic case over the real or
complex fields, with the three basic operations {+,−, ·}, to which we add negation. The model of

arithmetic is governed by the laws in Section 2. We remind the reader that this arithmetic model
does not allow the use of constants.

We will need the following definition of allowability.

4

Definition 4.1. Let p be a polynomial over R
n or C

n, with variety V (p) :={x : p(x) = 0}. We
call V (p) allowable if it can be represented as a union of intersections of sets of the form

1. Zi = {x : xi = 0} , (1)

2. Sij = {x : xi + xj = 0} , (2)

3. Dij = {x : xi − xj = 0} . (3)

If V (p) is not allowable, we call it unallowable.

4.1 Necessity: real and complex

Definition 4.2. Given a polynomial p over S with unallowable variety V (p), consider all sets W
that are finite intersections of allowable hyperplanes defined by (1), (2), (3), and subtract from

V (p) those W for which W ⊂ V (p). We call the remaining subset of the variety points in general
position and denote it by G(p). Note that if V (p) is not allowable, then G(p) 6= ∅.

Definition 4.3. Given x ∈ S, define the set Allow(x) as the intersection of all allowable hyper-

planes going through x:

Allow(x) := (∩x∈Zi
Zi) ∩

(
∩x∈Sij

Sij

)
∩

(
∩x∈Dij

Dij

)
,

with the understanding that

Allow(x) :=S whenever x /∈ Zi, Sij , Dij for all i, j.

Note that Allow(x) is a linear subspace of S, and that for each x ∈ G(p),

Allow(x) 6⊆ V (p) .

We can now state the main necessity theorem.

Theorem 4.4. Let p be a polynomial over a domain D ∈ S. Let G(p) be the set of points in general

position on the variety V (p). If there exists x ∈ D ∩ G(p) such that Allow(x) ∩ Int(D) 6= ∅, then p
is not accurately evaluable on D.

Sketch of proof. The proof of this theorem relies on tracing the zeros produced by the algorithm

back to the nodes where they originate.
For the non-branching case, we think of the algorithm as a directed acyclic graph (DAG) with

input nodes, branching nodes, and output nodes. One of the key facts in the proof is that each
node outputs a polynomial in x and the error variables δ, which, for a given x, will either be exactly
0 for all δ, or it will be non-zero for almost all δ.

Roughly speaking, if the algorithm produces a “true” zero (i.e. a zero which does not depend
on the error variables δ), we show that this zero can be traced back on the DAG to allowable

conditions (multiplication by a perfect 0, or addition/subtraction of equal source variables). Thus,
if the algorithm produces a 0 at x, it will also produce a 0 when run on Allow(x), for any choice

of error variables δ. This is enough to prove Theorem 4.4 in the non-branching case (if x ∈ G(p),
then either pcomp(x, δ) 6= 0 for almost all δ, or pcomp(y, δ) = 0 for all y ∈ Allow(x) \ V (p) and for

all δ).
The branching case is based on the non-branching one and it is slightly more complicated. It

involves proving a refinement of the above argument, namely, that arbitrarily close to any point
x in general position there are sets S of positive measure such that the relative accuracy of the
algorithm when run with inputs in S is either 1 or ∞. �

5

4.2 Sufficiency: the complex case

Suppose we now restrict input values to be complex numbers and use the same algorithm types and

the notion of accurate evaluability from the previous sections. By Theorem 4.4, for a polynomial p
of n complex variables to be accurately evaluable over Cn it is necessary that its variety V (p) :={z ∈
C

n : p(z) = 0} be allowable.
The goal of this section is to prove that this condition is also sufficient, as stated in the following

theorem.

Theorem 4.5. Let p : C
n → C be a polynomial with integer coefficients and zero constant term.

Then p is accurately evaluable on D = Cn if and only if the variety V (p) is allowable.

With the help of a little algebraic geometry, we obtain the following Lemma.

Lemma 4.6. If p : C
n → C is a polynomial whose variety V (p) is allowable, then it is a product

p = c
∏

j pj , where each pj is a power of xi, (xi − xj), or (xi + xj).

Theorem 4.5 follows from Lemma 4.6.

4.3 Toward a necessary and sufficient condition in the real case

We now show that accurate evaluability of a polynomial over Rn is ultimately related to accurate

evaluability of its “dominant terms”. These are the terms of the polynomial that dominate its other
terms in a particular semialgebraic set close to a particular component of its variety; thus which

terms will dominate depends on how we approach the variety of a polynomial.
For reasons outlined in Section 3, we consider here only homogeneous polynomials. Futher-

more, most of this section focuses on non-branching algorithms, but we do need branching for our
statements at the end of the section.

4.3.1 Dominance

Given a polynomial p with an allowable variety V (p), we fix an irreducible component of V (p).

Any such component is described by linear allowable constraints. It turns out (see [4]) that any
given component of V (p) can be put into the form x1 = x2 = ... = xk = 0 using what we call
a standard change of variables. Standard changes of variables are simple linear transformations

of the variables, which, however, have a rather involved combinatorial description, which we here
omit.

After a suitable allowable change of variables, we can assume that the polynomial p(x) is written
as p(x) =

∑
λ∈Λ cλxλ

[1:k]qλ(x[k+1:n]), where we write x[1:k] :=(x1, . . . , xk), x[k+1:n] :=(xk+1, . . . , xn).

Also, we let Λ be the set of all multi-indices λ :=(λ1, . . . , λk) occuring in the monomials of p(x).

To determine all dominant terms associated with the component x1 = x2 = ... = xk = 0,
consider the Newton polytope P of the polynomial p with respect to the variables x1 through xk only,

i.e., the convex hull of the exponent vectors λ ∈ Λ (see, e.g., [6, p. 71]). Next, consider the normal
fan N (P) of P (see [11, pp. 192–193]) consisting of the cones of all row vectors η whose dot products

with x ∈ P are maximal for x on a fixed face of P . That means that for every nonempty face F of
P we take NF :={η = (n1, . . . , nk) ∈ (Rk)∗ : F ⊆ {x ∈ P : ηx(:=

∑k
j=1 njxj) = maxy∈P ηy}} and

N (P) :={NF : F is a face of P}.

6

Finally, consider the intersection of the negative of the normal fan −N (P) and the nonnegative
quadrant Rk

+. This splits the first quadrant Rk
+ into several regions SΛj

according to which subsets

Λj of exponents λ “dominate” close to the considered component of the variety V (p), in the following
sense:

Definition 4.7. Let Λj be a subset of Λ that determines a face of the Newton polytope P of p such
that the negative of its normal cone −N (P) intersects (Rk)∗+ nontrivially (not only at the origin).

Define SΛj
∈ (Rk)∗+ to be the set of all nonnegative row vectors η such that

ηλ1 = ηλ2 < ηλ, ∀λ1, λ2 ∈ Λj, and λ ∈ Λ \ Λj.

Let FΛj
⊆ [−1, 1]k be the set of all points x[1:k] ∈ R

k such that

η :=(− log |x1|, . . . ,− log |xk|) ∈ SΛj
.

Example 4.8. Consider the following polynomial

p(x1, x2, x3) = x8
2x

12
3 + x2

1x
2
2x

16
3 + x8

1x
12
3 + x6

1x
14
2 + x10

1 x6
2x

4
3.

We show below the regions FΛj
near the component x1 = x2 of V (p).

−1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Region B

Region B

Region C Region C

Region ARegion A

Region ARegion A

Region A: F
{(2,2)}

Region B: F
{(0,8)}

Region C: F
{(8,0)}

F
{(2,2),(0,8)}

F
{(2,2),(8,0)}

Figure 1. The regions FΛj
.

7

Definition 4.9. We define the dominant term of p(x) corresponding to the component x1 = · · · =
xk = 0 and the region FΛj

by

pdomj
(x) :=

∑

λ∈Λj

cλxλ
[1:k]qλ(x[k+1:n]) .

We then prove that pdomj
is the leading term along certain curves lying in the subset FΛj

as we

approach 0. The next question is whether the dominant term pdomj
indeed dominates the remaining

terms of p in the region FΛj
in the sense that pdomj

(x)/p(x) is close to 1 sufficiently close to the
component x1 = · · · = xk = 0 of the variety V (p). Indeed, we show that each dominant term pdomj

such that the convex hull of Λj is a facet of the Newton polytope of p and whose variety V (pdomj
)

does not have a component strictly larger than the set x1 = · · · = xk = 0 indeed dominates the

remaining terms in p, not only in FΛj
, but in a certain “slice” F̃Λj

around FΛj
. These dominant

terms, corresponding to larger sets Λj, are the useful ones, since they pick up terms relevant not

only in the region FΛj
but also in its neighborhood.

Lemma 4.10. Let pdomj
be the dominant term of a homogeneous polynomial p corresponding to

the component x1 = · · · = xk = 0 of the variety V (p) and to the set Λj whose convex hull is a facet
of the Newton polytope N .

Let S̃Λj
be any closed pointed cone in (Rk)∗+ with vertex at 0 that does not intersect other one-

dimensional rays SΛl
, l 6= j, and contains SΛj

\ {0} in its interior. Let F̃Λj
be the closure of the

set
{x[1:k] ∈ [−1, 1]k : (− log |x1|, . . . ,− log |xk|) ∈ S̃Λj

}. (4)

Suppose the variety V (pdomj
) of pdomj

is allowable and intersects F̃Λj
only at 0. Let ‖ · ‖ be any

norm. Then, for any δ = δ(j) > 0, there exists ε = ε(j) > 0 such that

∣∣∣∣
pdomj

(x[1:k], x[k+1:n])

p(x[1:k], x[k+1:n])
− 1

∣∣∣∣ < δ whenever
‖x[1:k]‖

‖x[k+1:n]‖
≤ ε and x[1:k] ∈ F̃Λj

. (5)

The above discussion of dominance was based on the transformation of a given irreducible

component of the variety to the form x1 = · · · = xk = 0. We must reiterate that the identification
of dominant terms becomes possible only after a suitable change of variables C is used to put a

given irreducible component into the standard form x1 = · · · = xk = 0 and then the sets Λj are
determined. Note however that the polynomial pdomj

is given in terms of the original variables,

i.e., as a sum of monomials in the original variables xq and sums/differences xq ± xr. We therefore
use the more precise notation pdomj ,C in the rest of this section.

4.3.2 Pruning

We can convert an accurate algorithm that evaluates a polynomial p into an accurate algorithm
that evaluates a selected dominant term pdomj ,C . This process, which we will refer to as pruning,

consists of deleting some vertices and edges and redirecting certain other edges in the DAG that
represents the algorithm. Pruning allows us to track and extract leading terms as we approach a

given branch of the variety V (p) from within a set FΛj
. Here is an example intended to give an

idea what is involved in the pruning process.

8

Example 4.11. Figure 2 shows an example of pruning an algorithm that evaluates the polynomial

x2
1x

2
2 + (x2 − x3)

4 + (x3 − x4)
2x2

5

using the substitution
(tx1, x2, tx3 + x2, tx4 + x2, x5)

near the component
x1 = 0, x2 = x3 = x4.

Figure 2. Pruning an algorithm for p(x) = x2
1x

2
2 + (x2 − x3)

4 + (x3 − x4)
2x2

5.

The result of pruning is an algorithm that evaluates the dominant term

x2
1x

2
2 + (x3 − x4)

2x2
5.

The output of the original algorithm is given by

((
x2

1(1 + δ1)x
2
2(1 + δ2)(1 + δ3) + (x2 − x3)

4(1 + δ4)
4(1 + δ5)

2(1 + δ6)
)
(1 + δ7)

+(x3 − x4)
2(1 + δ8)

2(1 + δ9)x
2
5(1 + δ10)(1 + δ11)

)
(1 + δ12).

The output of the pruned algorithm is

(
x2

1(1 + δ1)x
2
2(1 + δ2)(1 + δ3))(1 + δ7) + (x3 − x4)

2(1 + δ8)
2(1 + δ9)x

2
5(1 + δ10)(1 + δ11)

)
(1 + δ12).

9

The pruning process always produces an algorithm that accurately evaluates the corresponding
dominant term.

Theorem 4.12. Suppose a non-branching algorithm evaluates a polynomial p accurately on Rn by

computing pcomp(x, δ). Suppose C is a standard change of variables associated with an irreducible
component of V (p). Let pdomj ,C be one of the corresponding dominant terms of p and let SΛj

satisfy some technical condition. Then the pruned algorithm with output pdomj ,C,comp(x, δ) evaluates
pdomj ,C accurately on Rn. In other words, being able to compute all such pdomj ,C for all components

of the variety V (p) and all standard changes of variables C accurately is a condition necessary to
compute p accurately.

4.3.3 Sufficiency of evaluating dominant terms

Our next goal is to prove a converse of a sort to Theorem 4.12. Strictly speaking, our results do
not provide a true converse, since branching is needed to construct an algorithm that evaluates a

polynomial p accurately from algorithms that evaluate its dominant terms accurately.
We make two assumptions, viz., that our polynomial p is homogeneous and irreducible. The

latter assumption effectively reduces the problem to that of accurate evaluation of a nonnegative

polynomial, due to the following lemma.

Lemma 4.13. If a polynomial p is irreducible and has an allowable variety V (p), then it is either

a constant multiple of a linear form that defines an allowable hyperplane or it does not change its
sign in Rn.

From now on we therefore restrict ourselves to the nontrivial case when a (homogeneous and

irreducible) polynomial p is nonnegative everywhere in R
n.

Theorem 4.14. Let p be a homogeneous nonnegative polynomial whose variety V (p) is allowable.
Suppose that all dominant terms pdomj ,C for all components of the variety V (p), all standard changes

of variables C, and all subsets Λj satisfying some technical condition are accurately evaluable. Then
there exists a branching algorithm that evaluates p accurately over Rn.

Sketch of proof. We first show how to evaluate p accurately in a neighborhood of each irreducible
component of its variety V (p). We next evaluate p accurately off these neighborhoods of V (p). The

final algorithm will involve branching depending on which region the input belongs to, and the
subsequent execution of the corresponding subroutine.

Consider a particular irreducible component V0 of the variety V (p). Using any standard change

of variables C, we map V0 to a set of the form x̃1 = · · · = x̃k = 0. We create an ε-neighborhood
of V0 where we can evaluate p accurately. It is built up from semialgebraic ε-neighborhoods.

More precisely, for each V0, we can find a collection (Sj) of semialgebraic sets, all determined by
polynomial inequalities with integer coefficients, and the corresponding numbers εj, so that the

polynomial p can be evaluated with desired accuracy η in each εj -neighborhood of V0 within the
piece Sj. Moreover, testing whether a particular point x is within εj of V0 within Sj can be done

by branching based on polynomial inequalities with integer coefficients.
The final algorithm will be organized as follows. Given an input x, determine by branching

whether x is in Sj and within the corresponding εj of a component V0. If that is the case, evaluate
p(x) using the algorithm that is accurate in Sj in that neighborhood of V0. For x not in any of
the neighborhoods, evaluate p by Horner’s rule. Since the polynomial p is strictly positive off the

10

neighborhoods of the components of its variety, the reasoning of Section 3 applies, showing that the
Horner’s rule algorithm is accurate. If x is on the boundary of a set Sj, any applicable algorithm

will do, since the inequalities we use are not strict. Thus the resulting algorithm for evaluating p
will have the desired accuracy η. �

4.3.4 Obstacles to full induction

Our results in the previous sections suggest that there could be an inductive decision procedure that
would allow us to determine whether or not a given polynomial is accurately evaluable by reducing

the problem for the original polynomial p to the same problem for its dominant terms, then their
dominant terms, and so forth, going all the way to monomials or other polynomials that are easy to

analyze. However, this idea would only work if the dominant terms were somehow “simpler” than
the original polynomial itself, i.e., this would require an induction variable that would decrease at

each step.
Two possible choices are the number of variables or the degree of the polynomial under con-

sideration. Sometimes, however, neither of the two goes down, and moreover, the dominant term
may even coincide with the polynomial itself. For example, if

p(x) = A(x[3:n])x
2
1 + B(x[3:n])x1x2 + C(x[3:n])x

2
2

where A, B, C are nonnegative polynomials in x3 through xn, then the only useful dominant term

of p in the neighborhood of the set x1 = x2 = 0 is the polynomial p itself. Thus no progress
whatsoever is made in this situation.

Another possibility is induction on domains but we do not yet envision how to make this idea
precise, since we do not know exactly when a given polynomial is accurately evaluable on a given

domain. Further work to establish a full decision procedure is therefore highly desirable.

5 “Black-box” arithmetic

In this section we prove a necessary condition (for both the real and the complex cases) for a more

general type of arithmetic, which allows for “black-box” polynomial operations. We describe the
type of operations below.

Definition 5.1. We call a black-box operation any type of operation that takes a number of inputs
(real or complex) x1, . . . , xk and produces an output q such that q is a polynomial in x1, . . . , xk.

Example 5.2. q(x1, x2, x3) = x1 + x2x3.

Remark 5.3. Note that +,−, and · are all black-box operations on two inputs.

Consider a fixed set of multivariate polynomials {qj : j ∈ J} with real or complex inputs (this
set may be infinite). In our model under consideration, the arithmetic operations allowed are given

by the black-box operations q1, . . . , qk, and negation. With the exception of negation, which is
exact, all the others yield a rnd(op(a1, . . . , al)) = op(a1, . . . , al)(1 + δ), with |δ| < ǫ (ǫ here is the

machine precision). We consider the same arithmetical models as in Section 2, with this larger
class of operations.

11

5.1 Necessity: real and complex

In order to see how the statement of the necessity Theorem 4.4 changes, we need to introduce a

different notion of allowability. Recall that we denote by S the space of variables (which may be
either Rn or Cn). From now on we will denote the set {1, . . . , n} by A.

Definition 5.4. Let p(x1, . . . , xn) be a multivariate polynomial over S with variety V (p). Let

AZ ⊆ A, and let AD,AS ⊆ A×A . Modify p as follows: impose conditions of the type Zi for each
i ∈ AZ , and of type Dij, respectively Sij , on all pairs of variables in AD, respectively AS . Rewrite

p subject to those conditions (e.g. set Xi = 0 for all i ∈ AZ), and denote it by p̃, and denote by AR

the set of remaining independent variables (use the convention which eliminates the second variable
in each pair in AD or AS).

Choose a set T ⊆ AR, and let

VT,AZ,AD ,AS
(p) = ∩αV (qα) ,

where the polynomials qα are the coefficients of the expansion of p̃ in the variables xT :

p̃(x1, . . . , xk) =
∑

α

qαxα
T ,

with qα being polynomials in xAR\T only.
Finally, let AN be a subset of AR\T . We negate each variable in AN , and let VT,AZ ,AD ,AS ,AN

(p)

be the variety obtained from VT,AZ ,AD ,AS
(p), with each variable in AN negated.

Remark 5.5. V∅,∅,∅,∅,∅(p) = V (p). We also note that, if we have a black-box computing p, then

the set of all polynomials p̃ that can be obtained from p by permuting, repeating, and negating the
variables (as in the definition above) is exactly the set of all polynomials that can be evaluated with

a single rounding error, using that black box.

Definition 5.6. For simplicity, we denote a set (T,AZ,AD,AS,AN) by I, and a set (T,AZ,AD,AS)
by I+.

Definition 5.7. We define q−2(x1, x2) = x1x2, q−1(x1, x2) = x1 + x2, and q0(x1, x2) = x1 − x2.

Remark 5.8. The sets

1. Zi = {x : xi = 0} , (6)

2. Sij = {x : xi + xj = 0} , (7)

3. Dij = {x : xi − xj = 0} (8)

describe all non-trivial (neither ∅ nor S) sets of type VI, for q−2, q−1, and q0.

We will assume from now on that the black-box operations q−2, q−1, q0 defined in 5.7, and some

arbitrary extra operations qj , with j ∈ J (J may be infinite) are given and fixed.

Definition 5.9. We call any set VI(qj) with I = (T,AZ,AD,AS,AN) as defined above and qj a
black-box operation basic q-allowable.

12

We call any set R irreducible q-allowable if it is an irreducible component of a (finite) intersec-
tion of basic q-allowable sets, i.e., when R is irreducible and

R ⊆ ∩l Ql ,

where each Ql is a basic q-allowable set.

We call any set Q q-allowable if it is a (finite) union of irreducible q-allowable sets, i.e.

Q = ∪jRj ,

where each Rj is an irreducible q-allowable set.
Any set R which is not q-allowable we call q-unallowable.

Remark 5.10. Note that the above definition of q-allowability is closed under taking union, in-

tersection, and irreducible components. This parallels the definition of allowability for the classical
arithmetic case – in the classical case, every allowable set was already irreducible (being an inter-

section of hyperplanes).

Definition 5.11. Given a polynomial p with q-unallowable variety V (p), consider all sets W that

are q-allowable (as in Definition 5.9), and subtract from V (p) those W for which W ⊂ V (p). We
call the remaining subset of the variety points in general position and denote it by G(p).

Remark 5.12. Since V (p) is q-unallowable, G(p) is non-empty.

Definition 5.13. Given x ∈ S, define the set q−Allow(x) as the intersection of all basic q-allowable
sets going through x:

q−Allow(x) :=∩j∈J∪{−2,−1,0}

(
∩I : x∈VI(qj) VI(qj)

)
,

for all possible choices of T,AZ,AD,AS,AN .

The intersection in parentheses is S whenever x /∈ VI(qj) for all possible I.

Remark 5.14. When x ∈ G(p), q−Allow(x) 6⊆ G(p).

We can now state our necessity condition.

Theorem 5.15. Given the black-box operations q−2, q−1, q0, and {qj : j ∈ J}, and the model

of arithmetic described above, let p be a polynomial defined over a domain D ⊂ S. Let G(p) be
the set of points in general position on the variety V (p). If there exists x ∈ D ∩ G(p) such that

q−Allow(x) ∩ Int(D) 6= ∅, then p is not accurately evaluable on D.

Sketch of proof. The proof mimics the proof of Theorem 4.4; once again, we trace back zeros to

what we now call q-allowable conditions, and make use of the DAG structure of the algorithm. In
the non-branching case, we obtain that if the algorithmis run on a point x ∈ G(p), then either

pcomp(x, δ) 6= 0 for almost all δ, or pcomp(y, δ) = 0 for all y ∈ Allow(x) \ V (p) and for all δ.
The proof for the branching case is again a refinement of the proof for the non-branching one,

and we show that, arbitrarily close to any point x ∈ G(p), we can find sets S of positive measure
such that the relative accuracy of the algorithm when run with inputs in S is either 1 or ∞. �

13

5.2 Sufficiency: the complex case

In this section we obtain a sufficiency condition for the accurate evaluability of a complex polyno-

mial, given a black-box arithmetic with operations q−2, q−1, q0 and {qj|j ∈ J} (J may be an infinite
set).

Throughout this section, we assume our black-box operations include qc, which consists of

multiplication by a complex constant: qc(x) = c · x. Note that this operation is natural, and that
most computers perform it with relative accuracy.

We believe that the sufficiency condition we obtain here is sub-optimal in general, but it

subsumes the sufficiency condition we found for the basic complex case with classical arithmetic
{+,−, ·}.

We state here the best sufficiency condition for the accurate evaluability of a polynomial we
were able to find in the general case, and a necessary and sufficient condition for the all-affine

black-box operations case.

Theorem 5.16 (General case). Given a polynomial p : Cn → C with V (p) a finite union

of intersections of hyperplanes Zi, Sij, Dij, and varieties V (qj), for j ∈ J, then p is accurately
evaluable.

Theorem 5.17 (Affine case). If all black-box operations qj, j ∈ J are affine, then a polynomial
p : Cn → C is accurately evaluable iff V (p) is a union of intersections of hyperplanes Zi, Sij, Dij,

and varieties VI(qj), for j ∈ J and I as in Definition 5.4.

The proofs follow easily from Lemma 5.18.

Lemma 5.18. If p : Cn → C is a polynomial whose variety V (p) is q-allowable, then it is a product

p = c
∏

j pj , where each pj is a power of xi, (xi −xj), (xi +xj), or qj , and c is a complex constant.

Remark 5.19. Note that Theorem 5.17 is a more general necessary and sufficient condition than

Theorem 4.5, which only considered having q−2, q−1, and q0 as operations, and restricted the poly-
nomials to have integer coefficients (thus eliminating the need for qc).

6 Open Problems

Building on the results obtained in [4] and described here, we would like to solve the following

problems.

1. Complete the decision procedure outlined here, when the domain of evaluation D = R
n or

Cn, initially for classical arithmetic and then for black-box arithmetic. We would like to
implement this decision procedure in a practical way, to provide a “compiler” that will either

produce an accurate algorithm for an input expression, or prove that one does not exist, or
provide the smallest set of black-boxes that would make it accurately evaluable.

2. Extend these results to more general semialgebraic domains D. It would be natural to consider
only those D whose boundaries are allowable, so that membership in D is also decidable.

3. Apply these results to identify more structured matrix classes for which accurate linear algebra
algorithms exist.

14

4. Incorporate division and rational functions in our analysis.

5. Understand the relationship of perturbation theory to accurate evaluability. For example,
the problems evaluable in classical arithmetic so far seem to share a common perturbation

theory, that the condition number grows proportionally to the reciprocal of the distance to
the smallest problem with an infinite condition number [3].

6. Interval arithmetic [1] represents numbers by intervals, and does arithmetic with them by
rounding the endpoints “outward” so as to provably include the true answer. It is natural to
ask whether accurate evaluability of p(x) in our sense is related to the existence of interval

algorithms that provide analogously narrow intervals when evaluating p(x).

7. Ultimately we want to understand the bit-complexity of floating point computation, for which

any real model can only give hints. For example, our model shows that the determinant of
a matrix with independent entries can only be evaluated accurately if the determinant itself
is one of our black-box operations. Thus we are led to suspect determinant evaluation of

unstructured floating point matrices to have high complexity, in contrast to the case where
the entries are rational, or have bounded exponents [2].

References

[1] G. Alefeld and J. Herzberger. Introduction to interval computations. Academic Press, 1983.

[2] K. Clarkson. Safe and effective determinant evaluation. In 33rd Annual Symp. on Foundations
of Comp. Sci., pages 387–395, 1992.

[3] J. Demmel. On condition numbers and the distance to the nearest ill-posed problem. Num.

Math., 51(3):251–289, 1987.

[4] J. Demmel, I. Dumitriu, and O. Holtz. Toward accurate polynomial evaluation in rounded

arithmetic. To appear in Found. Comput. Math.

[5] J. Demmel and P. Koev. Accurate and efficient algorithms for floating point computation. In
Proceedings of the 2003 International Congress of Industrial and Applied Mathematics, Sydney,

2004.

[6] E. Miller and B. Sturmfels. Combinatorial commutative algebra. Springer-Verlag, 2005.

[7] J. Renegar. On the computational complexity and geometry of the first-order theory of the

reals: Parts I, II and III. J. Symb. Comp., 13, 1992.

[8] B. Reznick. Some concrete aspects of Hilbert’s 17th problem, volume 253 of Contemporary
Mathematics. Amer. Math. Society, 2000.

[9] J. R. Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric
Predicates. Discrete & Computational Geometry, 18:305–363, 1997.

[10] A. Tarski. A decision method for elementary algebra and geometry. University of California

Press, Berkeley, 1951.

[11] G. Ziegler. Lectures on Polytopes. Springer-Verlag, 1995.

15

